
International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 2, Jan-Feb 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 62

RESEARCH ARTICLE OPEN ACCESS

Performance Analysis of Decision Tree Classifiers
Md.ghouse Mohiuddin1, P.Premchand2

1Department of Computer Science, Palamuru University, Mahboobnagar
2Department of Computer science & Eng., Osmania University, Hyderabad

ABSTRACT
Decision tree is considered to be one of the most popular data-mining techniques for knowledge discovery. It systematically

analyzes the information contained in a large data source to extract valuable rules and relationships and usually it is used for the

purpose of Classification/prediction. In Data mining, Classification of objects based on their features into pre-defined

categories is a widely studied problem with rigorous applications in fraud detection, artificial intelligence methods and many

other fields. In this paper we reviewed various decision tree algorithms with their limitations and also we evaluated their

performance with experimental analysis based on sample data.

Keywords- Classification, Decision tree, ID3, CART, SLIQ, SPRINT, SQL.

I. INTRODUCTION

Databases are rich with hidden information that can be used
for intelligent decision making. Classification and prediction
are two forms of data analysis that can be used to extract
models describing important data classes or to predict future
data trends. Such analysis can help provide us with a better
understanding of the data at large. Whereas classification
predicts categorical (discrete, unordered) labels, prediction
models continuous valued functions [1].

In classification a model or a classifier is constructed to
predict categorical labels such as “safe” or “risky” for loan
application data, “Yes” or “No” for market data, or “treatment
A” or “treatment B” or “treatment C” for medical data.

How does Classification works? Data Classification is two
step process. In the first step, a classifier is built describing
predetermined set of data classes or concepts. This is the
learning step (or training phase), where a classification
algorithm builds the classifier by analyzing or “learning from”
a training set made up of data base tuples and their association
class labels. Each tuple is assumed to belong to a predefined
class as determined by another database attribute called the
Class label attribute. The individual tuples making up the
training set are referred to as a training tuples and are selected
from the data base under analysis. In the context of
classification, data tuples can be referred to as samples,
examples, instances, data points, or objects. Because the class
label of each training tuple is provided, this step is also known
as supervised learning. This first step of classification process
can also be viewed as the learning of a mapping or function,
Y=f(X), that can predict the associated class label “Y” of a
given tuple “X”.

In the second step Classification, the model is used for
classification. First the predictive accuracy of the classifier is
estimated. If the accuracy is considered acceptable, the rules
can be applied to the classification of new tuples. The accuracy
of a classifier on a given test set is the percentage of the test set
tuples that are correctly classified by the classifier. The

associated class label of each test tuple is compared with the
learned classifier’s class prediction for that tuple. In this paper
we have discussed the decision tree classification algorithms
including ID3, CART, C4.5, SLIQ, SPRINT and the
performance of these classifiers are analyzed by using the data
mining tools Sipina research tool and Rapid Miner 6.0. The
rest of the paper includes classification problem and
description classification algorithm reviewed from literature in
section 2. Section 3 contains the SQL approach of SPRINT
algorithm. Section 4 contains the experiments and analysis.
Section 5 concludes the paper.

II. RELATED WORK

2. Classification Problem:

The classification problem is one of the most common
operations in data mining. Given a data set of N records with at
least m+1 fields A1, A2,…., Am and C, the problem is to build
a model that predicts the value of the field C (class) given the
value of M fields. The classification problem [2] is stated as:

Def: Given a database D={t1,t2,…tn} of tuples (items,
records) and a set of classes C={c1,c2,…cn} the classification
problem is to define a mapping f:D→C where each ti is
assigned to one class. A Class Cj contains precisely those
tuples mapped to it, that is Cj={ti/f(ti)=Cj, 1≤i≤n, and ti € d}.

The above definition views classification as a mapping
from the database to the set of classes. The classes are
predefined, non overlapping and partitioned the entire
database. The problem usually implemented in two phases:

1. Create a specific model by evaluating the training
data. In this step the training data used as input and
the developed model as an output.

