
International Journal of Computer Science Trends & Technology - Volume1 Issue1, Jul-Aug 2013

ISSN: 2347-8578 http://www.ijcstjournal.org/ Page 28

Achieving Secure cloud Data Sharing
A.SUMANGALI T.V.SAMPATH KUMAR

M.TECH IN C.S.E, AVSCET ASSOC. PROF IN CSE,AVSCET

VENKATACHALAM, NELLORE (Dt), A.P. VENKATACHALAM, NELLORE (Dt), A.P.

a.sumangali@gmail.com tanjavuru.sampath@gmail.com

Abstract—Cloud computing enables highly scalable

services to be easily consumed over the Internet on

an as-needed basis. A major feature of the cloud

services is that users’ data are usually processed

remotely in unknown machines that users do not

own or operate. While enjoying the convenience

brought by this new emerging technology, users’

fears of losing control of their own data (particularly,

financial and health data) can become a significant

barrier to the wide adoption of cloud services. To

address this problem, in this paper, we propose a

novel highly decentralized information

accountability framework to keep track of the

actual usage of the users’ data in the cloud.

 In particular, we propose an object-centered

approach that enables enclosing our logging

mechanism together with users’ data and policies.

We leverage the JAR programmable capabilities to

both create a dynamic and traveling object, and to

ensure that any access to users’ data will trigger

authentication and automated logging local to the

JARs. To strengthen user’s control, we also provide

distributed auditing mechanisms. We provide

extensive experimental studies that demonstrate

the efficiency and effectiveness of the proposed

approaches.

Keywords – Cloud computing, accountability, data

sharing.

I. INTRODUCTION

LOUD computing presents a new way to

supplement the current consumption and

delivery model for IT services based on the

Internet, by providing for dynamically scalable

and often virtualized resources as a service over

the Internet. To date, there are a number of

notable commercial and individual cloud

computing services, including Ama- zon,

Google, Microsoft, Yahoo, and Salesforce.

Details of the services provided are abstracted

from the users who no longer need to be

experts of technology infrastructure. Moreover,

users may not know the machines which

actually process and host their data. While

enjoying the convenience brought by this new

technology, users also start worrying about

losing control of their own data. The data

processed on clouds are often outsourced,

leading to a number of issues related to

accountability, including the handling of

personally identifiable information. Such fears

are becom- ing a significant barrier to the

wide adoption of cloud service.

To allay users’ concerns, it is essential to

provide an effective mechanism for users to monitor

the usage of their data in the cloud. For example,

users need to be able to ensure that their data are

handled according to the service-level agreements

made at the time they sign on for services in the

cloud. Conventional access control approaches

developed for closed domains such as databases and

operating systems, or approaches using a centralized

server in distributed environments, are not suitable,

due to the following features characterizing cloud

environments. First, data handling can be outsourced

by the direct cloud service provider (CSP) to other

entities in the cloud and theses entities can also

delegate the tasks to others, and so on. Second,

entities are allowed to join and leave the cloud in a

flexible manner. As a result, data handling in the

cloud goes through a complex and dynamic

hierarchical service chain which does not exist in

conventional environments.

To overcome the above problems, we

propose a novel approach, namely Cloud Information

Accountability (CIA) framework, based on the notion

ofinformation accountability[44]. Unlike privacy

protection technologies which are built on the hide-it-

or-lose-it perspective, information account-ability

focuses on keeping the data usage transparent and

trackable. Our proposed CIA framework provides

end-to-end accountability in a highly distributed

fashion. One of the main innovative features of the

CIA framework lies in its ability of maintaining

lightweight and powerful account-ability that

combines aspects of access control, usage control and

authentication. By means of the CIA, data owners can

track not only whether or not the service-level

agreements are being honored, but also enforce

access and usage control rules as needed. Associated

with the accountability feature,

we also develop two distinct modes for auditing push

mode and pull mode. The push mode refers to logs

being periodically sent to the data owner or

stakeholder while the pull mode refers to an

http://www.ijcstjournal.org/

International Journal of Computer Science Trends & Technology - Volume1 Issue1, Jul-Aug 2013

ISSN: 2347-8578 http://www.ijcstjournal.org/ Page 29

alternative approach whereby the user (or another

authorized party) can retrieve the logs as needed.

