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ABSTRACT 
Decision tree is considered to be one of the most popular data-mining techniques for knowledge discovery. It systematically 

analyzes the information contained in a large data source to extract valuable rules and relationships and usually it is used for the 

purpose of Classification/prediction.  In Data mining, Classification of objects based on their features into pre-defined 

categories is a widely studied problem with rigorous applications in fraud detection, artificial intelligence methods and many 

other fields. In this paper we reviewed various decision tree algorithms with their limitations and also we evaluated their 

performance with experimental analysis based on sample data.  
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I.   INTRODUCTION 

Databases are rich with hidden information that can be used 
for intelligent decision making. Classification and prediction 
are two forms of data analysis that can be used to extract 
models describing important data classes or to predict future 
data trends. Such analysis can help provide us with a better 
understanding of the data at large. Whereas classification 
predicts categorical (discrete, unordered) labels, prediction 
models continuous valued functions [1]. 

In classification a model or a classifier is constructed to 
predict categorical labels such as “safe” or “risky” for loan 
application data, “Yes” or “No” for market data, or “treatment 
A” or “treatment B” or “treatment C” for medical data. 

How does Classification works? Data Classification is two 
step process. In the first step, a classifier is built describing 
predetermined set of data classes or concepts. This is the 
learning step (or training phase), where a classification 
algorithm builds the classifier by analyzing or “learning from” 
a training set made up of data base tuples and their association 
class labels. Each tuple is assumed to belong to a predefined 
class as determined by another database attribute called the 
Class label attribute. The individual tuples making up the 
training set are referred to as a training tuples and are selected 
from the data base under analysis. In the context of 
classification, data tuples can be referred to as samples, 
examples, instances, data points, or objects. Because the class 
label of each training tuple is provided, this step is also known 
as supervised learning. This first step of classification process 
can also be viewed as the learning of a mapping or function, 
Y=f(X), that can predict the associated class label “Y” of a 
given tuple “X”. 

In the second step Classification, the model is used for 
classification. First the predictive accuracy of the classifier is 
estimated. If the accuracy is considered acceptable, the rules 
can be applied to the classification of new tuples. The accuracy 
of a classifier on a given test set is the percentage of the test set 
tuples that are correctly classified by the classifier. The 

associated class label of each test tuple is compared with the 
learned classifier’s class prediction for that tuple. In this paper 
we have discussed the decision tree classification algorithms 
including ID3, CART, C4.5, SLIQ, SPRINT and the 
performance of these classifiers are analyzed by using the data 
mining tools Sipina research tool and Rapid Miner 6.0. The 
rest of the paper includes classification problem and 
description classification algorithm reviewed from literature in 
section 2. Section 3 contains the SQL approach of SPRINT 
algorithm. Section 4 contains the experiments and analysis. 
Section 5 concludes the paper.          

II.   RELATED WORK 

2. Classification Problem: 

The classification problem is one of the most common 
operations in data mining. Given a data set of N records with at 
least m+1 fields A1, A2,…., Am and C, the problem is to build 
a model that predicts the value of the field C (class) given the 
value of M fields. The classification problem [2] is stated as: 

Def: Given a database D={t1,t2,…tn} of tuples (items, 
records) and a set of classes C={c1,c2,…cn} the classification 
problem is to define a mapping f:D→C where each ti is 
assigned to one class. A Class Cj contains precisely those 
tuples mapped to it, that is  Cj={ti/f(ti)=Cj, 1≤i≤n, and ti  € d}. 

The above definition views classification as a mapping 
from the database to the set of classes. The classes are 
predefined, non overlapping and partitioned the entire 
database. The problem usually implemented in two phases: 

1. Create a specific model by evaluating the training 
data. In this step the training data used as input and 
the developed model as an output. 

