
International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 4, Jul-Aug 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 132

Cloud Information Accountability Framework Based On the

Notion of Information Accountability
N V Sruthi1, R Kumaran2, Vikram Neerugatti3

M.Tech1&3, Assistant Professor2

Department of Computer Science and Engineering

Sri Venkateshwara College of Engineering and Technology1&2, Chittoor

Global College of Engineering and Technology3, Kadapa

Andhra Pradesh – India

ABSTRACT
The Motivation of this paper is to present Accountability for the cloud, based on cloud Information Accountability Framework.

Main feature of the cloud services is used to processes the user data remotely in the unknown machines. This important feature

leads to cause the fear of losing the own data of the user. To overcome this problem we propose the novel highly information

Accountability to keep track of the actual usage of the users data in the cloud. To keep track of the usage of the users data we

using the Third party, the method which is used to complete the Accountability work quickly with accuracy. When we

compared with the traditional approaches our protocol is better compared with the loss of data, security and privacy.

Keywords:- Cloud Computing, Distributed Accountability, Data Sharing, User data Tracking.

I. INTRODUCTION

CLOUD computing presents a new way to supplement the

current consumption and delivery model for IT services based

on the Internet, by providing for dynamically scalable and

often virtualized resources as a service over the Internet. To

date, there are a number of notable commercial and individual

cloud computing services, including Amazon, Google,

Microsoft, Yahoo, and Sales force [1]. Details of the services

provided are abstracted from the users who no longer need to

be experts of technology infrastructure. Moreover, users may

not know the machines which actually process and host their

data. While enjoying the convenience brought by this new

technology, users also start worrying about losing control of

their own data. The data processed on clouds are often

outsourced, leading to a number of issues related to

accountability, including the handling of personally

identifiable information. Such fears are becoming a significant

barrier to the wide adoption of cloud services [2].

 To allay users’ concerns, it is essential to provide an

effective mechanism for users to monitor the usage of their

data in the cloud. For example, users need to be able to ensure

that their data are handled according to the service level

agreements made at the time they sign on for services in the

cloud. Conventional access control approaches developed for

closed domains such as databases and operating systems, or

approaches using a centralized server in distributed

environments, are not suitable, due to the following features

characterizing cloud environments. First, data handling can be

outsourced by the direct cloud service provider (CSP) to other

entities in the cloud and theses entities can also delegate the

tasks to others, and so on. Second, entities are allowed to join

and leave the cloud in a flexible manner. As a result, data

handling in the cloud goes through a complex and dynamic

hierarchical service chain which does not exist in conventional

environments. To overcome the above problems, we propose a

novel approach, namely Cloud Information Accountability

(CIA) framework, based on the notion of information

accountability [3]. Unlike privacy protection technologies

which are built on the hide-it-or-lose-it perspective,

information accountability focuses on keeping the data usage

transparent and traceable. Our proposed CIA framework

provides end-toend accountability in a highly distributed

fashion. One of the main innovative features of the CIA

framework lies in its ability of maintaining lightweight and

powerful accountability that combines aspects of access

control, usage control and authentication. By means of the

CIA, data owners can track not only whether or not the

service-level agreements are being honoured, but also enforce

access and usage control rules as needed.

Associated with the accountability feature, we also develop

two distinct modes for auditing: push mode and pull mode.

The push mode refers to logs being periodically sent to the

data owner or stakeholder while the pull mode refers to an

alternative approach whereby the user (or another authorized

party) can retrieve the logs as needed. The design of the CIA

framework presents substantial challenges, including uniquely

identifying CSPs, ensuring the reliability of the log, adapting

to a highly decentralized infrastructure, etc. Our basic

approach toward addressing these issues is to leverage and

extend the programmable capability of JAR (Java Archive’s)

files to automatically log the usage of the users’ data by any

entity in the cloud. Users will send their data along with any

policies such as access control policies and logging policies

that they want to enforce, enclosed in JAR files, to cloud

service providers. Any access to the data will trigger an

automated and authenticated logging mechanism local to the

JARs. We refer to this type of enforcement as “strong

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 4, Jul-Aug 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 133

binding” since the policies and the logging mechanism travel

with the data. This strong binding exists even when copies of

the JARs are created; thus, the user will have control over his

data at any location. Such decentralized logging mechanism

meets the dynamic nature of the cloud but also imposes

challenges on ensuring the integrity of the logging. To cope

with this issue, we provide the JARs with a central point of

contact which forms a link between them and the user. It

records the error correction information sent by the JARs,

which allows it to monitor the loss of any logs from any of the

JARs. Moreover, if a JAR is not able to contact its central

point, any access to its enclosed data will be denied.