The design of the CIA framework presents

substantial challenges, including uniquely identifying

CSPs, ensuring the reliability of the log, adapting to a

highly decentralized infrastructure, etc. Our basic

approach toward addressing these issues is to

leverage and extend the programmable

capability of JAR (Java ARchives) files to

automatically log the usage of the users’ data by any

entity in the cloud. Users will send their data along

with any policies such as access control policies and

logging policies that they want to enforce, enclosed

in JAR files, to cloud service providers.

Any access to the data will trigger an

automated and authenticated logging mechanism

local to the JARs. We refer to this type of

enforcement as “strong binding” since the policies

and the logging mechanism travel with the data. This

strong binding exists even when copies of the JARs

are created; thus, the user will have control over his

data at any location. Such decentralized logging

mechanism meets the dynamic nature of the cloud but

also imposes challenges on ensuring the integrity of

the logging. To cope with this issue,

we provide the JARs with a central point of contact

which forms a link between them and the user. It

records the error correction information sent by the

JARs, which allows it to monitor the loss of any logs

from any of the JARs. Moreover, if a JAR is not able

to contact its central point, any access to its enclosed

data will be denied.

 Currently, we focus on image files since

images represent a very common content type for end

users and organiza-tions (as is proven by the

popularity of Flickr [14]) and are increasingly hosted

in the cloud as part of the storage services offered by

the utility computing paradigm featured

by cloud computing. Further, images often reveal

social and personal habits of users, or are used for

archiving important files from organizations. In

addition, our approach can handle personal

identifiable information provided they are stored as

image files (they contain an image of any textual

content, for example, the SSN stored as a .jpg file).

We tested our CIA framework in a cloud

testbed, theEmulab testbed [42], with Eucalyptus as

middleware [41].Our experiments demonstrate the

efficiency, scalability and granularity of our

approach. In addition, we also provide a detailed

security analysis and discuss the reliability and

strength of our architecture in the face of various

nontrivial attacks, launched by malicious users or due

to compro-mised Java Running Environment (JRE).

In summary, our main contributions are as

follows:

1.We propose a novel automatic and

enforceable logging mechanism in the cloud. To our

knowledge, this is the first time a systematic

approach to data accountability through the novel

usage of JAR files is proposed.

2. Our proposed architecture is platform

independent and highly decentralized, in that it does

not require any dedicated authentication or storage

system in place.

3. We go beyond traditional access control

in that we provide a certain degree of usage control

for the protected data after these are delivered to the

receiver.

4. We conduct experiments on a real cloud

testbed.The results demonstrate the efficiency,

scalability, and granularity of our approach. We also

provide a detailed security analysis and discuss the

reliability and strength of our architecture.

II. RELATED WORK

In this section, we first review related works

addressing the privacy and security issues in the

cloud. Then, we briefly discuss works which adopt

similar techniques as our approach but serve for

different purposes.

A. Cloud Privacy and Security

Cloud computing has raised a range of

importantprivacy and security issues. Such issues are

due to the fact that, in the cloud, users’ data and

applications reside at least for a certain amount of

time on the cloud cluster which is owned and

maintained by a third party.

Concerns arise since in the cloud it is not

always clear to individuals why their personal

information is requested or how it will be used or

passed on to other parties. To date, little work has

been done in this space, in particular with respect to

accountability. Pearson et al. have proposed

accountability mechanisms to address privacy

concerns of end users and then develop a privacy

manager.

Their basic idea is that the user’s private

data are sent to the cloud in an encrypted form, and

the processing is done on the encrypted data. The

output of the processing Is deobfuscated by the

privacy manager to reveal the correct result.

However, the privacy manager provides only limited

features in that it does not guarantee protection once

the data are being disclosed. In [7], the authors

present a layered architecture for addressing the end-

to-end trust management and accountability problem

in federated systems. The authors’ focus is very

different from ours, in that they mainly leverage trust

relationships for account-ability, along with

authentication and anomaly detection. Further, their

solution requires third-party services to complete the

monitoring and focuses on lower level monitoring of

system resources.