2. Apply the model developed in step1 by classifying
tuples from the target database.

Decision tree algorithm recursively partitions a data set of
records using depth-fist greedy approach [3] or breadth-first
approach, until all the data items belong to a particular class

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 2, Jan-Feb 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 63

are identified. A decision tree structure is made of root, internal
and leaf nodes. Most decision tree classifiers perform
classification in two phases: tree-growing (or building) and
tree-pruning. The tree building is done in top-down manner.
During this phase the tree is recursively partitioned till all the
data items belong to the same class label. In the tree pruning
phase the full grown tree is cut back to prevent over fitting and
improve the accuracy of the tree [1] in bottom up fashion. It is
used to improve the prediction and classification accuracy of
the algorithm by minimizing the over-fitting (noise or much
data in training data set) [1]. Decision tree algorithm structure
is given in two phases as under:

BuildTree (data set S)

if all records in S belong to the same class,

return;

for each attribute Ai

evaluate splits on attribute Ai ;

use best split found to partition S into S1 and S2 ;

BuildTree (S1);

BuildTree (S2);

endBuildTree;

Fig. 1 Algorithm for decision tree growth phase

PruneTree (node t)

if t is leaf

return C(S) +1

/* C(S) is the cost of encoding the classes for the

records in set S */

minCost1:= PruneTree (t1);

minCost2:= PruneTree (t2); /* t1, t2 are t’s

children*/

minCostt:= min{ C(S)+1, Csplit(t)+1+minCost1+

minCost2 };

return minCostt; /* Csplit: cost of encoding

a split */

EndPruneTree;

Fig.2 Algorithm for decision tree prune phase

Decision tree algorithms are implementable in both serial
and parallel form. Parallel implementation of decision tree
algorithms is desirable in-order to ensure fast generation of
results especially with the classification/prediction of large
data sets; it is also possible to exploit the underlying computer
architecture [17]. However when small medium data sets are
involved, the serial implementation of decision tree algorithms
is easy to implement and desirable. In the following sections
we will briefly discuss the popular decision tree approaches.

2.1 ID3

ID3(Iterative Dichotomized) algorithm[4], is based on
information theory and attempts to minimize the expected
number of comparisons. The base of ID3 is Concept Learning
System (CLS) algorithm. CLS algorithm is the basic algorithm
for decision tree learning. The tree growth phase of CLS is the
matter of choosing attribute to test at each node is by the
trainer. ID3 improves CLS by adding a heuristic for attribute
selection. ID3 is based on Hunt’s algorithm [3] and is
implemented in serially [5]. This algorithm recursively
partitions the training dataset till the record sets belong to the
class label using depth first greedy technique. In growth phase
of the tree construction, this algorithm uses information gain,
an entropy based measure, to select the best splitting attribute,
and the attribute with the highest information gain is selected
as the splitting attribute.

The concept used to quantify information is called entropy.
Entropy is used to measure the amount of uncertainty in a set
of data. Certainly when all the data in given set belongs to a
single class, there is no uncertainty and the entropy is zero. The
objective of the decision tree classification is to iteratively
partition the given data set into subsets where all elements in
each final subset belong to the same class.

For a given set of probabilities p1,p2,…,ps where ∑i=1
s pi =

1, entropy is defined as

H(p1,p2,…,ps) = ∑i=1
s(pi log(1/pi) (1)

Given a database state, D, H(D) finds the amount of order
in that state. When that state is split into s new states
S={D1,D2,….,Ds}. The ID3 algorithm calculates the gain of a
particular split by the following formula:

Gain(D,S) = H(D) - ∑i=1
s P(Di) H(Di) (2)

 ID3 doesn’t give accurate result when there is too much
noise or details in the training data set, thus an intensive pre-
processing of data is carried out before building a decision tree
model with ID3[5]. One of the main drawbacks of ID3 is that
the measure Gain used tends to favor attributes with a large
number of distinct values [1]. It only accepts categorical
attributes in building a tree model. This decision tree algorithm
generates variable branches per node.

2.2 C4.5

C4.5 algorithm [6], is an improved version of ID3; this
algorithm uses Gain Ratio as splitting criteria, instead of taking
gain in ID3 algorithm for splitting criteria [3] in tree growth
phase. Hence C4.5 is an evolution of ID3 [4]. This algorithm
handles both continuous and discrete attributes- In order to
handle continuous attributes, C4.5 creates a threshold and then
splits the list into those whose attribute value is above the
threshold and those that are less than or equal to it [6]. Like
ID3 the data is sorted at every node of the tree in order to
determine the best splitting attribute. The splitting process
stops when the number of instances to be split is less than the
threshold. The main advantages of C4.5 is when building a
decision tree, C4.5 can deal with datasets that have patterns
with unknown attribute values. C4.5 can also deal with the
case of attributes with continuous domains by discretization.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 2, Jan-Feb 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 64

This algorithm handles training data with attribute values by
allowing attribute values to be marked as missing. Missing
attribute values are simply not used in gain and entropy
calculations. It has an enhanced method of tree pruning that
reduces misclassification errors due to noise or too much detail
in the training data set. The Gain ratio used in this approach is
defined as:

GainRatio(D,S) = Gain(D,S)/H(|D1|/|D|,…,|Ds|/|D|) (3)

For splitting purposes, C4.5 uses the largest gain ratio that
ensures a larger than average information gain.