2. Apply the model developed in step1 by classifying 
tuples from the target database. 

Decision tree algorithm recursively partitions a data set of 
records using depth-fist greedy approach [3] or breadth-first 
approach, until all the data items belong to a particular class 
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are identified. A decision tree structure is made of root, internal 
and leaf nodes. Most decision tree classifiers perform 
classification in two phases: tree-growing (or building) and 
tree-pruning. The tree building is done in top-down manner. 
During this phase the tree is recursively partitioned till all the 
data items belong to the same class label. In the tree pruning 
phase the full grown tree is cut back to prevent over fitting and 
improve the accuracy of the tree [1] in bottom up fashion. It is 
used to improve the prediction and classification accuracy of 
the algorithm by minimizing the over-fitting (noise or much 
data in training data set) [1]. Decision tree algorithm structure 
is given in two phases as under: 

BuildTree (data set S) 

if all records in S belong to the same class, 

return; 

for each attribute Ai 

evaluate splits on attribute Ai ; 

use best split found to partition S into S1 and S2 ; 

BuildTree (S1); 

BuildTree (S2); 

endBuildTree; 

Fig. 1 Algorithm for decision tree growth phase 

 

PruneTree (node t) 

if t is leaf 

return C(S) +1 

/* C(S) is the cost of encoding the classes for the 

records in set S */ 

minCost1:= PruneTree (t1); 

minCost2:= PruneTree (t2); /* t1, t2 are t’s 

children*/ 

minCostt:= min{ C(S)+1, Csplit(t)+1+minCost1+ 

minCost2 }; 

return minCostt; /* Csplit: cost of encoding 

a split */ 

EndPruneTree; 

Fig.2 Algorithm for decision tree prune phase 

Decision tree algorithms are implementable in both serial 
and parallel form. Parallel implementation of decision tree 
algorithms is desirable in-order to ensure fast generation of 
results especially with the classification/prediction of large 
data sets; it is also possible to exploit the underlying computer 
architecture [17]. However when small medium data sets are 
involved, the serial implementation of decision tree algorithms 
is easy to implement and desirable. In the following sections 
we will briefly discuss the popular decision tree approaches. 

2.1 ID3 

ID3(Iterative Dichotomized) algorithm[4], is based on 
information theory and attempts to minimize the expected 
number of comparisons. The base of ID3 is Concept Learning 
System (CLS) algorithm. CLS algorithm is the basic algorithm 
for decision tree learning. The tree growth phase of CLS is the 
matter of choosing attribute to test at each node is by the 
trainer. ID3 improves CLS by adding a heuristic for attribute 
selection. ID3 is based on Hunt’s algorithm [3] and is 
implemented in serially [5]. This algorithm recursively 
partitions the training dataset till the record sets belong to the 
class label using depth first greedy technique. In growth phase 
of the tree construction, this algorithm uses information gain, 
an entropy based measure, to select the best splitting attribute, 
and the attribute with the highest information gain is selected 
as the splitting attribute. 

The concept used to quantify information is called entropy. 
Entropy is used to measure the amount of uncertainty in a set 
of data. Certainly when all the data in given set belongs to a 
single class, there is no uncertainty and the entropy is zero. The 
objective of the decision tree classification is to iteratively 
partition the given data set into subsets where all elements in 
each final subset belong to the same class.  

For a given set of probabilities p1,p2,…,ps where ∑i=1
s pi = 

1, entropy is defined as  

H(p1,p2,…,ps) =  ∑i=1
s(pi log(1/pi)            (1) 

Given a database state, D, H(D) finds the amount of order 
in that state. When that state is split into s new states 
S={D1,D2,….,Ds}. The ID3 algorithm calculates the gain of a 
particular split by the following formula: 

Gain(D,S) = H(D) - ∑i=1
s P(Di) H(Di)        (2) 

 ID3 doesn’t give accurate result when there is too much 
noise or details in the training data set, thus an intensive pre-
processing of data is carried out before building a decision tree 
model with ID3[5]. One of the main drawbacks of ID3 is that 
the measure Gain used tends to favor attributes with a large 
number of distinct values [1]. It only accepts categorical 
attributes in building a tree model. This decision tree algorithm 
generates variable branches per node. 

2.2 C4.5 

C4.5 algorithm [6], is an improved version of ID3; this 
algorithm uses Gain Ratio as splitting criteria, instead of taking 
gain in ID3 algorithm for splitting criteria [3] in tree growth 
phase. Hence C4.5 is an evolution of ID3 [4]. This algorithm 
handles both continuous and discrete attributes- In order to 
handle continuous attributes, C4.5 creates a threshold and then 
splits the list into those whose attribute value is above the 
threshold and those that are less than or equal to it [6]. Like 
ID3 the data is sorted at every node of the tree in order to 
determine the best splitting attribute. The splitting process 
stops when the number of instances to be split is less than the 
threshold. The main advantages of C4.5 is when building a 
decision tree, C4.5 can deal with datasets that have patterns 
with unknown attribute values. C4.5 can also deal with the 
case of attributes with continuous domains by discretization. 
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This algorithm handles training data with attribute values by 
allowing attribute values to be marked as missing. Missing 
attribute values are simply not used in gain and entropy 
calculations. It has an enhanced method of tree pruning that 
reduces misclassification errors due to noise or too much detail 
in the training data set. The Gain ratio used in this approach is 
defined as: 

