
International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 3, May-Jun 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 90

RESEARCH ARTICLE OPEN ACCESS

The Common Interface Oriented Architectural Framework to

Improve Compatibility of the Pure Object Oriented Cross

Languages Interoperability

 Sonar Sanjay Bhagwan
Ph.D. Scholar

[MCA, M.PHIL-CS]

Rai University, Saroda

Dholka Taluk, Ahmedabad - 382260

Gujarat - India

ABSTRACT:
Traditional object-oriented design methods only deal with the design of specific applications and do not facilitate the

design of common framework. A framework provides a highly effective mechanism for software reuse within an

application domain; the framework captures the features that are common across the product line. The Pure Cross-

Platform Object Oriented Languages are purely atom/Variable/object dependable. As well as many aspects and

requirements are based on the specific variable or Object(s) or Atom. In these languages, the object is atom as well as

Variable (Tangible Unit) abstracted from the problem also reusability, genericity, polymorphism and inheritances are

specialized and generalized from the objects. The basic problem is that, No any Common compatible and interoperable

architectural framework and interface oriented object oriented system design for software implementations on the pure

cross-languages platforms, also No any specification to identification of the object limitation, across the system on the

based on the object paradigm. Also present tools and methods/tasks of the object oriented system are not incorporated

tools as well as not specifically step next tools, to proceeds the system from identification of need to system design for

the Cross-Platform software development in both JVM and CLR engines. The research prove the Common Compatible

and Interoperable Architectural Framework to develop system to any pure cross languages platform as Java Virtual

Machine technological languages like Scala, Ruby, Java and Microsoft Visual Studio languages like vb.net, c#.net,

j#.net, asp.net and .cobol.net. The Architectural Framework provides the common platform to design the system in any

pure cross languages compatibility. The Architectural Framework precedes the system from Object elicitation to clean

room software system for the pure cross languages development.

Keywords:- domain, Atom, Common object identification, genericity, Pure Object Orientation, Common compatible

architectural Framework, elicitation, clean room system , Interoperability, CLR, JVM, Scala, Groovy, Dot Net,

abstraction, object paradigm, automation

I. INTRODUCTION

An object-oriented framework is a set of abstract

classes that together comprise a generic solution

to a family of related problems drawn from a

specific domain. Reusable frameworks typically

emerge as the result of an iterative, evolutionary

process during which they successively address a

range of different requirements. The present and

future systems are being developed by the Pure

Cross-Languages Platform like in Java Virtual

Machine and Common Language Runtime in

Microsoft Visual Studio framework. The pure

Cross-Platform independent Object Oriented

Languages are purely Atom/Variable/Object

dependable. As well as many aspects and

requirements are based on the specific variable or

Object(s) or Atom. In these languages, the object

is atom as well as Variable (Tangible Unit)

abstracted from the business logic or customer

requirements and System Requirement

Specification (SRS); also reusability, genericity,

polymorphism and inheritances are specialized

and generalized from of the objects

The first basic problem is that, No any specific

compatible and interoperability interface oriented

system design or common architectural framework

for the any pure cross-languages platforms

software implementations, also No any

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 3, May-Jun 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 91

specification to identify and precede the object

limit, across the system on the based on the

object paradigm. Also present tools and

methods/tasks of the object oriented system are

not incorporated tools as well as not specifically

steps next tools to precede the design from

identification of needs to structural algorithms for

the designing of the Cross-Platform software

development in either JVM or CLR engines. Basic

drawbacks in present object oriented systems for

developing system in pure cross languages

platforms; the problem pointed out by the following

tasks.

1. Clarity of object/domain identification from the

requirements elicitation of the system.

2. Specification of object limit in the domain.

3. Step next tools to precede design

4. Compatibility and interoperatibility in the

objects and domain.

5. Integrations and interface between objects.

6. Association rules and fewer anomalies in

links of objects.

7. Clustering in the objects.

The Research proceed an automation, that the

design a common compatible and interoperable

Architectural Framework, this common Framework

applied on any pure cross languages platform to

Java Virtual Machine technological languages like

Scala, Groovy, Java and Microsoft Visual Studio

languages like VB.NET, C#.NET, J#.NET, VC++.NET and

ASP.NET to develop the applications or products.