2.3 CART

CART (Classification and Regression Trees) [1], is a
technique that generates a binary decision tree. CART is
unique from other Hunt’s based algorithm as it is also use for
regression analysis with the help of regression trees. The
regression analysis feature is used in forecasting a dependent
variable (result) given a set of predictor variables over a given
period of time. The CART decision tree is a binary recursive
partitioning procedure capable of processing continuous and
nominal attributes both as targets and predictors [1]. In CART
trees are grown, uses gini index for splitting procedure, to a
maximum size without the use of a stopping rule and then
pruned back (essentially split by split) to the root via cost-
complexity pruning. The CART mechanism is intended to
produce not one, but a sequence of nested pruned trees, all of
which are candidate optimal trees. The CART mechanism
includes automatic (optional) class balancing, automatic
missing value handling, and allows for cost-sensitive learning,
dynamic feature construction, and probability tree estimation
[6]. In this algorithm the splitting is performed around what is
determined to be the best splitting point, where best is defined
by:

Φ(s/t) = 2PLPR ∑j=1
m |P(Cj / tl) – P(Cj / tR) | (4)

This formula is evaluated at the current node , t, and for
each possible splitting attribute and criterion, s. Here L and R
are used to indicate the left and right sub trees of the current
node in the tree. PL and PR are the probability that a tuple in the
training set will be on the left or right side of the tree.

2.4 SLIQ

SLIQ [7] (Supervised Learning In Quest) was one of the
first scalable algorithms for decision tree induction. This can
be implemented in serial and parallel pattern. It is not based on
Hunt’s algorithm for decision tree classification [3]. It
partitions a training data set recursively using breadth-first
greedy strategy that is integrated with pre-sorting technique
during the tree building phase. SLIQ uses a vertical data
format, meaning all values of an attribute were stored as a list,
which was sorted at the start of the algorithm. This meant that
the attributes need not be sorted repeatedly at each node as was
the case in existing algorithms like CART and C4.5. With the
pre-sorting technique sorting at decision tree nodes is
eliminated and replaced with one-time sort, with the use of list
data structure for each attribute to determine the best split
point. The calculation of gini index for each possible split point
can be done efficiently by storing class distributions in
histograms, one per class per node. However SLIQ uses a

memory resident data structure called class list which stores
the class labels of each record. This data structure limits the
size of the datasets SLIQ can handle [18]. In building a
decision tree model SLIQ handles both numeric and
categorical attributes. One of the disadvantages of SLIQ is that
it uses a class list data structure that is memory resident
thereby imposing memory restrictions on the data. It uses
Minimum Description length Principle(MDL)[3] in pruning
the tree after constructing it MDL is an inexpensive technique
in tree pruning that uses the least amount of coding in
producing tree that are small in size using bottom –up
technique[3, 1]. The SLIQ decision tree algorithm produces
accurate decision trees that are significantly smaller than the
trees produced using C4.5 and CART. At the same time, SLIQ
executes nearly an order of magnitude faster than CART [1].

2.5 SPRINT: Scalable Parallelizable Induction Of Decision
Trees:

 SPRINT [8] is the updated version of SLIQ and is
meant for parallel implementation. SPRINT is an Algorithm
for the induction of decision trees from very large training
datasets. This Algorithm can handle categorical and
continuous-valued attributes. This Algorithm proposes
presorting techniques on disk-resident data sets that are too
large to fit in memory. It defines the use of new data structures
to facilitate the tree construction. SPRINT uses an attribute list
data structures that holds the class and RID (Rowid)
information. When a node is split the attribute list is partitioned
and distributed among the resulting child nodes accordingly.
When a list is partitioned, the order of the records in the list is
maintained. Hence the partitioned list does not require
resorting. SPRINT was designed to easily parallelized, further
contributing to its stability.

A decision tree classifier is built in two phases, Growth
phase and the Prune phase. In the Growth phase, the tree
recursively partitions the data until each partition has all (most)
members of the same class or is sufficiently small which can
be threshold set by the user. The form of the split used to
partition the data depends upon the type of the attribute used in
the split. Splits for as continuous attribute ‘A’ are the form of
value(A) < x , where x is the value in the domain of A. Splits
for a categorical attribute ‘A’ are of the form value(A)€X,
where X € domain(A).