GainRatio(D,S) = Gain(D,S)/H(|D1|/|D|,…,|Ds|/|D|)    (3) 

For splitting purposes, C4.5 uses the largest gain ratio that 
ensures a larger than average information gain. 

2.3 CART 

CART (Classification and Regression Trees) [1], is a 
technique that generates a binary decision tree. CART is 
unique from other Hunt’s based algorithm as it is also use for 
regression analysis with the help of regression trees. The 
regression analysis feature is used in forecasting a dependent 
variable (result) given a set of predictor variables over a given 
period of time. The CART decision tree is a binary recursive 
partitioning procedure capable of processing continuous and 
nominal attributes both as targets and predictors [1]. In CART 
trees are grown, uses gini index for splitting procedure, to a 
maximum size without the use of a stopping rule and then 
pruned back (essentially split by split) to the root via cost-
complexity pruning. The CART mechanism is intended to 
produce not one, but a sequence of nested pruned trees, all of 
which are candidate optimal trees. The CART mechanism 
includes automatic (optional) class balancing, automatic 
missing value handling, and allows for cost-sensitive learning, 
dynamic feature construction, and probability tree estimation 
[6]. In this algorithm the splitting is performed around what is 
determined to be the best splitting point, where best is defined 
by: 

Φ(s/t) = 2PLPR ∑j=1
m |P(Cj / tl) – P(Cj / tR) |     (4) 

This formula is evaluated at the current node , t, and for 
each possible splitting attribute and criterion, s. Here L and R 
are used to indicate the left and right sub trees of the current 
node in the tree. PL and PR are the probability that a tuple in the 
training set will be on the left or right side of the tree.  

2.4 SLIQ 

SLIQ [7] (Supervised Learning In Quest) was one of the 
first scalable algorithms for decision tree induction. This can 
be implemented in serial and parallel pattern. It is not based on 
Hunt’s algorithm for decision tree classification [3]. It 
partitions a training data set recursively using breadth-first 
greedy strategy that is integrated with pre-sorting technique 
during the tree building phase. SLIQ uses a vertical data 
format, meaning all values of an attribute were stored as a list, 
which was sorted at the start of the algorithm. This meant that 
the attributes need not be sorted repeatedly at each node as was 
the case in existing algorithms like CART and C4.5. With the 
pre-sorting technique sorting at decision tree nodes is 
eliminated and replaced with one-time sort, with the use of list 
data structure for each attribute to determine the best split 
point. The calculation of gini index for each possible split point 
can be done efficiently by storing class distributions in 
histograms, one per class per node. However SLIQ uses a 

memory resident data structure called class list which stores 
the class labels of each record. This data structure limits the 
size of the datasets SLIQ can handle [18]. In building a 
decision tree model SLIQ handles both numeric and 
categorical attributes. One of the disadvantages of SLIQ is that 
it uses a class list data structure that is memory resident 
thereby imposing memory restrictions on the data. It uses 
Minimum Description length Principle(MDL)[3] in pruning 
the tree after constructing it MDL is an inexpensive technique 
in tree pruning that uses the least amount of coding in 
producing tree that are small in size using bottom –up 
technique[3, 1]. The SLIQ decision tree algorithm produces 
accurate decision trees that are significantly smaller than the 
trees produced using C4.5 and CART. At the same time, SLIQ 
executes nearly an order of magnitude faster than CART [1]. 

2.5 SPRINT: Scalable Parallelizable Induction Of Decision 
Trees: 

 SPRINT [8] is the updated version of SLIQ and is 
meant for parallel implementation. SPRINT is an Algorithm 
for the induction of decision trees from very large training 
datasets. This Algorithm can handle categorical and 
continuous-valued attributes. This Algorithm proposes 
presorting techniques on disk-resident data sets that are too 
large to fit in memory. It defines the use of new data structures 
to facilitate the tree construction. SPRINT uses an attribute list 
data structures that holds the class and RID (Rowid) 
information. When a node is split the attribute list is partitioned 
and distributed among the resulting child nodes accordingly. 
When a list is partitioned, the order of the records in the list is 
maintained. Hence the partitioned list does not require 
resorting. SPRINT was designed to easily parallelized, further 
contributing to its stability.  