 Currently, we focus on image files since images represent a

very common content type for end users and organizations (as

is proven by the popularity of Flickr [4]) and are increasingly

hosted in the cloud as part of the storage services offered by

the utility computing paradigm featured by cloud computing.

Further, images often reveal social and personal habits of

users, or are used for archiving important files from

organizations. In addition, our approach can handle personal

identifiable information provided they are stored as image

files (they contain an image of any textual content, for

example, the SSN stored as a .jpg file). We tested our CIA

framework in a cloud test bed, the Emu lab test bed [5], with

Eucalyptus as middleware [6].

Our experiments demonstrate the efficiency, scalability and

granularity of our approach. In addition, we also provide a

detailed security analysis and discuss the reliability and

strength of our architecture in the face of various nontrivial

attacks, launched by malicious users or due to compromised

Java Running Environment (JRE).

In summary, our main contributions are as follows:

 We propose a novel automatic and enforceable

logging mechanism in the cloud. To our knowledge,

this is the first time a systematic approach to data

accountability through the novel usage of JAR files is

proposed.

 Our proposed architecture is platform independent

and highly decentralized, in that it does not require

any dedicated authentication or storage system in

place.

 We go beyond traditional access control in that we

provide a certain degree of usage control for the

protected data after these are delivered to the

receiver.

The results demonstrate the efficiency, scalability, and

granularity of our approach. We also provide a detailed

security analysis and discuss the reliability and strength of our

architecture.

The rest of the paper is organized as follows: Section 2

discusses related work. Section 3 lays out our problem

Statement. Section 4 presents our proposed Cloud Information

Accountability framework. Finally, Section 5 concludes the

paper and outlines future research directions

II. RELATED WORK

In this section, we first review related works addressing the

privacy and security issues in the cloud. Then, we briefly

discuss works which adopt similar techniques as our approach

but serve for different purposes.

Cloud computing has raised a range of important privacy and

security issues [7], [8], [9]. Such issues are due to the fact that,

in the cloud, users’ data and applications reside—at least for a

certain amount of time—on the cloud cluster which is owned

and maintained by a third party. Concerns arise since in the

cloud it is not always clear to individuals why their personal

information is requested or how it will be used or passed on to

other parties. To date, little work has been done in this space,

in particular with respect to accountability. Pearson et al. have

proposed accountability mechanisms to address privacy

concerns of end users [9] and then develop a privacy manager

[10]. Their basic idea is that the user’s private data are sent to

the cloud in an encrypted form, and the processing is done on

the encrypted data. The output of the processing is DE

obfuscated by the privacy manager to reveal the correct result.

However, the privacy manager provides only limited features

in that it does not guarantee protection once the data are being

disclosed. In [11], the authors present a layered architecture

for addressing the end-to-end trust management and

accountability problem in federated systems. The authors’

focus is very different from ours, in that they mainly leverage

trust relationships for accountability, along with

authentication and anomaly detection.

Further, their solution requires third-party services to

complete the monitoring and focuses on lower level

monitoring of system resources. Researchers have

investigated accountability mostly as a provable property

through cryptographic mechanisms, particularly in the context

of electronic commerce [12], [13]. A representative work in

this area is given by [14]. The authors propose the usage of

policies attached to the data and present logic for

accountability data in distributed settings.

Similarly, Jagadeesan et al. recently proposed logic for

designing accountability-based distributed systems [15]. In

[12], Crispo and Ruffo proposed an interesting approach

related to accountability in case of delegation. Delegation is

complementary to our work, in that we do not aim at

controlling the information workflow in the clouds. In a

summary, all these works stay at a theoretical level and do not

include any algorithm for tasks like mandatory logging. To

the best of our knowledge, the only work proposing a

distributed approach to accountability is from Lee and

colleagues [16]. The authors have proposed an agent-based

system specific to grid computing. Distributed jobs, along

with the resource consumption at local machines are tracked

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 4, Jul-Aug 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 134

by static software agents. The notion of accountability policies

in [16] is related to ours, but it is mainly focused on resource

consumption and on tracking of sub jobs processed at multiple

computing nodes, rather than access control.

With respect to Java-based techniques for security, our

methods are related to self-defending objects (SDO) [17].