B. Other Related Techniques

http://www.ijcstjournal.org/

International Journal of Computer Science Trends & Technology - Volume1 Issue1, Jul-Aug 2013

ISSN: 2347-8578 http://www.ijcstjournal.org/ Page 30

With respect to Java-based techniques for

security, our methods are related to self-defending

objects (SDO). Self-defending objects are an

extension of the object-oriented programming

paradigm, where software objects that offer sensitive

functions or hold sensitive data are responsible for

protecting those functions/data. Similarly, we also

extend the concepts of object-oriented programming.

The key difference in our implementations is that the

authors still rely on a centralized database to maintain

the access records, while the items being protected

are held as separate files. In previous work, we

provided a Java-based approach to prevent privacy

leakage from indexing, which could be integrated

with the CIA framework proposed in this work since

they build on related architectures.

In terms of authentication techniques, Appel

and Felten proposed the Proof-Carrying

authentication (PCA) framework. The PCA includes

a high order logic language that allows quantification

over predicates, and focuses on access control for

web services. While related to ours to the extent that

it helps maintaining safe, high-performance, mobile

code, the PCA’s goal is highly different from our

research, as it focuses on validating code, rather than

monitoring content. Another work is by Mont et al.

who proposed an approach for strongly coupling

content with access control, using Identity-Based

Encryption (IBE)

We also leverage IBE techniques, but in a

very different way. We do not rely on IBE to bind the

content with the rules. Instead, we use it to provide

strong guarantees for the encrypted content and the

log files, such as protection against chosen plaintext

and cipher text attacks.

In addition, our work may look similar to

works on secure data provenance but in fact greatly

differs from them in terms of goals, techniques, and

application domains. Works on data provenance aim

to guarantee data integrity by securing the data

provenance. They ensure that no one can add or

remove entries in the middle of a provenance chain

without detection, so that data are correctly delivered

to the receiver. Differently, our work is to provide

data accountability, to monitor the usage of the data

and ensure that any access to the data is tracked.

Since it is in a distributed environment, we also log

where the data go. However, this is not for verifying

data integrity, but rather for auditing whether data

receivers use the data following specified policies.

Along the lines of extended content

protection, usage control is being investigated as an

extension of current access control mechanisms.

Current efforts on usage control are primarily focused

on conceptual analysis of usage control requirements

and on languages to express constraints at various

level of granularity . While some notable results have

been achieved in this respect thus far, there is no

concrete contribution addressing the problem of

usage constraints enforcement, especially in

distributed settings . The few existing solutions are

partial restricted to a single domain, and often

specialized. Finally, general outsourcing techniques

have been investigated over the past few years.

Although only is specific to the cloud, some of the

outsourcing protocols may also be applied in this

realm. In this work, we do not cover issues of data

storage security which are a complementary aspect of

the privacy issues.

III. PROBLEM STATEMENT

We begin this section by considering an illustrative

example which serves as the basis of our problem

statement and will be used throughout the paper to

demonstrate the main features of our system.

Example 1. Alice, a professional photographer, plans

to sell her photographs by using the Sky High Cloud

Services. For her business in the cloud, she has the

following requirements:

1. Her photographs are downloaded only by users

who have paid for her services.
2. Potential buyers are allowed to view her pictures

first before they make the payment to obtain the

download right.

3. Due to the nature of some of her works, only users

from certain countries can view or download some

sets of photographs.

4. For some of her works, users are allowed to

onlyview them for a limited time, so that the users

cannot reproduce her work easily.

5. In case any dispute arises with a client, she wants

tohave all the access information of that client.

6. She wants to ensure that the cloud service

providers of SkyHigh do not share her data with other

service providers, so that the accountability provided

for individual users can also be expected from the

cloud service providers.