A decision tree classifier is built in two phases, Growth 
phase and the Prune phase. In the Growth phase, the tree 
recursively partitions the data until each partition has all (most) 
members of the same class or is sufficiently small which can 
be threshold set by the user. The form of the split used to 
partition the data depends upon the type of the attribute used in 
the split. Splits for as continuous attribute ‘A’ are the form of 
value(A) < x , where x is the value in the domain of A. Splits 
for a categorical attribute ‘A’ are of the form value(A)€X, 
where X € domain(A). 

Next in the Prune step the dependencies on statistical noise 
or variation that may be particular to the training set only are 
removed. This way the problem of over fitting data of the 
training set is taken care of. Several methods have been 
proposed for this. 

The tree growth phase is computationally much more 
expensive than pruning since the data is scanned multiple times 
in the part of the computation. On the other hand pruning just 
works on the fully grown decision tree. In this chapter we 
concentrate on the Growth phase. The Tree-Growth Algorithm 
can be expressed in the following manner: 
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Partition (Data S) 

If (all points in S are of the same class or size of the class < 
threshold) then 

 return; 

for each attribute A do 

 evaluate splits on attribute A; 

Use best split found to partition S into S1 and S2; 

Partition (S1); 

Partition (S2); 

Initial Call: Partition (Training Data) 

Fig.3 SPRINT Algorithm 

III.   SQL APPROACH FOR SPRINT 

ALGORITHM 

Scalable data mining in large databases is one of today’s 

challenges to database technologies. Thus, substantial effort is 

dedicated to a tight coupling of database and data mining 

systems leading to database primitives supporting data mining 

tasks. In order to support a wide range of tasks and to be of 

general usage these primitives should be rather building 

blocks than implementations of specific algorithms. In this 

paper, we describe primitives for building and applying sprint 

decision tree classifiers. 

The most time-consuming part of decision tree construction is 

obviously the splitting point selection. For each active node 

the subset of data (a partition) fulfilling the conjunction of the 

splitting conditions of the node and its predecessors has to be 

constructed and for each remaining attribute the possible splits 

have to be evaluated. 

Though selecting the best split point based on the measures 

described above requires no access to the data itself, but only 

to statistics about the number of records where a combination 

of attribute value and class label occurs. This information can 

be obtained from a simple table consisting of the columns 

attrib-name, attrib-value, class-label and count. This structure 

is described in [10] as CC table and in a similar form as AVC 

group (Attribute- 

Value-Class) in [9]. It could be created using a SQL query of 

the following kind [10]: 

 

select ’A1’ as aname, A1 as avalue, 

C as class, count(*) 

from S where condition 

group by A1, C 

union all 

select ’A2’ as aname, A2 as avalue, 

C as class, count(*) 

from S where condition 

group by A2, C 

union all 

... 

The optimizers of most database systems are usually not able 

to construct a plan consisting of only a single scan typically at 

least for each grouping a separate scan is required. Thus 

computing the statistics table in a single scan would be a good 

candidate for a classification primitive as already observed in 

[10]. 

3.1 Unpivoting the Data Table 

To avoid multiple unions, a simple solution could be use to 

change the physical layout of the table . Consider the table DT 

and suppose each row in DT (each case) were replaced by a 

set of rows, one for each attribute-value pair. The new schema 

for the “unpivoted” table is UDT (CaseID, AttributeID, 

AttributeValue, class) 

Now the query to compute the Cls-Count table is: 

 

Select AttributeID, AttributeValue, class, count (*) 

From UDT 

Where condition 

Group by class, AttributeID, AttributeValue 
                      Fig. 4 SQL approach for data table 
 

However this optimization comes at a huge increase in the 

cost of data scan. Let us assume the cost of storing an attribute 

value is constant ‘v’ bytes. Also assume each attribute Ai has 

value density di ≤ 1.0 i.e. that on average, the proportion of 

cases in which Ai has non-null values is di. Let case ID require 

log (N) bits to represent, where N is the number of records. 