Self-defending objects are an extension of the object-oriented

programming paradigm, where software objects that offer

sensitive functions or hold sensitive data are responsible for

protecting those functions/data. Similarly, we also extend the

concepts of object-oriented programming. The key difference

in our implementations is that the authors still rely on a

centralized database to maintain the access records, while the

items being protected are held as separate files. In previous

work, we provided a Java based approach to prevent privacy

leakage from indexing [18], which could be integrated with

the CIA framework proposed in this work since they build on

related architectures. In terms of authentication techniques,

Appel and Felten [20] proposed the Proof-Carrying

authentication (PCA) framework. The PCA includes a high

order logic language that allows quantification over predicates,

and focuses on access control for web services. While related

to ours to the extent that it helps maintaining safe, high-

performance, and mobile code, the PCA’s goal is highly

different from our research, as it focuses on validating code,

rather than monitoring content.

Another work is by Mont et al. who proposed an approach for

strongly coupling content with access control, using Identity-

Based Encryption (IBE) [21]. We also leverage IBE

techniques, but in a very different Way. We do not rely on

IBE to bind the content with the rules. Instead, we use it to

provide strong guarantees for the Encrypted content and the

log files, such as protection against chosen plaintext and

cipher text attacks. In addition, our work may look similar to

works on secure data provenance [22], [23], [24], but in fact

greatly differs from them in terms of goals, techniques, and

application domains. Works on data provenance aim to

guarantee data integrity by securing the data provenance.

They ensure that no one can add or remove entries in the

middle of a provenance chain without detection, so that data

are correctly delivered to the receiver. Differently, our work is

to provide data accountability, to monitor the usage of the data

and ensure that any access to the data is tracked. Since it is in

a distributed environment, we also log where the data go.

However, this is not for verifying data integrity, but rather for

auditing whether data receivers use the data following

specified policies. Along the lines of extended content

protection, usage control [25] is being investigated as an

extension of current access control mechanisms. Current

efforts on usage control are primarily focused on conceptual

analysis of usage control requirements and on languages to

express constraints at various level of granularity [26], [27].

While some notable results have been achieved in this respect

[28], [21], thus far, there is no concrete contribution

addressing the problem of usage constraints enforcement,

especially in distributed settings [26]. The few existing

solutions are partial [28], [23], [21], restricted to a single

domain, and often specialized [3], [24], [6]. Finally, general

outsourcing techniques have been investigated over the past

few years [2], [8]. Although only [4] is specific to the cloud,

some of the outsourcing protocols may also be applied in this

realm. In this work, we do not cover issues of data storage

security which are a complementary aspect of the privacy

issues.

III. PROBLEM STATEMENT

We begin this section by considering an illustrative example

which serves as the basis of our problem statement and will be

used throughout the paper to demonstrate the main features of

our system. Example 1. Alice, a professional photographer,

plans to sell her photographs by using the Sky-high Cloud

Services. For her business in the cloud, she has the following

requirements:

 Her photographs are downloaded only by users who

have paid for her services.

 Potential buyers are allowed to view her pictures first

before they make the payment to obtain the

download right.

 Due to the nature of some of her works, only users

from certain countries can view or download some

sets of photographs.

 For some of her works, users are allowed to only

view them for a limited time, so that the users cannot

reproduce her work easily.

 In case any dispute arises with a client, she wants to

have all the access information of that client.

 She wants to ensure that the cloud service providers

of Sky-high do not share her data with other service

providers, so that the accountability provided for

individual users can also be expected from the cloud

service providers.

With the above scenario in mind, we identify the common

requirements and develop several guidelines to achieve data

accountability in the cloud. A user, who subscribed to a

certain cloud service, usually needs to send his/her data as

well as associated access control policies (if any) to the

service provider. After the data are received by the cloud

service provider, the service provider will have granted access

rights, such as read, write, and copy, on the data. Using

conventional access control mechanisms, once the access

rights are granted, the data will be fully available at the

service provider. In order to track the actual usage of the data,

we aim to develop novel logging and auditing techniques

which satisfy the following requirements:

 The logging should be decentralized in order to adapt

to the dynamic nature of the cloud. More specifically,

log files should be tightly bounded with the

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 4, Jul-Aug 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 135

corresponding data being controlled, and require

minimal infrastructural support from any server.

 Every access to the user’s data should be correctly

and automatically logged. This requires integrated

techniques to authenticate the entity who accesses the

data, verify, and record the actual operations on the

data as well as the time that the data have been

accessed.