With the above scenario in mind, we

identify the common requirements and develop

several guidelines to achieve data accountability in

the cloud. A user who subscribed to a certain cloud

service, usually needs to send his/her data as well as

associated access control policies (if any) to the

service provider. After the data are received by the

cloud service provider, the service provider will have

granted access rights, such as read, write, and copy,

on the data. Using conventional access control

mechanisms, once the access rights are granted, the

data will be fully available at the service provider. In

order to track the actual usage of the data, we aim to

develop novel logging and auditing techniques which

satisfy the following requirements:

http://www.ijcstjournal.org/

International Journal of Computer Science Trends & Technology - Volume1 Issue1, Jul-Aug 2013

ISSN: 2347-8578 http://www.ijcstjournal.org/ Page 31

1. The logging should be decentralized in

order to adapt to the dynamic nature of the cloud.

More specifically, log files should be tightly bounded

with the corresponding data being controlled, and

require minimal infrastructural support from any

server.

2. Every access to the user’s data should be

correctly and automatically logged. This requires

integrated techniques to authenticate the entity who

accesses the data, verify, and record the actual

operations on the data as well as the time that the data

have been accessed.

 3. Log files should be reliable and tamper

proof to avoid illegal insertion, deletion, and

modification by malicious parties. Recovery

mechanisms are also desirable to restore damaged log

files caused by technical problems.

 4. Log files should be sent back to their data

owners periodically to inform them of the current

usage of their data. More importantly, log files should

be retrievable anytime by their data owners when

needed regardless the location where the files are

stored.

 5. The proposed technique should not

intrusively monitor data recipients’ systems, nor it

should introduce heavy communication and

computation overhead, which otherwise will hinder

its feasibility and adoption in practice.

IV. CLOUD INFORMATION

ACCOUNTABILITY

 In this section, we present an overview of the

Cloud Information Accountability framework and

discuss how the CIA framework meets the design

requirements discussed in the previous section.

 The Cloud Information Accountability

framework pro-posed in this work conducts

automated logging and distributed auditing of

relevant access performed by any entity, carried out

at any point of time at any cloud service provider. It

has two major components: logger and log

harmonizer.

A. Major Components

 There are two major components of the CIA,

the first being the logger, and the second being the

log harmonizer. The logger is the component which

is strongly coupled with the user’s data, so that it is

downloaded when the data are accessed, and is

copied whenever the data are copied. It handles a

particular instance or copy of the user’s data and is

responsible for logging access to that instance or

copy. The log harmonizer forms the central

component which allows the user access to the log

files.

 The logger is strongly coupled with user’s

data (either single or multiple data items). Its main

tasks include automatically logging access to data

items that it contains, encrypting the log record using

the public key of the content owner, and periodically

sending them to the log harmonizer. It may also be

configured to ensure that access and usage control

policies associated with the data are honored. For

example, a data owner can specify that user X is only

allowed to view but not to modify the data. The

logger will control the data access even after it is

down-loaded by user X.

B. Data Flow

 The overall CIA framework, combining

data, users, logger and harmonizer is sketched in

Fig. 1. At the beginning, each user creates a pair

of public and private keys based on Identity-

Based Encryption (step 1 in Fig. 1). This IBE

scheme is a Weil-pairing-based IBE scheme,

which protects us against one of the most

prevalent attacks to our architecture as described.

Using the generated key, the user will create a

logger component which is a JAR file, to store

its data items.

 The JAR file includes a set of simple

access control rules specifying whether and how

the cloud servers, and possibly other data

stakeholders (users, companies) are authorized to

access the content itself. Then, he sends the JAR

file to the cloud service provider that he

subscribes to. To authenticate the CSP to the

JAR (steps 3-5 in Fig. 1), we use Open SSL-

based certificates, wherein a trusted certificate

authority certifies the CSP. In the event that the

access is requested by a user, we employ SAML-

based authentication, where in a trusted identity

provider issues certificates verifying the user’s

identity based on his username.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends & Technology - Volume1 Issue1, Jul-Aug 2013

ISSN: 2347-8578 http://www.ijcstjournal.org/ Page 32

Fig 1: Overview of the cloud information

accountability framework.

Once the authentication succeeds, the service

provider (or the user) will be allowed to access the

data enclosed in the JAR. Depending on the

configuration settings defined at the time of creation,

the JAR will provide usage control associated with

logging, or will provide only logging functionality.