Similarly, for ‘m’ attributes, log (m) bits are needed to 

identify an attribute.  

Cost of Scanning DT: is N.m.v since every attribute value 

occupies space in DT. 

Cost of Scanning UDT: is N( ∑ di(log(N)  + log(m) + v)) 

The difference in scan costs is δ = N( ∑ di(log(N) + log(m) + 

v) – mv). Assuming same density, then for all i,  

di = d, hence  ∑ di = md, yields the simplified form of  δ / N 

(cost per case) = m(d log(Nm) + v(d – 1)) 

It turns out from the analysis given below that this UDT 

representation incurrence a huge over head. 

Analysis for Dense Data: When the data is fully dense (d=1), 

δ /N = m log(Nm) which shows that the DT representation 

wins easily. 

Analysis for Sparse Data: Clearly UDT representation will 

begin to win when d log(Nm) < v(1 – d)  (d≤1). This implies d 

< v/ log(Nm) + v. This will occur only when the data is at 

very extreme values of densities. Thus the UDT representation 

may not be suitable even if the data is fairly sparse. 

 

3.2 Unpivot Operator: 

 

The huge cost of data scan can be reduced if the unpivoted 

view of the data is created on-the-fly. This can be achieved by 

extending SQL and introducing an operator UNPIVOT, which 

give the desired unpivoted view  of the data without changing 

the efficient detailed table DT representation of the data.  It 

essentially takes a row from DT and converts it into its UDT 

representation which is m rows one for each attribute – value 

pair. The syntax of the operator is: 
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DT.UNPIVOT(AttrValue for AttrID IN ( A1,…,Am)). 

Now the set of sufficient statistics can be extracted using the 

following query: 

Select AttrID, AttrValue, class, count(*) 

From DT.UNPIVOT(AttrValue for AttrID IN (A1,…,Am)) 

Group by AttrID, AttrValue, class; 
Fig. 5 Using Unpivot operator 

 

Essentially the DT.UNPIVOT ( ) operator generates a view of 

DT that is equivalent to UDT. This view can be computed 

efficiently and need not be materialized. Hence the penalty of 

the data scan will no longer be incurred and the counts table is 

efficiently generated. So we notice that making a small 

extension to SQL has helped in doing classifications within 

the database system. 

3.3 Splitting Point 

In order to provide a close integration to the database, the 

construction of user-defined functions that can be called from 

within SQL statements is advisable. It decreases the number 

of calls to the database, and makes our code considerably 

simpler. 

 

Select min (giniSplit (attribute, class, num)) 

From (Select attribute, class, count (*) num 

From mine relation 

Group by attribute, class) 
Fig. 6 SQL approach for calculating Gini index 

 

In the above example, the inner SQL statement sorts and 

groups the training set based on attribute values. The Group 

By clause is used instead of a simple Order By to count the 

number of occurrences for each pair attribute/class, since we 

cannot split cases having the same attribute value. Hence, the 

splitting criterion is computed faster than before. When the 

attribute has too many distinct values, a discretization would 

be advisable. The final result of this query is the best splitting 

point of a given attribute. This process is repeated for all other 

attributes, so that the smallest value is chosen. 

3.4 Pruning 

During the pruning phase, a user-defined function created 

based on the original tree is used to classify test cases in 

parallel. This function, which is called from within a SQL 

statement returns the number of hits and misses during 

classification. 

 

Select class, Classify (...), from mine relation test 
Fig. 6 SQL approach for Pruning 

 

3.5 Rule Extraction 

Once the classification model is constructed, a set of rules can 

be derived reading the tree, from top to bottom, until reaching 

each leaf node. The n rules originally defined (where n 

represents the number of leaf nodes) are generalized, and 

some of them may be simplified or even eliminated. As a final 

result we will reach an ordered rule set, such as: 

If a > 1 and b <= 5 And c > 2 Then 

Return 1 

Else 

If a <= 1 And d = 'A' Then 

Return 0 

Else... 

Else Return 1; {default class} 

End If; 

As in the pruning case, this rule set is transformed into a 

PL/SQL function, which can be called from within a SQL 

statement, enabling the classification of new cases in parallel. 

This function receives the attributes used during the data 

mining algorithm and returns the predicted classification. 