 Log files should be reliable and tamper proof to

avoid illegal insertion, deletion, and modification by

malicious parties. Recovery mechanisms are also

desirable to restore damaged log files caused by

technical problems.

 Log files should be sent back to their data owners

periodically to inform them of the current usage of

their data. More importantly, log files should be

retrievable anytime by their data owners when

needed regardless the location where the files are

stored.

 The proposed technique should not intrusively

monitor data recipients’ systems, nor it should

introduce heavy communication and computation

overhead, which otherwise will hinder its feasibility

and adoption in practice.

IV. PROPOSED CLOUD INFORMATION

ACCOUNTABILITY

In this section, we present an overview of the Cloud

Information Accountability framework and discuss how the

CIA framework meets the design requirements discussed in

the previous section.

 The Cloud Information Accountability framework proposed

in this work conducts automated logging and distributed

auditing of relevant access performed by any entity, carried

out at any point of time at any cloud service provider. It has

two major components: logger and log harmonizer.

There are two major components of the CIA, the first being

the logger, and the second being the log harmonizer. The

logger is the component which is strongly coupled with the

user’s data, so that it is downloaded when the data are

accessed, and is copied whenever the data are copied. It

handles a particular instance or copy of the user’s data and is

responsible for logging access to that instance or copy. The

log harmonizer forms the central component which allows the

user access to the log files. The logger is strongly coupled

with user’s data (either single or multiple data items). Its main

tasks include automatically logging access to data items that it

contains, encrypting the log record using the public key of the

content owner, and periodically sending them to the log

harmonizer. It may also be configured to ensure that access

and usage control policies associated with the data are

honoured. For example, a data owner can specify that user X

is only allowed to view but not to modify the data. The logger

will control the data access even after it is downloaded by user

X. The logger requires only minimal support from the server

(e.g., a valid Java virtual machine installed) in order to be

deployed. The tight coupling between data and logger, results

in a highly distributed logging system, therefore meeting our

first design requirement. Furthermore, since the logger does

not need to be installed on any system or require any special

support from the server, it is not very intrusive in its actions,

thus satisfying our fifth requirement. Finally, the logger is also

responsible for generating the error correction information for

each log record and sends the same to the log harmonizer.

The error correction information combined with the

encryption and authentication mechanism provides a robust

and reliable recovery mechanism, therefore meeting the third

requirement. The log harmonizer is responsible for auditing.

Being the trusted component, the log harmonizer generates the

master key. It holds on to the decryption key for the IBE key

pair, as it is responsible for decrypting the logs. Alternatively,

the decryption can be carried out on the client end if the path

between the log harmonizer and the client is not trusted. In

this case, the harmonizer sends the key to the client in a secure

key exchange. It supports two auditing strategies: push and

pull. Under the push strategy, the log file is pushed back to the

data owner periodically in an automated fashion. The pull

mode is an on-demand approach, whereby the log file is

obtained by the data owner as often as requested. These two

modes allow us to satisfy the aforementioned fourth design

requirement. In case there exist multiple loggers for the same

set of data items, the log harmonizer will merge log records

from them before sending back to the data owner. The log

harmonizer is also responsible for handling log file corruption.

In addition, the log harmonizer can itself carry out logging in

addition to auditing. Separating the logging and auditing

functions improves the performance. The logger and the log

harmonizer are both implemented as lightweight and portable

JAR files. The JAR file implementation provides automatic

logging functions, which meets

the second design requirement.

 The overall CIA framework, combining data, users, logger

and harmonizer is explained. At the beginning, each user

creates a pair of public and private keys based on Identity-

Based Encryption [4]. This IBE scheme is a Weil-pairing-

based IBE scheme, which protects us against one of the most

prevalent attacks to our architecture. Using the generated key,

the user will create a logger component which is a JAR file,

to store its data items. The JAR file includes a set of simple

access control rules specifying whether and how the cloud

servers and possibly other data stakeholders (users,

companies) are authorized to access the content itself. Then,

he sends the JAR file to the cloud service provider that he

subscribes to. To authenticate the CSP to the JAR, we use

Open SSL based certificates, wherein a trusted certificate

authority certifies the CSP. In the event that the access is

requested by a user, we employ SAML-based authentication

[8], wherein a trusted identity provider issues certificates

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 4, Jul-Aug 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 136

verifying the user’s identity based on his username. Once the

authentication succeeds, the service provider (or the user)

will be allowed to access the data enclosed in the JAR.