Next in the Prune step the dependencies on statistical noise
or variation that may be particular to the training set only are
removed. This way the problem of over fitting data of the
training set is taken care of. Several methods have been
proposed for this.

The tree growth phase is computationally much more
expensive than pruning since the data is scanned multiple times
in the part of the computation. On the other hand pruning just
works on the fully grown decision tree. In this chapter we
concentrate on the Growth phase. The Tree-Growth Algorithm
can be expressed in the following manner:

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 2, Jan-Feb 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 65

Partition (Data S)

If (all points in S are of the same class or size of the class <
threshold) then

 return;

for each attribute A do

 evaluate splits on attribute A;

Use best split found to partition S into S1 and S2;

Partition (S1);

Partition (S2);

Initial Call: Partition (Training Data)

Fig.3 SPRINT Algorithm

III. SQL APPROACH FOR SPRINT

ALGORITHM

Scalable data mining in large databases is one of today’s

challenges to database technologies. Thus, substantial effort is

dedicated to a tight coupling of database and data mining

systems leading to database primitives supporting data mining

tasks. In order to support a wide range of tasks and to be of

general usage these primitives should be rather building

blocks than implementations of specific algorithms. In this

paper, we describe primitives for building and applying sprint

decision tree classifiers.

The most time-consuming part of decision tree construction is

obviously the splitting point selection. For each active node

the subset of data (a partition) fulfilling the conjunction of the

splitting conditions of the node and its predecessors has to be

constructed and for each remaining attribute the possible splits

have to be evaluated.

Though selecting the best split point based on the measures

described above requires no access to the data itself, but only

to statistics about the number of records where a combination

of attribute value and class label occurs. This information can

be obtained from a simple table consisting of the columns

attrib-name, attrib-value, class-label and count. This structure

is described in [10] as CC table and in a similar form as AVC

group (Attribute-

Value-Class) in [9]. It could be created using a SQL query of

the following kind [10]:

select ’A1’ as aname, A1 as avalue,

C as class, count(*)

from S where condition

group by A1, C

union all

select ’A2’ as aname, A2 as avalue,

C as class, count(*)

from S where condition

group by A2, C

union all

...

The optimizers of most database systems are usually not able

to construct a plan consisting of only a single scan typically at

least for each grouping a separate scan is required. Thus

computing the statistics table in a single scan would be a good

candidate for a classification primitive as already observed in

[10].

3.1 Unpivoting the Data Table

To avoid multiple unions, a simple solution could be use to

change the physical layout of the table . Consider the table DT

and suppose each row in DT (each case) were replaced by a

set of rows, one for each attribute-value pair. The new schema

for the “unpivoted” table is UDT (CaseID, AttributeID,

AttributeValue, class)

Now the query to compute the Cls-Count table is:

Select AttributeID, AttributeValue, class, count (*)

From UDT

Where condition

Group by class, AttributeID, AttributeValue
 Fig. 4 SQL approach for data table

However this optimization comes at a huge increase in the

cost of data scan. Let us assume the cost of storing an attribute

value is constant ‘v’ bytes. Also assume each attribute Ai has

value density di ≤ 1.0 i.e. that on average, the proportion of

cases in which Ai has non-null values is di. Let case ID require

log (N) bits to represent, where N is the number of records.

Similarly, for ‘m’ attributes, log (m) bits are needed to

identify an attribute.

Cost of Scanning DT: is N.m.v since every attribute value

occupies space in DT.

Cost of Scanning UDT: is N(∑ di(log(N) + log(m) + v))

The difference in scan costs is δ = N(∑ di(log(N) + log(m) +

v) – mv). Assuming same density, then for all i,

di = d, hence ∑ di = md, yields the simplified form of δ / N

(cost per case) = m(d log(Nm) + v(d – 1))

It turns out from the analysis given below that this UDT

representation incurrence a huge over head.

Analysis for Dense Data: When the data is fully dense (d=1),

δ /N = m log(Nm) which shows that the DT representation

wins easily.

Analysis for Sparse Data: Clearly UDT representation will

begin to win when d log(Nm) < v(1 – d) (d≤1). This implies d

< v/ log(Nm) + v. This will occur only when the data is at

very extreme values of densities. Thus the UDT representation

may not be suitable even if the data is fairly sparse.

3.2 Unpivot Operator:

The huge cost of data scan can be reduced if the unpivoted

view of the data is created on-the-fly. This can be achieved by

extending SQL and introducing an operator UNPIVOT, which

give the desired unpivoted view of the data without changing

the efficient detailed table DT representation of the data. It

essentially takes a row from DT and converts it into its UDT

representation which is m rows one for each attribute – value

pair. The syntax of the operator is:

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 2, Jan-Feb 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 66

DT.UNPIVOT(AttrValue for AttrID IN (A1,…,Am)).