 IV.   COMPARATIVE ANALYSIS OF 

CLASSIFICATION TREE ALGORITHMS: 

In this section we will discuss the experimental evaluation 
of classification tree algorithms including ID3, C4.5, SLIQ, 
SPRINT, and SQL based SPRINT algorithms, by conducting 
the experiments on various data sets and data mining software. 

4.1Performance Evaluation: 

The major factors for evaluating the performance of 
classifiers is classification accuracy- the percentage of test data 
that are correctly classified. The other important metrics are 
classification time and size of decision tree. The ideal goal for 
decision tree classifiers is to produce compact, balanced and 
accurate trees with the fewest level, in a short classification 
time. 

4.2 Experiments 

In order to evaluate our proposed SQL based approaches, 
we carried out experiments to compare the above said decision 
tree algorithms based on their Accuracy, Execution time  and 
Tree Size. This experiment has carried out on different data 
sets including financial (credit), transportation (vehicle), 
science, handwriting recognition (letter), medical (diabetes), 
and mushroom data sets taken from the UCI Machine Learning 
Repository and we have chosen Sipina & Tanagra Research 
data mining tools to carry out our experiments. 

Table 1 Details of the data sets 

Sl.No. Datasets #Attributes #Classes #Instances 

1 Diabetes 09 2 768 

2 Vehicle 19 48 846 

3 Credit-g 21 2 1000 

4 Segment 20 7 2310 

5     
Mushroom 

23 2 8124 

6 Letter 17 26 20000 

Based on the observations on our experimental results the 
comparison is as follows: 
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4.2.1. Accuracy:  

Table 2  Representing Accuracy percentages of the different algorithms 

Sl. No. Data Set ID3 C4.5 SLIQ SPRINT 

1 Diabetes 0.2760 0.2604 0.246 0.249 

2 Vehicle 0.3191 0.2979 0.13 0.11 

3 Credit-g 0.3100 0.3180 0.09 0.05 

4 Segment 0.0117 0.0589 0.03 0.06 

5 Mushroom 0.0000 0.0000 6.44 5.13 

6 Letter 0.1780 0.1786 0.175 0.15 

 

 

Fig. 7 Showing the Accuracy Percentage of different Classifiers 

Accuracy is the reliability of the decision tree and one of 
the most important parameters which is used for comparing 
different approaches. This parameter is relevant to the 
percentage of test samples that are correctly classified. 
Generally we try to evaluate the classification error rate on the 
test data set, i.e. the part f the data set which has not been used 
during the learning process. 

The above table 2 shows the cost or error rate percentage of 
different classifiers. From the results it can be seen that, the 
lesser percentage of error rate for a classifier is the highest 
percentage of accuracy of that classifiers. The resulted values 
specify that the error rate for SLIQ and SPRINT is 
comparatively lower than the classifiers ID3 & C4.5. The 
accuracy produced by ID3 & C4.5 is nearly similar with each 
other, and the accuracy of the scalable classifiers SLIQ & 
SPRINT are very much similar. In overall comparison we can 
conclude that SPRINT is efficient and accurate classifiers than 
other classifiers. 

4.2.2. Execution Time  

Table 3 Representing the Execution Time of Classifiers 

Sl. No. Data Set ID3 C4.5 SLIQ SPRINT 

1 Diabetes 234 187 180 265 

2 Vehicle 312 280 180 268 

3 Credit-g 234 702 766 790 

      

4 Segment 656 390 520 620 

5 Mushroom 312 437 400 470 

6 Letter 8471 11887 7664 8100 

 

Fig. 8 Comparison of Execution Time of Classifiers 

The criterion for comparing the pruning algorithms is the 
execution time of the algorithms. This parameter is the time 
which is taken for learning and constructing decision trees. 
Different approaches try to shorten the time. Table 3 shows the 
execution times of different Classification algorithms in 
milliseconds. In our observation the number of instances 
increases the time taken to construct the decision tree also 
increases. It can be observed that for the smallest dataset 
diabetes (768 instances) the execution time of classifier SLIQ 
is 180 msec., and the highest execution time 11887 msec. is for 
the largest data set Letter (20000 instances). In overall 
observation SLIQ is faster than SPRINT and SPRINT is faster 
than ID3 and C4.5. 