The common automation architectural framework

provides the common tools to design the

systems/applications/products in any pure cross

platform independent languages compatibility by

the identification, specification, abstraction,

limitation, integration, association, cauterization,

and elicitation of the objects. Framework automates

the system requirements elicitation to clean room

software system.

Common Architectural Framework covers the

following cross languages, for designing the

applications.

1. JVM Platform (Java based System)

 Combined languages like, Java, Scala and

Ruby.

2. CLR Platform (VS.NET based System)

Integrated Languages: VB.NET, C#.NET, J#.NET and

ASP.NET

II. OBJECTIVES

During the past years, the need for software reuse

and commonness has become evident. Object-

orientation has provided a means to increase the

reusability of code, by introducing standard

interfaces and inheritance. Class libraries have

provided well defined and tested reusable

components, but using class libraries mainly

implies reuse of code and little reuse of analysis

and design.

To increase the potential of reuse and

commonness in the cross platform languages, the

common automated interface oriented

architectural object-oriented frameworks have

been suggested. This framework is intended to

capture the functionality common to several similar

applications of cross platforms. The following

objectives are summarized for the common

automated interface oriented architectural object-

oriented framework.

1. Design the common automated interface

oriented architectural object-oriented

frameworks.
2. Common compatible and interoperable

architectural framework to directly

support for cross platform independent

languages.
3. Interface Oriented (automation of tools)

architectural framework.
4. Step-to-Next architectural framework.
5. Domain Specification, for identification of

common objects.
6. Identifications of generic domains.
7. Domain is based on the atom, variable,

entities, tangible unit(s) and enti-atom.
8. Common Framework support for both JVM

and CLR engine/compiler.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 3, May-Jun 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 92

9. Genericity in all domain objects for

commonness.

III. TARGET GROUPS

The framework is supported to the following

groups

1. Software organizations in need for reuse

technique.

2. Developers/analysts to design pure object

oriented system.

3. Students/ Scholars interested on pure

object oriented techniques.

BACKGROUND OF PROPOSED RESEARCH WORK

The Basic research is based on the system

development by the present pure Cross Platform

independent Object Oriented Languages. Many

software firms and groups are developing the

present software’s by the cross platform

independent languages on different platform.

But significant drawbacks are, No any common

object oriented architectural framework as

automation to identify and proceeds steps next

methods to implementation application in the cross

platform languages. The research prove that the

common compatible and interoperable

architectural framework is based on the

automation tool, applied on any pure cross

platform independent languages in both JVM and

CLR engines.

The requirement is common framework for

developing the system in the pure cross platform

languages as java virtual machine platform and

Microsoft Visual studio platform. As same, I want

to design the common architectural integrated

automation models also called specific compatible

and interoperatibility interface oriented system

design, to design and implementation of software

implementations in both JVM and CLR engines.

IV. PREVIOUS RESEARCH

PREVIOUS RESEARCH ON OBJECT ORIENTED COMMON

ARCHITECTUREAL FRAMEWORK (PAST STATUS)

Present work from Alan Snyder at Hewlett-

Packard on developing a common framework for

object-oriented terminology. They defined several

comparing criteria and performed an extensive

comparison of these methodologies. The results

were presented in a set of tables. The goal of this

effort is to develop and communicate a corporate-

wide common language for specifying and

communicating about objects. We next look into

the research activity at Hewlett-Packard, led by

Dennis de Champeaux.

De Champeaux and Faure at Hewlett Packard

Laboratories have initiated a systematic

comparison of OOADMs, by surveying more than

ten object-oriented analysis methodologies; de

Champeaux compared the common features and

the major differences of the chosen

methodologies. His article provides an excellent

tutorial for object-oriented analysis, but his

comparison of the methodologies is somewhat

abbreviated.

 De Champeaux is developing a model for object-

based analysis. His current research focuses on

the use of a trigger-based model for inter-object

communications and development of a top-down

approach to analysis using ensembles. We then

survey two research activities that prescribe the

design process.

The above research has influenced our decision

on the selection of OOADMs to use in our

comparisons and the criteria we should use to

compare these methodologies. However, we take

a different research path by building a formal

representation for each methodology and

comparing these methodologies based on the

uniform representation. In contrast, no uniform and

formal basis was developed in previously

published research. The comparisons were based

on the informal description of the methodologies.