Now the set of sufficient statistics can be extracted using the

following query:

Select AttrID, AttrValue, class, count(*)

From DT.UNPIVOT(AttrValue for AttrID IN (A1,…,Am))

Group by AttrID, AttrValue, class;
Fig. 5 Using Unpivot operator

Essentially the DT.UNPIVOT () operator generates a view of

DT that is equivalent to UDT. This view can be computed

efficiently and need not be materialized. Hence the penalty of

the data scan will no longer be incurred and the counts table is

efficiently generated. So we notice that making a small

extension to SQL has helped in doing classifications within

the database system.

3.3 Splitting Point

In order to provide a close integration to the database, the

construction of user-defined functions that can be called from

within SQL statements is advisable. It decreases the number

of calls to the database, and makes our code considerably

simpler.

Select min (giniSplit (attribute, class, num))

From (Select attribute, class, count (*) num

From mine relation

Group by attribute, class)
Fig. 6 SQL approach for calculating Gini index

In the above example, the inner SQL statement sorts and

groups the training set based on attribute values. The Group

By clause is used instead of a simple Order By to count the

number of occurrences for each pair attribute/class, since we

cannot split cases having the same attribute value. Hence, the

splitting criterion is computed faster than before. When the

attribute has too many distinct values, a discretization would

be advisable. The final result of this query is the best splitting

point of a given attribute. This process is repeated for all other

attributes, so that the smallest value is chosen.

3.4 Pruning

During the pruning phase, a user-defined function created

based on the original tree is used to classify test cases in

parallel. This function, which is called from within a SQL

statement returns the number of hits and misses during

classification.

Select class, Classify (...), from mine relation test
Fig. 6 SQL approach for Pruning

3.5 Rule Extraction

Once the classification model is constructed, a set of rules can

be derived reading the tree, from top to bottom, until reaching

each leaf node. The n rules originally defined (where n

represents the number of leaf nodes) are generalized, and

some of them may be simplified or even eliminated. As a final

result we will reach an ordered rule set, such as:

If a > 1 and b <= 5 And c > 2 Then

Return 1

Else

If a <= 1 And d = 'A' Then

Return 0

Else...

Else Return 1; {default class}

End If;

As in the pruning case, this rule set is transformed into a

PL/SQL function, which can be called from within a SQL

statement, enabling the classification of new cases in parallel.

This function receives the attributes used during the data

mining algorithm and returns the predicted classification.

 IV. COMPARATIVE ANALYSIS OF

CLASSIFICATION TREE ALGORITHMS:

In this section we will discuss the experimental evaluation
of classification tree algorithms including ID3, C4.5, SLIQ,
SPRINT, and SQL based SPRINT algorithms, by conducting
the experiments on various data sets and data mining software.

4.1Performance Evaluation:

The major factors for evaluating the performance of
classifiers is classification accuracy- the percentage of test data
that are correctly classified. The other important metrics are
classification time and size of decision tree. The ideal goal for
decision tree classifiers is to produce compact, balanced and
accurate trees with the fewest level, in a short classification
time.

4.2 Experiments

In order to evaluate our proposed SQL based approaches,
we carried out experiments to compare the above said decision
tree algorithms based on their Accuracy, Execution time and
Tree Size. This experiment has carried out on different data
sets including financial (credit), transportation (vehicle),
science, handwriting recognition (letter), medical (diabetes),
and mushroom data sets taken from the UCI Machine Learning
Repository and we have chosen Sipina & Tanagra Research
data mining tools to carry out our experiments.

Table 1 Details of the data sets

Sl.No. Datasets #Attributes #Classes #Instances

1 Diabetes 09 2 768

2 Vehicle 19 48 846

3 Credit-g 21 2 1000

4 Segment 20 7 2310

5
Mushroom

23 2 8124

6 Letter 17 26 20000

Based on the observations on our experimental results the
comparison is as follows:

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 2, Jan-Feb 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 67

4.2.1. Accuracy:

Table 2 Representing Accuracy percentages of the different algorithms

Sl. No. Data Set ID3 C4.5 SLIQ SPRINT

1 Diabetes 0.2760 0.2604 0.246 0.249

2 Vehicle 0.3191 0.2979 0.13 0.11

3 Credit-g 0.3100 0.3180 0.09 0.05

4 Segment 0.0117 0.0589 0.03 0.06

5 Mushroom 0.0000 0.0000 6.44 5.13

6 Letter 0.1780 0.1786 0.175 0.15

Fig. 7 Showing the Accuracy Percentage of different Classifiers

Accuracy is the reliability of the decision tree and one of
the most important parameters which is used for comparing
different approaches. This parameter is relevant to the
percentage of test samples that are correctly classified.
Generally we try to evaluate the classification error rate on the
test data set, i.e. the part f the data set which has not been used
during the learning process.