As for the logging, each time there is an access to the

data, the JAR will automatically generate a log

record, encrypt it using the public key distributed by

the data owner, and store it along with the data. The

encryption of the log file prevents unauthorized

changes to the file by attackers. The data owner could

opt to reuse the same key pair for all JARs or create

different key pairs for separate JARs. Using separate

keys can enhance the security without introducing

any overhead except in the initialization phase. In

addition, some error correction information will be

sent to the log harmonizer to handle possible log file

corruption. To ensure trustworthiness of the logs,

each record is signed by the entity accessing the

content. Further, individual records are hashed

together to create a chain structure, able to quickly

detect possible errors or missing records.

The encrypted log files can later be decrypted

and their integrity verified. They can be accessed by

the data owner or other authorized stakeholders at

any time for auditing purposes with the aid of the log

harmonizer. Our proposed framework prevents

various attacks such as detecting illegal copies of

users’ data. Note that our work is different from

traditional logging methods which use encryption to

protect log files. With only encryption, their logging

mechanisms are neither automatic nor distributed.

They require the data to stay within the boundaries of

the centralized system for the logging to be possible,

which is however not suitable in the cloud.

Example 2. Considering Example 1, Alice can

enclose her photographs and access control policies

in a JAR file and send the JAR file to the cloud

service provider. With the aid of control associated

logging (called Access Log), Alice will be able to

enforce the first four requirements and record the

actual data access. On a regular basis, the push-mode

auditing mechanism will inform Alice about the

activity on each of her photo-graphs as this allows

her to keep track of her clients’ demographics and the

usage of her data by the cloud service provider. In the

event of some dispute with her clients, Alice can rely

on the pull-mode auditing mechanism to obtain log

records.

V. AUTOMATED LOGGING MECHANISM

 We first elaborate on the automated logging

mechanism and then present techniques to guaran-tee

dependability.

A. The Logger Structure

 We leverage the programmable capability of

JARs to conduct automated logging. A logger

component is a nested Java JAR file which stores a

user’s data items and corresponding log files. As

shown in Fig. 2, our proposed JAR file consists of

one outer JAR enclosing one or more inner JARs.

Fig. 2. The structure of the JAR file.

The main responsibility of the outer JAR is to

handle authentication of entities which want to access

the data stored in the JAR file. In our context, the

data owners may not know the exact CSPs that are

going to handle the data. Hence, authentication is

specified according to the servers

functionality (which we assume to be known through

a lookup service), rather than the server’s URL or

identity For example, a policy may state that Server

X is allowed to download the data if it is a storage

server. As discussed below, the outer JAR may also

have the access control functionality to enforce the

data owner’s requirements, specified as Java policies,

http://www.ijcstjournal.org/

International Journal of Computer Science Trends & Technology - Volume1 Issue1, Jul-Aug 2013

ISSN: 2347-8578 http://www.ijcstjournal.org/ Page 33

on the usage of the data. A Java policy specifies

which permissions are available for a particular piece

of code in a Java application environment. The

permissions expressed in the Java policy are in terms

of File System Permissions. However, the data owner

can specify the permissions in user-centric terms as

opposed to the usual code-centric security offered by

Java, using Java Authentication and Authorization

Services. Moreover, the outer JAR is also in charge

of selecting the correct inner JAR according to the

identity of the entity who requests the data.

Example 3. Consider Example 1. Suppose that

Alice’s photographs are classified into three

categories accord-ing to the locations where the

photos were taken. The three groups of photos are

stored in three inner JAR J1, J2, and J3 , respectively,

associated with different access control policies. If

some entities are allowed to access only one group of

the photos, say J1 , the outer JAR will just render the

corresponding inner JAR to the entity based on the

policy evaluation result.

Each inner JAR contains the encrypted data,

class files to facilitate retrieval of log files and

display enclosed data in a suitable format, and a log

file for each encrypted item. We support two options:

1. PureLog. Its main task is to record every

access to the data. The log files are used for pure

auditing purpose.

2. AccessLog. It has two functions: logging

actions and enforcing access control. In case an

access request is denied, the JAR will record the time

when the request is made. If the access request is

granted, the JAR will additionally record the access

information along with the duration for which the

access is allowed.