4.2.3. Tree Size 

Table 4 Representing the Tree Size of Classifiers 

Sl. No. Data Set ID3 C4.5 SLIQ SPRINT 

1 Diabetes 29 11 21 23 

2 Vehicle 37 65 49 47 

3 Credit-g 18 173 150 96 

4 Segment 75 55 28 37 

5 Mushroom 34 30 15 24 

6 Letter 1233 2215 879 891 
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Fig. 9 Comparison of Tree Size of Different Classifiers 

 

Table 4 shows the tree sizes of different decision tree 
classifiers. The results show that there is a significant 
difference in the sizes of the decision trees generated by 
different classifiers. One common fact to be noted is that as the 
number of instances grows the size of the tree also increases. 
There is a direct relationship between the size of the tree and 
the size of the data. From the overall observation we can say 
that SLIQ generates smaller size trees than the other classifiers, 
and the other point to be noted here is that, Sprint and SLIQ 
generates almost similar trees in size.  

In summary these sets of experiments shows that C4.5 is 
faster classifier than other classifiers, but generates large 
decision trees. SLIQ on the other hand does not suffer from 
any drawback with respect to accuracy, execution time, and 
tree size. It generates smaller decision trees and good accuracy 
percentage. So it is concluded that SLIQ is the good classifier 
than SPRINT, C4.5 and ID3 in normal data sets. In the next 
section we will evaluate the performance of SLIQ and SPRINT 
in large datasets. 

4.2.4. Comparative Analysis of SLIQ & SPRINT in Large 
Data Sets: 

In the previous section we have conducted the experiments 
on the UCI Machine learning data sets, but its large data set 
contains only 57000 learning examples. Due to the lack of 
classification benchmark containing large datasets, we have 
used the synthetic data sets proposed in [14] for all our 
experiments. Each record in this synthetic data set consists of 
(9) attributes. 

A research under taken by John Sheffer, Agarwal & Mehta 
from IBM Almaden Research center proved that, Sprint 
removes all memory restriction that limits existing decision 
tree algorithms and produces excellent scaling behavior as 
SLIQ. But taking this conclusion we have implemented the 
two algorithms in a data mining tool Rapid Miner Studio and 
recorded the following results. 

For our analysis part we compare the execution times of the 
classifiers SLIQ and SPRINT on training sets of various sizes. 
We only compare the SPRINT with SLIQ because; in the 
previous section we have shown that SLIQ has the outstanding 
performance in all respects with other popular decision 
classifiers such as ID3, C4.5, and CART etc. For the disk 
resident data sets which we will be exploring here, SLIQ is the 
only viable algorithm. 

Here we have used training data sets ranging in size 10,000 
records to 2.5 million records as proposed in [14]. This range 
was selected to examine how well SPRINT performs in 

operating region where SLIQ can and cannot run. In the 
following table the execution time in Sec(s) are recorded for 
SPRINT and SLIQ on various size data sets ranging from 0.5 
million to 2.5 million.  

Sl.No. Data Size (million) SLIQ SPRINT 

1 0.5  750 1000 

2 1 1750 2400 

3 1.5  4200 

4 2  6250 

5 2.5  7650 

Table 5 Representing the Execution Time of SPRINT & SLIQ 

 

 

Fig. 10  Comparison of Execution Time of SLIQ & SPRINT 

The results recorded in above table are very encouragable. 
The SLIQ is faster than SPRINT as it consumes less execution 
time for classification but SLIQ is memory resident. From the 
above results it can be seen that SLIQ is unable to perform in 
large data sets, when the data size ranges above 1.5 million, 
whereas the classifier SPRINT is slower than SLIQ but is more 
scalable in case of large data sets. From the above results it is 
observed that SPRINT is performing accurately even when the 
data set range is exceeding 1.5 million. So SPRINT is the 
classifier which is scalable in large data sets, and it is the only 
classifier which is scalable in very large data size where the no 
other decision tree classifier can compete. This is the fact 
motivated us to integrate and implement the SPRINT classifier 
in to the Relational Databases. In the next section we will 
present the comparative analysis of our proposed classifier 
SQL based SPRINT and the SPRINT classifier.   