The technique we use to construct the formal

representation of an OOADM is meta-modeling.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 3, May-Jun 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 93

Meta modeling has been used to develop

theoretical foundations for information systems.

Brinkkemper has adopted this technique to build a

framework for the formalization of information

system modeling the analysis and design of

information systems can be viewed as the

conceptual modeling of the systems, and the

development of an information system is the

modeling process that starts with the Universe of

Discourse and ends at the information system.

Hence, various analysis and design

methodologies can be viewed as specific modeling

processes that apply a set of predefined

techniques. He proposes a formal framework for

information system modeling and addresses the

issues of what is the best way to construct a

model and how one particular model is related to

the other models of an information system. Due to

the lack of a common core of theory in information

systems.

Rebecca Wirfs-Brock from Tektronix has been

developing an object-oriented design method that

focuses on object responsibilities and

collaborations. The method includes graphical

tools for improving encapsulation and

understanding patterns of object communication.

Trygve Reenskaug at the Center for

Industriforskning in Oslo, Norway has been

developing an object-oriented design method that

focuses on roles, synthesis, and structuring. The

method, called Object-Oriented Role Analysis,

Syntheses and Structuring, is based on first

modeling small sub-problems, and then combining

small models into larger ones in a controlled

manner using both inheritance (synthesis) and

run-time binding (structuring).

Then present investigations by Ralph Johnson at

the University of Illinois at Urbana-Champaign into

object-oriented frameworks and the reuse of large-

scale designs. A framework is a high-level design

or application architecture and consists of a suite

of classes that are specifically designed to be

refined and used as a group. Past work has

focused on describing frameworks and how they

are developed. Current work includes the design

of tools to make it easier to design frameworks.

Object Oriented Design with Applications by

Booch

Brooch’s method is mainly intended for the design

stage of a project. Booch describes a number of

general properties of well-structured complex

systems. Systems built with the OODA

methodology should satisfy these properties. In

OODA the problem domain is modeled from two

different perspectives: the logical structure of the

system and the physical structure of the system.

For each perspective both static and dynamic

semantics are modeled. OODA describes

Appeared in the Proceedings of the 26th Hawaii

International Conference on System Sciences,

January 1993 Volume IV, pp. 689-698 various

techniques to accomplish these tasks, and

provides a rich set of graphical notations.

Designing Object Orientation by Wirfs Brock.

This methodology covers mainly the analysis

phase of the systems development life cycle. Two

major concepts, abstraction and encapsulation,

are used to manage the real world complexity. The

DOOS methodology describes the problem

domain as a set of collaborating objects. A system

is developed in two stages. During the initial

exploratory phase objects, their responsibilities

and the necessary collaborations to fulfill these

responsibilities are identified. The detailed

analysis phase streamlines the results of the first

phase. Two graphical techniques are introduced

for the second phase. One technique is to show

classes and class structures and the other is to

depict classes, subsystems and client-server

relationships.

Finally, we present some results from the

research group in object-oriented software

engineering at Northeastern University, led by

Karl Lieberherr. They have been working on

object-oriented Computer Assisted Software

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 3, May-Jun 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 94

Engineering (CASE) technology, called the

Demeterm system, which generates language-

specific class definitions from language-

independent class dictionaries. The Demeter

system includes tools for checking design rules

and for implementing a design.

V. PRESENT RESEARCH ON OBJECT

ORIENTED COMMON

ARCHITECTUREAL FRAMEWORK

(PRESENT STATUS)

A unified OO modeling method emerged in the
mid-1990s. It was based on the methods and work
of three authors (with their coauthors): OO
Analysis and Design by Grady Booch [Booch,

1994], Object Modeling Technique (OMT) by James
Rumbaugh and his colleagues [Rumbaugh, 1991],
and OO Software Engineering (OOSE) by Ivar
Jacobson and his colleagues [Jacobson, 1992]. The
‘‘three amigos’’ (as the three distinguished authors
became known) gathered in Rational Software
Corporation and started working on the Unified
Method. However, they quickly realized that a
method should consist of a modeling language,
which should be standardized as a common
means of communication, and a process of
developing software, which should not be
homogenized, but should be customizable for
particular problem domains, applications,
organizations, development teams, and so on.
This is why they decided to work only on the
language itself, which they named the Unified
Modeling Language (UML).