 The two kinds of logging modules allow the

data owner to enforce certain access conditions either

proactively (in case of AccessLogs) or reactively (in

case of PureLogs). For example, services like billing

may just need to use PureLogs

AccessLogs will be necessary for services which

need to enforce service-level agreements such as

limiting the visibility to some sensitive content at a

given location.

 To carry out these functions, the inner JAR

contains a class file for writing the log records,

another class file which corresponds with the log

harmonizer, the encrypted data, a third class file for

displaying or downloading the data (based on

whether we have a PureLog, or an AccessLog), and

the public key of the IBE key pair that is necessary

for encrypting the log records. No secret keys are

ever stored in the system. The outer JAR may contain

one or more inner JARs, in addition to a class file for

authenticating the servers or the users, another class

file finding the correct inner JAR, a third class file

which checks the JVM’s validity using oblivious

hashing. Further, a class file is used for managing the

GUI for user authentication and the Java Policy.

B. 5.2 Log Record Generation

 Log records are generated by the logger

component. Logging occurs at any access to the data

in the JAR, and new log entries are appended

sequentially, in order of creation LR=<r1,...,rk>.

Each record ri is encrypted individually and

appended to the log file. In particular, a log record

takes the following form:

Here, r i indicates that an entity identified by I D has

per-formed an action Act on the user’s data at time T

at location Loc. The component

h((ID, Act, T, Loc)|ri-1| . . .| ri), corresponds to the

checksum of the records preceding the newly inserted

one, concatenated with the main content of the record

itself (we use I to denote concatenation). The

checksum is computed using a collision-free hash

function . The component sig denotes the signature of

the record created by the server. If more than one file

is handled by the same logger, an additional ObjI D

field is added to each record. An example of log

record for a single file is shown below.

Example 4. Suppose that a cloud service provider

with ID Kronos, located in USA, read the image in a

JAR file at 4:52 pm on May 20, 2011. The

corresponding log record is

<Kronos, View, 2011-05-29 16:52:30,USA,

45rftT024g, r94gm30130ff>.

 The location is converted from the IP

address for improved readability.

 To ensure the correctness of the log records,

we verify the access time, locations as well as

actions. In particular, the time of access is determined

using the Network Time Protocol (NTP) [35] to avoid

suppression of the correct time

by a malicious entity. The location of the cloud

service provider can be determined using IP address.

The JAR can perform an IP lookup and use the range

of the IP address to find the most probable location of

the CSP. More advanced techniques for determining

location can also be used. Similarly, if a trusted time

stamp management infrastruc-ture can be set up or

leveraged, it can be used to record the time stamp in

the accountability log . The most critical part is to log

the actions on the users’ data. In the current system,

we support four types of actions, i.e.,Acthas one of

the following four values: view, download,

timed_access, and Location-based_access. For each

action, we propose a specific method to correctly

record or enforce it depending on the type of the

logging module, which are elaborated as follows

1. View. The entity (e.g., the cloud service

provider)can only read the data but is not

http://www.ijcstjournal.org/

International Journal of Computer Science Trends & Technology - Volume1 Issue1, Jul-Aug 2013

ISSN: 2347-8578 http://www.ijcstjournal.org/ Page 34

allowed to save a raw copy of it anywhere

permanently. For this type of action, the

PureLog will simply write a log record about

the access, while the AccessLogs will

enforce the action through the enclosed

access control module. Recall that the data

are encrypted and stored in the inner JAR.

When there is a view-only access request,

the inner JAR will decrypt the data on the

fly and create a temporary decrypted file.

The decrypted file will then be displayed to

the entity using the Java application viewer

in case the file is displayed to a human user.

Presenting the data in the Java application,

viewer disables the copying functions using

right click or other hot keys such as Print

Screen. Further, to prevent the use of some

screen capture software, the data will be

hidden whenever the application viewer

screen is out of focus. The content is

displayed using the headless mode in Java

on the command line when it is presented to

a CSP.

2. Download. The entity is allowed to save a

raw copy of the data and the entity will have

no control over this copy neither log records

regarding access to the copy. If PureLog is

adopted, the user’s data will be directly

downloadable in a pure form using a link.