The above table 2 shows the cost or error rate percentage of
different classifiers. From the results it can be seen that, the
lesser percentage of error rate for a classifier is the highest
percentage of accuracy of that classifiers. The resulted values
specify that the error rate for SLIQ and SPRINT is
comparatively lower than the classifiers ID3 & C4.5. The
accuracy produced by ID3 & C4.5 is nearly similar with each
other, and the accuracy of the scalable classifiers SLIQ &
SPRINT are very much similar. In overall comparison we can
conclude that SPRINT is efficient and accurate classifiers than
other classifiers.

4.2.2. Execution Time

Table 3 Representing the Execution Time of Classifiers

Sl. No. Data Set ID3 C4.5 SLIQ SPRINT

1 Diabetes 234 187 180 265

2 Vehicle 312 280 180 268

3 Credit-g 234 702 766 790

4 Segment 656 390 520 620

5 Mushroom 312 437 400 470

6 Letter 8471 11887 7664 8100

Fig. 8 Comparison of Execution Time of Classifiers

The criterion for comparing the pruning algorithms is the
execution time of the algorithms. This parameter is the time
which is taken for learning and constructing decision trees.
Different approaches try to shorten the time. Table 3 shows the
execution times of different Classification algorithms in
milliseconds. In our observation the number of instances
increases the time taken to construct the decision tree also
increases. It can be observed that for the smallest dataset
diabetes (768 instances) the execution time of classifier SLIQ
is 180 msec., and the highest execution time 11887 msec. is for
the largest data set Letter (20000 instances). In overall
observation SLIQ is faster than SPRINT and SPRINT is faster
than ID3 and C4.5.

4.2.3. Tree Size

Table 4 Representing the Tree Size of Classifiers

Sl. No. Data Set ID3 C4.5 SLIQ SPRINT

1 Diabetes 29 11 21 23

2 Vehicle 37 65 49 47

3 Credit-g 18 173 150 96

4 Segment 75 55 28 37

5 Mushroom 34 30 15 24

6 Letter 1233 2215 879 891

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 2, Jan-Feb 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 68

Fig. 9 Comparison of Tree Size of Different Classifiers

Table 4 shows the tree sizes of different decision tree
classifiers. The results show that there is a significant
difference in the sizes of the decision trees generated by
different classifiers. One common fact to be noted is that as the
number of instances grows the size of the tree also increases.
There is a direct relationship between the size of the tree and
the size of the data. From the overall observation we can say
that SLIQ generates smaller size trees than the other classifiers,
and the other point to be noted here is that, Sprint and SLIQ
generates almost similar trees in size.

In summary these sets of experiments shows that C4.5 is
faster classifier than other classifiers, but generates large
decision trees. SLIQ on the other hand does not suffer from
any drawback with respect to accuracy, execution time, and
tree size. It generates smaller decision trees and good accuracy
percentage. So it is concluded that SLIQ is the good classifier
than SPRINT, C4.5 and ID3 in normal data sets. In the next
section we will evaluate the performance of SLIQ and SPRINT
in large datasets.

4.2.4. Comparative Analysis of SLIQ & SPRINT in Large
Data Sets:

In the previous section we have conducted the experiments
on the UCI Machine learning data sets, but its large data set
contains only 57000 learning examples. Due to the lack of
classification benchmark containing large datasets, we have
used the synthetic data sets proposed in [14] for all our
experiments. Each record in this synthetic data set consists of
(9) attributes.

A research under taken by John Sheffer, Agarwal & Mehta
from IBM Almaden Research center proved that, Sprint
removes all memory restriction that limits existing decision
tree algorithms and produces excellent scaling behavior as
SLIQ. But taking this conclusion we have implemented the
two algorithms in a data mining tool Rapid Miner Studio and
recorded the following results.

For our analysis part we compare the execution times of the
classifiers SLIQ and SPRINT on training sets of various sizes.
We only compare the SPRINT with SLIQ because; in the
previous section we have shown that SLIQ has the outstanding
performance in all respects with other popular decision
classifiers such as ID3, C4.5, and CART etc. For the disk
resident data sets which we will be exploring here, SLIQ is the
only viable algorithm.