Depending on the configuration settings defined at the time

of creation, the JAR will provide usage control associated

with logging, or will provide only logging functionality.

As for the logging, each time there is an access to the data,

the JAR will automatically generate a log record, encrypt it

using the public key distributed by the data owner, and store

it along with the data (step 6 in Fig. 1). The encryption of the

log file prevents unauthorized changes to the file by attackers.

The data owner could opt to reuse the same key pair for all

JARs or create different key pairs for separate JARs. Using

separate keys can enhance the security (detailed discussion is

in Section 7) without introducing any overhead except in the

initialization phase. In addition, some error correction

information will be sent to the log harmonizer to handle

possible log file corruption. To ensure trustworthiness of the

logs, each record is signed by the entity accessing the content.

Further, individual records are hashed together to create a

chain structure, able to quickly detect possible errors or

missing records. The encrypted log files can later be

decrypted and their integrity verified. They can be accessed

by the data owner or other authorized stakeholders at any

time for auditing purposes with the aid of the log harmonizer.

As discussed, our proposed framework prevents various

attacks such as detecting illegal copies of users’ data. Note

that our work is different from traditional logging methods

which use encryption to protect log files. With only

encryption, their logging mechanisms are neither automatic

nor distributed. They require the data to stay within the

boundaries of the centralized system for the logging to be

possible, which is however not suitable in the cloud. Example

2, Considering Example 1, Alice can enclose her photographs

and access control policies in a JAR file and Send the JAR

file to the cloud service provider.

With the aid of control associated logging, Alice will be able

to enforce the first four requirements and record the actual

data access. On a regular basis, the push-mode auditing

mechanism will inform Alice about the activity on each of

her photographs as this allows her to keep track of her

clients’ demographics and the usage of her data by the cloud

service provider. In the event of some dispute with her

Clients, Alice can rely on the pull-mode auditing mechanism

to obtain log records.

V. CONCLUSION AND FUTURE

ENHANCEMENT

We proposed innovative approaches for automatically logging

any access to the data in the cloud together with an auditing

mechanism. Our approach allows the data owner to not only

audit his content but also enforce strong back-end protection if

needed. Moreover, one of the main features of our work is that

it enables the data owner to audit even those copies of its data

that were made without his knowledge.

In the future, we plan to refine our approach to verify the

integrity of the JRE and the authentication of JARs [23] and to

deal with the problems of the Third Party monitoring accounts.

For example, we will investigate whether it is possible to

leverage the notion of a secure JVM [19] being developed by

IBM. This research is aimed at providing software tamper

resistance to Java applications. In the long term, we plan to

design a comprehensive and more generic object-oriented

approach to facilitate autonomous protection of traveling

content. We would like to support a variety of security

policies, like indexing policies for text files, usage control for

executable, and generic accountability and provenance

controls.

REFERENCES

[1] P.T. Jaeger, J. Lin, and J.M. Grimes, “Cloud Computing

and Information Policy: Computing in a Policy Cloud?,”

J. Information Technology and Politics, vol. 5, no. 3,

pp. 269-283, 2009.

[2] S. Pearson and A. Charlesworth, “Accountability as a

Way Forward for Privacy Protection in the Cloud,” Proc.
First Int’l Conf. Cloud Computing, 2009.

[3] D.J. Weitzner, H. Abelson, T. Berners-Lee, J. Feigen-

baum, J. Hendler, and G.J. Sussman, “Information

Accountability,” Comm. ACM, vol. 51, no. 6, pp. 82-87,

2008.

[4] Flickr, http://www.flickr.com/, 2012.

[5] Emulab Network Emulation Testbed, www.emulab.net,

2012.

[6] Eucalyptus Systems, http://www.eucalyptus.com/, 2012.

[7] P.T. Jaeger, J. Lin, and J.M. Grimes, “Cloud Computing

and Information Policy: Computing in a Policy Cloud?,”

J. Information Technology and Politics, vol. 5, no. 3,

pp. 269-283, 2009.

[8] T. Mather, S. Kumaraswamy, and S. Latif, Cloud
Security and Privacy: An Enterprise Perspective on
Risks and Compliance (Theory in Practice), first ed.

O’ Reilly, 2009.

[9] S. Pearson and A. Charlesworth, “Accountability as a

Way Forward for Privacy Protection in the Cloud,” Proc.
First Int’l Conf. Cloud Computing, 2009.