4.3 Comparative Analysis of SPRINT & SQL-SPRINT: 

There are two important metrics to evaluate the quality of 
classifiers, classification accuracy and classification time. In 
the previous section we have compared the results of SLIQ & 
SPRINT, comparative results shows the improvement of 
SPRINT over SLIQ. In this section we have conducted the 
comparative experiments for the performance comparison of 
our SQL based approach SQL-SPRINT and SPRINT. In this 
implementation we used a different approach for integrating 
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decision tree method of data mining with DBMS, using only 
the tools offered by DBMS (Oracle). In this research work, we 
simply implemented the SPRINT algorithm within Oracle 10g 
as a PL/SQL stored procedure, by exploiting relational views. 
We showed that we could process very large databases with 
this approach without any memory restriction, where the 
classical in-memory data mining software could not.  

4.3.1. Experiments: 

In this work we used the classical database methodology of 
summarization. Like SLIQ and SPRINT we use the same 
metric (gini index) to choose the best split for each node. We 
grow our tree in a breadth-first method, and we prune it using 
the same pruning algorithm. Our classification therefore 
generate a decision tree identical to the one produced by SLIQ 
[8] for the same training data set, which facilitates meaningful 
comparisons of runtime. 

For our scaling experiments, we ran our proposed approach 
on large data sets. The main cost of previous SQL based 
algorithms was that, they need to access DT – table n-times for 
each level of the tree growth due to the absence of multiple 
GROUP BY operator in the previous versions of SQL 
standard. In this work this deficiency is overcome, and the 
huge cost of the data scan has been reduced by creating the un-
pivoted view of the data on-the-fly. This has been achieved by 
extending SQL and using the operator UNOIVOT. So the DT-
table has been accessed only once regardless of number of 
attributes. 

In this experiment we have used the synthetic data set as 
proposed in [14]. In this synthetic database each record 
consists of (9) attributes  (salary, commission, age, loan, elevel, 
car, zipcode, hvalue, hyear). We have conducted our 
experiments on Client / Server Network System on Windows 
Platform based Oracle 10g DBMS. We have used training sets 
with different sizes ranging from 0.5 million to 5 million 
records. The performance comparison with respect to the 
execution time of SPRINT and SQL-SPRINT is shown in the 
following table. 

 Table 6  Representing Execution Time of SPRINT & SQL-SPRINT 

Sl.No. DATA SIZE SPRINT SQL-SPRINT 

1 0.5 1000 500 

2 1 2300 800 

3 1.5 4200 1200 

4 2 6250 1500 

5 2.5 7600 1800 

6 3  2200 

7 3.5  2500 

8 4  2800 

9 4.5  3200 

10 5  3700 

 

 

Fig. 11 Representing the Performance of SPRINT & SQL-SPRINT 

The experimental results show that the execution time 
taken by SQL-SPRINT is comparatively less than the time 
taken by SPRINT for execution. It means that our algorithm 
SQL-SPRINT is faster than SPRINT classifier. It is also 
observed that, SQL-SPRINT performs well and continues to 
scale well in very large databases, whereas the classical 
SPRINT fails to scale in very large databases. From the above 
table it can be seen that the classical SPRINT thrashes when 
the database size increases more than 2.5 million records. Thus 
we have proved that the performance of our approach SQL-
SPRINT is better than classical SPRINT and well scalable in 
very large databases. 

V.  CONCLUSION 

In this work, we have implemented the classification algorithm 
SPRINT in DBMS using PL/SQL and SQL statements. In this 
paper, we have seen a classification Algorithm which can work 
on a data set of any size. Also we have seen an approach to 
integrate classification with relational DBMS by extending 
SQL (UNPIVOT operator). The positive thing of this 
integration is that it can be used for a variety of splitting 
indices used within decision tree classifiers. The generic 
behavior of extension is very important since we need to 
encapsulate maximum number of mining operations using as 
few operators as possible.   

 In order to evaluate our proposed approach SQL 
SPRINT, we have conducted the experimental evaluation of 
classification tree algorithms including ID3, C4.5, SLIQ, 
SPRINT, and SQL- SPRINT algorithms, by conducting the 
experiments on various data sets and data mining software. 
From the experiments we have evaluated the results of the 
classifiers with respect to accuracy, execution time and tree 
size on various data sets of different sizes. In the comparative 
study we have compared the performance of SPRINT and 
SQL-SPRINT on very large databases, and concluded that 
SQL-SPRINT is scalable on very large databases than 
SPRINT.  It has also proved that SQL-SPRINT is faster than 
SPRINT.  
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