Here we have used training data sets ranging in size 10,000
records to 2.5 million records as proposed in [14]. This range
was selected to examine how well SPRINT performs in

operating region where SLIQ can and cannot run. In the
following table the execution time in Sec(s) are recorded for
SPRINT and SLIQ on various size data sets ranging from 0.5
million to 2.5 million.

Sl.No. Data Size (million) SLIQ SPRINT

1 0.5 750 1000

2 1 1750 2400

3 1.5 4200

4 2 6250

5 2.5 7650

Table 5 Representing the Execution Time of SPRINT & SLIQ

Fig. 10 Comparison of Execution Time of SLIQ & SPRINT

The results recorded in above table are very encouragable.
The SLIQ is faster than SPRINT as it consumes less execution
time for classification but SLIQ is memory resident. From the
above results it can be seen that SLIQ is unable to perform in
large data sets, when the data size ranges above 1.5 million,
whereas the classifier SPRINT is slower than SLIQ but is more
scalable in case of large data sets. From the above results it is
observed that SPRINT is performing accurately even when the
data set range is exceeding 1.5 million. So SPRINT is the
classifier which is scalable in large data sets, and it is the only
classifier which is scalable in very large data size where the no
other decision tree classifier can compete. This is the fact
motivated us to integrate and implement the SPRINT classifier
in to the Relational Databases. In the next section we will
present the comparative analysis of our proposed classifier
SQL based SPRINT and the SPRINT classifier.

4.3 Comparative Analysis of SPRINT & SQL-SPRINT:

There are two important metrics to evaluate the quality of
classifiers, classification accuracy and classification time. In
the previous section we have compared the results of SLIQ &
SPRINT, comparative results shows the improvement of
SPRINT over SLIQ. In this section we have conducted the
comparative experiments for the performance comparison of
our SQL based approach SQL-SPRINT and SPRINT. In this
implementation we used a different approach for integrating

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 2, Jan-Feb 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 69

decision tree method of data mining with DBMS, using only
the tools offered by DBMS (Oracle). In this research work, we
simply implemented the SPRINT algorithm within Oracle 10g
as a PL/SQL stored procedure, by exploiting relational views.
We showed that we could process very large databases with
this approach without any memory restriction, where the
classical in-memory data mining software could not.

4.3.1. Experiments:

In this work we used the classical database methodology of
summarization. Like SLIQ and SPRINT we use the same
metric (gini index) to choose the best split for each node. We
grow our tree in a breadth-first method, and we prune it using
the same pruning algorithm. Our classification therefore
generate a decision tree identical to the one produced by SLIQ
[8] for the same training data set, which facilitates meaningful
comparisons of runtime.

For our scaling experiments, we ran our proposed approach
on large data sets. The main cost of previous SQL based
algorithms was that, they need to access DT – table n-times for
each level of the tree growth due to the absence of multiple
GROUP BY operator in the previous versions of SQL
standard. In this work this deficiency is overcome, and the
huge cost of the data scan has been reduced by creating the un-
pivoted view of the data on-the-fly. This has been achieved by
extending SQL and using the operator UNOIVOT. So the DT-
table has been accessed only once regardless of number of
attributes.

In this experiment we have used the synthetic data set as
proposed in [14]. In this synthetic database each record
consists of (9) attributes (salary, commission, age, loan, elevel,
car, zipcode, hvalue, hyear). We have conducted our
experiments on Client / Server Network System on Windows
Platform based Oracle 10g DBMS. We have used training sets
with different sizes ranging from 0.5 million to 5 million
records. The performance comparison with respect to the
execution time of SPRINT and SQL-SPRINT is shown in the
following table.

 Table 6 Representing Execution Time of SPRINT & SQL-SPRINT

Sl.No. DATA SIZE SPRINT SQL-SPRINT

1 0.5 1000 500

2 1 2300 800

3 1.5 4200 1200

4 2 6250 1500

5 2.5 7600 1800

6 3 2200

7 3.5 2500

8 4 2800

9 4.5 3200

10 5 3700

Fig. 11 Representing the Performance of SPRINT & SQL-SPRINT

The experimental results show that the execution time
taken by SQL-SPRINT is comparatively less than the time
taken by SPRINT for execution. It means that our algorithm
SQL-SPRINT is faster than SPRINT classifier. It is also
observed that, SQL-SPRINT performs well and continues to
scale well in very large databases, whereas the classical
SPRINT fails to scale in very large databases. From the above
table it can be seen that the classical SPRINT thrashes when
the database size increases more than 2.5 million records. Thus
we have proved that the performance of our approach SQL-
SPRINT is better than classical SPRINT and well scalable in
very large databases.