When an entity clicks this download link,

the JAR file associated with the data will

decrypt the data and give it to the entity in

raw form. In case of AccessLogs, the entire

JAR file will be given to the entity. If the

entity is a human user, he/she just needs to

double click the JAR file to obtain the data.

If the entity is a CSP, it can run a simple

script to execute the JAR.

3. Timed_access. This action is combined

with the view-only access, and it indicates

that the data are made available only for a

certain period of time. The Purelog will just

record the access starting time and its

duration, while the AccessLog will enforce

that the access is allowed only within the

specified period of time. The duration for

which the access is allowed is calculated

using the Network Time Protocol. To

enforce the limit on the duration, the

AccessLog records the start time using the

NTP, and then uses a timer to stop the

access. Naturally, this type of access can be

enforced only when it is combined with the

View access right and not when it is

combined with the Download.

4. Location-based_access. In this case, the

PureLog will record the location of the

entities. The AccessLog will verify the

location for each of such access. The access

is granted and the data are made available

only to entities located at locations specified

by the data owner.

C. Dependability of Logs

we ensure the dependability of logs. In

particular, we aim to prevent the following two

types of attacks. First, an attacker may try to

evade the auditing mechanism by storing the

JARs remotely, corrupt-ing the JAR, or trying to

prevent them from communicating with the user.

Second, the attacker may try to compromise the

JRE used to run the JAR files.

i. JARs Availability

 To protect against attacks perpetrated on

offline JARs, the CIA includes a log harmonizer

which has two main responsibilities: to deal with

copies of JARs and to recover corrupted logs.

 Each log harmonizer is in charge of copies of

logger components containing the same set of data

items. The harmonizer is implemented as a JAR file.

It does not contain the user’s data items being

audited, but consists of class files for both a server

and a client processes to allow it to communicate

with its logger components. The harmonizer stores

error correction information sent from its logger

components, as well as the user’s IBE decryption

key, to decrypt the log records and handle any

duplicate records. Duplicate records result from

copies of the user’s data JARs. Since user’s data are

strongly coupled with the logger component in a data

JAR file, the logger will be copied together with the

user’s data. Consequently, the new copy of the logger

contains the old log records with respect to the usage

of data in the original data JAR file. Such old log

records are redundant and irrelevant to the new copy

of the data. To present the data owner an integrated

view, the harmonizer will merge log records from all

copies of the data JARs by eliminating redundancy.

 For recovering purposes, logger components

are required to send error correction information to

the harmonizer after writing each log record.

Therefore, logger components always ping the

harmonizer before they grant any access right. If the

harmonizer is not reachable, the logger components

will deny all access. In this way, the harmonizer

helps prevent attacks which attempt to keep the data

JARs offline for unnoticed usage. If the attacker took

the data JAR offline after the harmonizer was pinged,

the harmonizer still has the error correction

http://www.ijcstjournal.org/

International Journal of Computer Science Trends & Technology - Volume1 Issue1, Jul-Aug 2013

ISSN: 2347-8578 http://www.ijcstjournal.org/ Page 35

information about this access and will quickly notice

the missing record.

In case of corruption of JAR files, the harmonizer

will recover the logs with the aid of Reed-Solomon

error correction code . Specifically, each individual

logging JAR, when created, contains a Reed-

Solomon-based encoder. For every n symbols in the

log file, n redundancy symbols are added to the log

harmonizer in the form of bits. This creates an error

correcting code of size2nand allows the error

correction to detect and correct n errors. We choose

the Reed-Solomon code as it achieves the equality in

the Singleton Bound, making it a maximum distance

separable code and hence leads to an optimal error

correction. The log harmonizer is located at a known

IP address. Typically, the harmonizer resides at the

user’s end as part of his local machine, or

alternatively, it can either be stored in a user’s

desktop or in a proxy server.

ii. Log Correctness

 For the logs to be correctly recorded, it is

essential that the JRE of the system on which the

logger components are running remain unmodified.

To verify the integrity of the logger component, we

rely on a two-step process: 1) we repair the JRE

before the logger is launched and any kind of access

is given, so as to provide guarantees of integrity of

the JRE. 2) We insert hash codes, which calculate the

hash values of the program traces of the modules

being executed by the logger component. This helps

us detect modifications of the JRE once the logger

component has been launched, and are useful to

verify if the original code flow of execution is

altered.