In the present, following methods and tools have

been used, for the developing object oriented

applications, But No any domain specifications

and interface oriented architectural framework to

develop applications in any Pure Cross-

Languages Object Oriented Platform.

1. Object Oriented Paradigm.

2. Object modeling Techniques (OMT)

3. Unified Modeling Language (UML)

4. Object orientation using UML

5. System Engineering by Dr. Pressman

6. Component based system using divide

and conquer Methods.

7. Object association by Cohesion and

coupling

8. Software Matrix.

9. Agile system in Object Oriented System.

10. Requirements Elicitations.

11. Object Constrain Language (OCL).

12. System development Paradigms &

Rationale Management.

VI. MATERIAL AND METHOD

To achieve these, start study from the

requirements Object domain(s) from the business

logic, customer requirements elicitations as well as

identification of need and System Requirement

Specification, and after these, Design the

integrated interface tools and automation tool(s)

using following tasks and methods for integrate

the common compatible and interoperable

architectural framework to develop the system in

cross platforms languages.

VII. EXPERIMENTAL STUDY

 Research method with justification:

Developing frameworks introduces new aspects

when dividing the work. The main idea of a

framework is to capture generalities of a domain or

a set of applications within a domain. Finding

generalities requires a good overview of the

domain and the system respectively. In domain

Analysis, the following two types of domain objects

are to be identified / specified from the problem.

- System Model for Solution Domain

 1. Base Objects

 2. System Objects

- Application Model for Problem Domain

 1. Problem Domain Objects:

 2. User Interface Objects:

 3. Control Objects:

The research prove automation, that the design a

common compatible and interoperable

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 3, May-Jun 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 95

Architectural Framework, this common Framework

applied on any pure cross languages platform as

Java Virtual Machine technological languages like

Scala, Ruby, Java and Microsoft Visual Studio

languages like VB.NET, C#.NET, J#.NET. And ASP.NET,

to developing the applications. The architectural

framework provides the

Common platform to design the system/application

in any cross languages compatibility from

abstraction and elicitation of the objects. The

framework precedes the system from Object

elicitation to clean room software system

 Object/Variable/class/instances can be Generic:

A service can have different implementations

(different code) for different objects, which can

produce observably different behavior (although

sharing some common intent). A client can

uniformly issue requests for the service (the

requests identify a common operation); an

appropriate implementation is selected for each

request. There is no limit to the number of different

implementations of a given service.

An operation with multiple implementations is a

generic operation. Clients that request generic

operations may themselves be generic in the

sense that they can perform a common activity on

different kinds of objects.

The selection of code to perform a service

(binding) is based on the objects identified in the

request. In general, the identification of the objects

occurs when the request is actually issued, so the

selection of code would happen at that time

(dynamic binding). Code selection is sometimes

based on factors that are known prior to execution,

so that the code can be selected during program

compilation or linking (static binding).

The importance of the common Object Oriented

Architectural Framework is the automation

system (interface oriented) to develop the system

in any cross platform languages in both JVM and

CLR engines.

VIII. RESULT AND DISCUSSION

Common Automated Interface oriented architecture framework for developing pure cross platform
languages as JVM and CLR engines.

 Step - 1 (Step 1 to 5 are automated interface Proceed)

Step - 2

 Step - 3

 Step - 4

 Problem Domain identification
1. Genericity in identification

 Abstract Requirement Elicitations
1. Requirement Process Abstraction
2. Use case Modeling System
3. Static Object Models
4. Functional/Non functional

requirements and separations

 Domain Specification
1. Justify Common area
2. Justify Abstract domain

 Domain Analysis
1. Indentify Domain objects/

Atom/control objects/ anti-
atoms/Class/Group/Module

2. Generic Object Analysis

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 3, May-Jun 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 96

 Re-engineering for clean room

 Admittance Step - 5

 Start Applications

 (JVM & CLR Languages)

 Access Step - 6

 Step- 7

XI. CONCLUSION

The research prove the Common Compatible
and Interoperable Architectural Framework to
develop system to any pure cross languages
platform as Java Virtual Machine technological
languages like Scala, Ruby, Java and Microsoft
Visual Studio languages like vb.net, c#.net, j#.net,
asp.net and .cobol.net. The Architectural
Framework provides the common platform to
design the system in any pure cross languages
compatibility. The Architectural Framework
precedes the system from Object elicitation to
clean room software system for any pure object
oriented application development.