V. CONCLUSION

In this work, we have implemented the classification algorithm
SPRINT in DBMS using PL/SQL and SQL statements. In this
paper, we have seen a classification Algorithm which can work
on a data set of any size. Also we have seen an approach to
integrate classification with relational DBMS by extending
SQL (UNPIVOT operator). The positive thing of this
integration is that it can be used for a variety of splitting
indices used within decision tree classifiers. The generic
behavior of extension is very important since we need to
encapsulate maximum number of mining operations using as
few operators as possible.

 In order to evaluate our proposed approach SQL
SPRINT, we have conducted the experimental evaluation of
classification tree algorithms including ID3, C4.5, SLIQ,
SPRINT, and SQL- SPRINT algorithms, by conducting the
experiments on various data sets and data mining software.
From the experiments we have evaluated the results of the
classifiers with respect to accuracy, execution time and tree
size on various data sets of different sizes. In the comparative
study we have compared the performance of SPRINT and
SQL-SPRINT on very large databases, and concluded that
SQL-SPRINT is scalable on very large databases than
SPRINT. It has also proved that SQL-SPRINT is faster than
SPRINT.

REFERENCES
[1] Dunham M H (2002), Data Mining : Introductory & advanced Topics,

prentice Hall , New Jersey.

[2] Jaiwei Han and Micheline Kamber, Data Mining : Concepts and

Techniques, 2/e, Morgan Kaufmann Publishers.

[3] Arun K Pujari , “Data Mining Techniques”, Universities Press (India)

Private Ltd. 2001.

[4] Andrew Colin 1996, Building Decision Trees with ID3 Algorithms, Dr.

Dobbs Journal, June 1996.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 2, Jan-Feb 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 70

[5] Becker B. G., Visualizing Decision Table Classifiers, Proceedings of

Information Visualization, Research Triangle Park, North Carolina, October

1998.

[6] J. Quinlan C4.5 : Programs for Machine Learning, Morgan Kaufmann,

1992.

[7] Metha M., Rissanen J., and Agrawal R., SLIQ: A Fast Scalable

Classifier for Data Mining, Proc. of the Fifth Int’l Conference on Extending

Database Technology, Avignon, France, March 1996.

[8] Shafer J. C., Agrawal R., and Mehta M., A Scalable Parallel Classifier

for Data Mining, Proc. of the 22nd Int’l Conference on Very Large Databases,

Mumbai (Bombay), India, September 1996.

[9] J. Gehrke, R. Ramakrishnan, and V. Ganti. RainForest – A Framework

for Fast Decision Tree Construction of Large Datasets. In A. Gupta, O.

Shmueli, and J. Widom, editors, Proc. VLDB’98, New York, USA, pages 416–

427. Morgan Kaufmann, 1998.

[10] S. Chaudhuri, U. Fayyad, and J. Bernhardt. Scalable Classification over

SQL Databases. In Proc. ICDE-99, Sydney, Australia, pages 470–479. IEEE

Computer Society, 1999.

[11] Sipina research datamining tool available at http://eric-

lyon2.fr/~ricco/sipina

[12] Rapid Miner Studio available at

http://rapidminer.com/products/rapiminer-studio.

[13] R. Rakotomalala, “Sipina research, http://eric.univ-

lyon2.fr/~ricco/sipina.html.

[14] UCI Machine learning Repository (2010) available at

http://archive.uci.edu.

[15] Oracle 9i Data Mining-Concepts, release 9.2.0.2 . Part No. A95961-02,

Copyright © 2002 Oracle Corporation.

[16] Oracle, Java Stored Procedures Developers Guide

[17] Gershon N., Eick S. G., and Card S., Information Visualization, ACM

Interactions, vol. 5, no. 2, pp. 9-15, March/April 1998.

[18] Chamberlin D., A Complete Guide to DB2 Universal Database,

Morgan Kaufmann Publishers, Inc, San Mateo, California, 1998

[19]

http://www.ijcstjournal.org/
http://eric-lyon2.fr/~ricco/sipina
http://eric-lyon2.fr/~ricco/sipina
http://rapidminer.com/products/rapiminer-studio
http://eric.univ-lyon2.fr/~ricco/sipina.html
http://eric.univ-lyon2.fr/~ricco/sipina.html
http://archive.uci.edu/