Fig. 3. Oblivious hashing applied to the logger.

 These tasks are carried out by the log

harmonizer and the logger components in tandem

with each other. The log harmonizer is solely

responsible for checking the integrity of the JRE on

the systems on which the logger components exist

before the execution of the logger components is

started. Trusting this task to the log harmonizer

allows us to remotely validate the system on which

our infrastructure is working. The repair step is itself

a two-step process where the harmonizer first

recognizes the Operating System being used by the

cloud machine and then tries to reinstall the JRE. The

OS is identified using n map commands. The JRE is

reinstalled using commands such as sudo apt install

for Linux-based systems or $ <jre>.exe [lang=] [s]

[IEXPLORER=1] [MOZILLA=1] [INSTALLDIR=:]

[STATIC=1]for Windows-based systems.

The logger and the log harmonizer work in

tandem to carry out the integrity checks during

runtime. These integrity checks are carried out using

oblivious hashing. OH works by adding additional

hash codes into the programs being executed. The

hash function is initialized at the beginning of the

program, the hash value of the result variable is

cleared and the hash value is updated every time there

is a variable assignment, branching, or looping. An

example of how the hashing transforms the code is

shown in Fig. 3.

As shown, the hash code captures the computation

results of each instruction and computes the

oblivious-hash value as the computation proceeds.

These hash codes are added to the logger components

when they are created. They are present in both the

inner and outer JARs. The log harmonizer stores the

values for the hash computations. The values

computed during execution are sent to it by the

logger components. The log harmonizer proceeds to

match these values against each other to verify if the

http://www.ijcstjournal.org/

International Journal of Computer Science Trends & Technology - Volume1 Issue1, Jul-Aug 2013

ISSN: 2347-8578 http://www.ijcstjournal.org/ Page 36

JRE has been tampered with. If the JRE is tampered,

the execution values will not match. Adding OH to

the logger components also adds an additional layer

of security to them in that any tampering of the

logger components will also result in the OH values

being corrupted.

REFERENCES

[1] J. N. Tsitsiklis, “Decentralized detection,” in Advances in

Signal Processing, H.V.Poor and J. B. Thomas, Eds.JAI Press,
1993, vol. 2, pp. 297–344.

[2] R. R. Tenney and J. Sandell, N. R., “Detection with distributed
sensors,” IEEE Transactions on Aerospace and Electronic Systems,

vol. 17, pp. 501–510, Aug 1981.

.

[3] J.-F. Chamberland and V. Veeravalli, “Asymptotic results for

decentralized detection in power constrained wireless sensor

networks,” IEEE Journal on Selected Areas in Communications,
vol. 22, no. 6, pp. 1007 – 1015, 2004.

[4] S. Jayaweera, “Large sensor system performance of

decentralized detection in noisy, bandlimited channels,” in Proc.

Vehicular Technology Conference, 2005, vol. 2, May 2005, pp.
1096– 1100.

[5] T. Quek, M. Win, and M. Chiani, “Distributed diversity in
ultrawide bandwidth wireless sensor networks,” in Proc. Vehicular

Technology Conference, 2005, vol. 2, May 2005, pp. 1355– 1359.

[6] S. Wei, “Spreading sequence-based non-coherent sensor fusion

and its resulting large deviation exponents,” in Proc. Acoustics,

Speech and Signal Processing, 2007, vol. 3, 2007, pp. III–177–III–
180.

[7] M. Gastpar and M. Vetterli, “Source-channel communication in

sensor networks,” in 2nd International Workshop on Information

Processing in Sensor Networks (IPSN’03), L. J. Guibas and F.

Zhao, Eds. New York: Springer, April 2003, vol. 2634, pp. 162–
177.

[8] D. Cassioli, M. Win, and A. Molisch, “The ultra-wide
bandwidth indoor channel: from statistical model to simulations,”

IEEE Journal on Selected Areas in Communications, vol. 20, pp.

1247–1257, Aug. 2002.

http://www.ijcstjournal.org/