[10] S. Pearson, Y. Shen, and M. Mowbray, “A Privacy

Manager for Cloud Computing,” Proc. Int’l Conf. Cloud
Computing (CloudCom), pp. 90-106, 2009.

[11] B. Chun and A.C. Bavier, “Decentralized Trust

Management and Accountability in Federated Systems,”

Proc. Ann. Hawaii Int’l Conf. System Sciences
(HICSS), 2004.

[12] B. Crispo and G. Ruffo, “Reasoning about Accountability

within Delegation,” Proc. Third Int’l Conf. Information
and Comm. Security (ICICS), pp. 251-260, 2001.

[13] R. Kailar, “Accountability in Electronic Commerce

Protocols,” IEEE Trans. Software Eng., vol. 22, no. 5,

pp. 313-328, May 1996.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 4, Jul-Aug 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 137

[14] R. Corin, S. Etalle, J.I. den Hartog, G. Lenzini, and I.

Staicu, “A Logic for Auditing Accountability in

Decentralized Systems,” Proc. IFIP TC1 WG1.7
Workshop Formal Aspects in Security and Trust, pp.

187 201, 2005.

[15] R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely,

“Towards a Theory of Accountability and Audit,” Proc.
14th European Conf. Research in Computer
Security (ESORICS), pp. 152-167, 2009.

[16] W. Lee, A. Cinzia Squicciarini, and E. Bertino, “The

Design and Evaluation of Accountable Grid Computing

System,” Proc. 29th IEEE Int’l Conf. Distributed
Computing Systems (ICDCS ’09), pp. 145-154, 2009.

[17] J.W. Holford, W.J. Caelli, and A.W. Rhodes, “Using

Self- Defending Objects to Develop Security Aware

Applications in Java,” Proc. 27th Australasian Conf.
Computer Science, vol. 26, pp. 341-349, 2004.

[18] A. Squicciarini, S. Sundareswaran, and D. Lin,

“Preventing Information Leakage from Indexing in the

Cloud,” Proc. IEEE Int’l Conf. Cloud Computing,
2010.

[19] Trusted Java Virtual Machine IBM,

http://www.almaden.ibm. com/cs/projects/jvm/, 2012.

[20] X. Feng, Z. Ni, Z. Shao, and Y. Guo, “An Open

Framework for Foundational Proof-Carrying Code,”

Proc. ACM SIGPLAN Int’l Workshop Types in
Languages Design and Implementation, pp. 67-78,

2007.

[21] M.C. Mont, S. Pearson, and P. Bramhall, “Towards

Accountable Management of Identity and Privacy:

Sticky Policies and Enforceable Tracing Services,”

Proc. Int’l Workshop Database and Expert Systems
Applications (DEXA), pp. 377-382, 2003.

[22] R. Bose and J. Frew, “Lineage Retrieval for Scientific

Data Processing: A Survey,” ACM Computing
Surveys, vol. 37, pp. 1- 28, Mar. 2005.

[23] P. Buneman, A. Chapman, and J. Cheney, “Provenance

Management in Curated Databases,” Proc. ACM

SIGMOD Int’l Conf. Management of Data (SIGMOD
’06), pp. 539-550, 2006.

[24] R. Hasan, R. Sion, and M. Winslett, “The Case of the

Fake Picasso: Preventing History Forgery with Secure

Provenance,” Proc. Seventh Conf. File and Storage
Technologies, pp. 1-14, 2009.

[25] A. Pretschner, M. Hilty, and D. Basin, “Distributed

Usage Control,” Comm. ACM, vol. 49, no. 9, pp. 39-

44, Sept. 2006.

[26] A. Pretschner, M. Hilty, F. Schuo¨ tz, C. Schaefer, and

T. Walter, “Usage Control Enforcement: Present and

Future,” IEEE Security & Privacy, vol. 6, no. 4, pp. 44-

53, July/Aug. 2008.

[27] A. Pretschner, F. Schuo¨ tz, C. Schaefer, and T. Walter,

“Policy Evolution in Distributed Usage Control,”

Electronic Notes Theoretical Computer Science,
vol. 244, pp. 109-123, 2009.

[28] S. Etalle and W.H. Winsborough, “A Posteriori

Compliance Control,” SACMAT ’07: Proc. 12th ACM

Symp. Access Control Models and Technologies,
pp. 11-20, 2007.

http://www.ijcstjournal.org/
http://www.almaden.ibm/