ACKNOWLEDGEMENT

I would like to thanks Dr. Samrat O Khanna, Head
of the Departments of ISTAR institute of the
Anand-Gujarat, I also Thanks Dr. N N Jani, Director
of the S.K Patel Institutes of Gandhinagar-Gujarat

to inspired me Encouraged me to perform at my
best. And I also Thanks to all Software firms who
gave me the best support to abstract my goal of
research to reach my destination

REFERENCES

[1]. De Champeaux, D. and Faure, P., "A Comparative

Study of Object Oriented Analysis Methods,"
Journal of Object-Oriented Programming (JOOP),
March/April, 1992, pp. 21-33.

[2]. Grady Booch. Designing an Application
Framework. Dr. Dobb’s Journal 19, No. 2, 1994.

[3]. Gamma, Erich; Helm, Richard; Johnson, Ralph;
and Vlissades, John. Design Patterns.

[4]. Ralph E. Johnson. How to develop frameworks.
Notes for OOPSLA ’95, 1995.

 Framework Design
1. Generic Designing

2. Common Architecture

3. Common Object Model

4. Association and Linking

5. Cohesion and Coupling

6. Clustering System Applied

7. System Clean room

8. Abstraction of Common
class/ attribute/ method

Framework Implementation

 Framework Testing
1. Verification & Validation
2. Unit/Integrate/System Testing

 Application(s) Analysis

 Application(s) Design

Application(s) Implementation

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 3, May-Jun 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 97

[5]. James J, Odell, publication year 1998, Advanced
Object Oriented Analysis and Design by UML,
ISBN- 9780521648196

[6]. Bernd Bruegge, Allen H. Dutoit. Object Oriented
Software Engineering, Using UML, Patterns, and
Java, Second Edition, Pearson Education

[7]. Dr. Roger S, Pressman, Software Engineering, A
practitioner’s Approach, Fifth Edition, McGraw Hill
international edition, Computer science series.

[8]. M. Mattsson and J. Bosch. Object oriented
frameworks: Composition problems, causes and,
solutions. In Building Application Frameworks:
Object-Oriented Foundations of Framework Design,

pp. 467-487, M. Fayad, D. Schmidt, R. Johnson
editors, Wiley Press, 2000.

[9]. Ian Sommerville, Software Engineering, 6th Edition,
Pearson Education

[10]. Matteo Golfarelli, Stefano Rizzi, Data Warehouse
Design, Modern Principles and Methodologies,
Tata McGraw-Hill edition

[11]. James Rumbhaugh, Michael Blaha, William
Premerlani, Frederick Eddy, William Lorensen,
Object Oriented Modeling and Design, Prentice- Hall India
Edition

[12]. Heninger K.L., Specifying software requirements
for complex systems. New techniques and their

applications. IEEE Transactions on Software
Engineering 6 (1), p. 2-13, 1980.

[13]. Johan Larsson. Object oriented
frameworks.REBOOTConsortium, 1992.

[14]. N. Bouassida, H. Ben-Abdallah, and F. Gargouri,

A. Ben-Hamadou: A stepwise Framework Design
Process, IEEE International Conference on
Systems Man and Cybernetics, 07-09 October,
Hammamet, Tunisia, 2002.

[15]. I. Jacobson, G. Booch, and J. Rumbaugh, The
Unified Software Development Process, Addison-

Wesley, 1999.

[16]. Wirfs-Brock, R. and Wilkerson, B. Object-Oriented
Design: A Responsibility-Driven Approach. In
Proceedings of OOPSLA '89 Conference.
SIGPLAN Not. (ACM) 24, 10, (New Orleans,
Louisiana, October 1989), 71-76.

[17]. B. H. L Betlem R. M Van Aggele, J. Bosch; J. E
Rijnsdorp, “An Object Oriented Framework for
Process Operation”, Technical Report, Dept. of

Chemicals Technology, University of Twente,
1995

[18]. Papers and articles of the IEEE, Elsevier ACM,
World Scientific and Springer publishers

http://www.ijcstjournal.org/

