
International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 1, Jan-Feb 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 52

A Case Study on Developing Software Using OOPS
 Yashika Goyal1, Himanshu Kakkar2, Gursheen Kaur3

Student1&3, Assistant Professor2

Department of Computer Science & Engineering,

Chandigarh Engineering College,

 Landran, India

ABSTRACT
Today, most of the software is designed on an Object-Oriented Programming (OOP) paradigm. Most programs including word

processors, spreadsheets, database applications, and e-mail programs are object-oriented. Understanding the basics of object-

oriented design is a prerequisite for extending an application to provide some user defined behaviour. An object-oriented

programming language is a programming language that supports the precepts of object-oriented programming. Today platform

independent languages exist providing various benefits including C++, Java, and Python, in addition to languages specifically

for the Microsoft Windows platform including Visual Basic and C#. The object-oriented concepts are the same in all of the

languages; only the syntax and presentation are different. Object-oriented approaches to commercial software have been

prevalent for more than a decade. Sadly, most undergraduate and graduate engineering education still primarily focuses on

procedural based implementation using languages such as FORTRAN, which are usually no longer practical for development of

modern large-scale applications and their extension by the end user. Switching from a procedural to an object-oriented

paradigm typically requires some effort since the thought process is different.

Keyword’s – Oops, ADT, Objects, Class

 I. INTRODUCTION

Object oriented programming is recognized for its

ability to inherit and reuse the code. A high degree

of reusability makes it especially suited for

developing and maintaining large software. But as

programs get larger, static type-checking becomes

imperative, and this has been a concern of the OOP

community from the beginning.

The representation of engineering systems in a

manner suitable for computer processing is an

important aspect of software development for

computer aided engineering. The process of

abstraction is a well-known technique for

developing data representations. Objects are a

mechanism for representing data using abstraction,

and object-oriented languages are languages for

writing programs to manipulate objects.

The widely recognized value of such software

engineering techniques as information hiding,

encapsulation, strict enforcement of interfaces, and

layering were important. The language features that

address these issues are those of objects, classes,

inheritance, polymorphism, templates, and design

patterns.

 II. REUSABILITY, EXTENSIBILITY &

FLEXIBILITY

Reusability is an important issue in software

engineering for at least two major reasons. Firstly,

reusability is one means to cope with the pressures

of producing ever larger and more functional

systems in a short period of time. Reusability

allows developers to be more efficient because the

same code can be developed once and used in many

different applications. Secondly, reliability can be

improved by reusing previously developed and

previously tested components. The development of

new code entails the additional costs in time and

money of testing, validation, and verification of the

new code. Much of these expenses can be avoided

by using "off-the-shelf" components.

Software reuse is certainly not a goal unique to

object-oriented programming. While libraries of

procedures proved this approach to be useful, in

practice procedures were too primitive a unit to

promote extensive reuse. Objects and classes are

more sophisticated mechanisms for achieving

software reuse because they bind together more

completely all the aspects of an entire abstraction.

Therefore, the abstraction can more easily be

transported across applications. Any of the forms of

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 1, Jan-Feb 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 53

generalization also contribute to reuse. A class in an

inheritance hierarchy can be reused directly when it

serves as a generalized base class from which a new

class is derived by specialization. Templates can be

reused by supplying different parameters for the

template arguments. Design patterns allow design

experience and success to be reused across

designers.

Extensibility in software is important because

software systems are long-lived and are subject to

user's demands for new features and added

capability. Object-oriented programming can help

to satisfy this need through inheritance. Inheritance

is a generalization/specialization hierarchy.

Extensibility is possible in two ways. The first way

in which a generalization/specialization hierarchy

supports extensibility is that any new attributes or

behaviour that is added to a more generalized

concept will automatically become part of the

attributes and behaviour of its specializations.

Flexibility in software systems means, in part, that

additions, variations or modification can be made

without the need to modify numerous places in the

system's code. Initially, many software systems

were very brittle in that the addition of a small

change could only be accommodated by making

modifications in many, and often apparently

unrelated, parts of the existing system. This brittle

property stood in marked contrast to the prevailing

notion that, like hardware systems, software system

were supposed to be extremely malleable and

changes can be made easily.

Object oriented programming offers flexibility in

two ways. Firstly, the separation of an interface

from its implementation allows the user of the

interface to remain unaffected by changes in the

implementation. Thus, a modification can be made

to the implementation (to improve its efficiency or

reliability) without requiring any changes in the

code that uses the interface. Second, polymorphism

allows variations and additions to be made to the set

of classes over which the polymorphism applies.

Major Concepts in OOP:

 Encapsulation

 Inheritance

 Polymorphism

Encapsulation in this context means putting

together the things that should be together, in

particular attributes and operations (data and

methods).

 The fundamental underlying notion is that of

"abstraction", and in particular the Abstract Data

Type (ADT). An ADT is usually implemented by

something called a "class". Data (attributes) and

operations (behaviours, and also called functions, or

methods) are combined in the class definition. Both

are also referred to as "members" of the class. A

program consists of a collection of "objects" of

various classes that make things happen by

communicating with each other by "sending

messages"; i.e., one object can send a message to

another object by asking that object to perform one

of its methods (Java syntax: object. method

(parameter_ list) The Principle of Information

Hiding insists on a "contract" between the

implementer and the user. This establishes a

"division of responsibility" in which the implement

or should be told only what is necessary for

implementing the class, and the client should be

told only what is necessary to use the class. In each

case it's a question of "minding one's own business".

This may be enforced, or at least encouraged by

"access control" (public, private, protected) of class

members.

Inheritance is a hierarchical relationship in which

the members of one class are all passed down to

any class that descends from (extends) that class,

directly or indirectly. It is in this sense that we

appear to be "getting something for nothing". This

is just one of a number of different relationships

that may exist between different classes.

Thus, inheritance is a mechanism for defining a

new class based on the definition of a pre-existing

class, in such a way that all the members of the

"old" class (superclass, or parent class, or base class)

are present in the "new" class (subclass, or child

class, or derived class), and an object of the new

class may be substituted anywhere for an object of

the old class. This is the Principle of Substitutability.

An inherited class may simply use the members that

are already there, may add new members, or may

"override" members that pre-existed in the parent or

ancestor class (by giving those "overridden"

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 1, Jan-Feb 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 54

member’s new definitions). An inheritance

hierarchy is a tree-like mapping of the relationships

that form between classes as the result of

inheritance. (C++ allows multiple inheritance).

Inheritance hierarchies should develop naturally as

you program, and not be "forced" in any way.

Polymorphism literally means "many forms". In

OOP, polymorphism refers to the fact that a single

name (like open, above) can be used to represent or

select different code at different times, depending

on the situation, and according to some automatic

mechanism. So, for example, the method call object.

DoIt() can mean different things at different times

in the same program.

III. CONCLUSION

Object-oriented programming is becoming an

important technique in the construction of large

software systems. Compelling arguments, like

reduced maintenance costs, are advanced to

encourage its use. To maximise the advantages of

such methods, object-oriented programming

languages need to be well-designed. When selecting

the main features of a programming language, or

choosing between alternative designs, formal

methods of semantic analysis are invaluable. To

date little attention has been given to the formal

description of object-oriented languages.

ACKNOWLEDGEMENT

This research paper is made possible through the

help and support from everyone, including parents,

teachers, family, friends, and in essence, all sentient

beings. Especially, please allow us to dedicate

our acknowledgment of gratitude toward the

following significant advisors and contributors:

First and foremost, we would like to thank Mr.

Jitendra Yadav for his most support and

encouragement. He kindly read our paper and

offered invaluable advices on organization and the

theme of the paper.

Second, we would like to thank Ms. Karanpreet

Kaur for teaching me about Object Oriented

Programming over the past two years of my

Bachelor’s degree.

Finally, we sincerely thank to our parents,

family, and friends, who provided the advice.

The product of this research paper would not be

possible without all of them.

REFERENCES

[1] Raghav Yadav, Seminar on software development and programming

languages. (2013)

[2] G. Booch, “Object-Oriented Analysis and Design with Applications,”

Cummings, 1991.

[3] Jacobson, M. Griss, P. Johnsson, “Software Reuse,” Addison-Wesley 1997.

[4] Stroustrup, B., The C++ Programming Language, Third Edition,

Addison-Wesley, Reading, MA, 1997.

[5] Comparison of Object Oriented Programming to Procedural Programming

Language, Journal by Sallie Henry.

http://www.ijcstjournal.org/

