
International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 4, Jul-Aug 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 164

A Review: Clone Detection in Web Application Using Clone

Metrics
Harpreet Kaur1, Rupinder kaur2

Department of Computer Science and Engineering

Yadavindra College of Engineering (YCOE)

Guru Kashi Campus, Punjabi University

Talwandi Sabo, Bathinda

 Punjab-India

ABSTRACT
In software engineering, the concept of code reuse is very common. Code reuse is the concept of copying and pasting the

code in multiple places in the same software or different software without modification. In the last few decades numerous

code clone detection technique and tools have been proposed for capturing duplicated redundant code, which is also

known as software clone. In this study, we propose an efficient clone detection technique which is used to detect clones

in various programming language. This method of clone detection can also be implemented to more complex application

such as web applications. A tool is developed in JAVA for the system and detects the higher-level clone called Directory

Clones in JAVA.

Keywords:- Software engineering, code reuse, code clone detection techniques, higher-level clone.

I. INTRODUCTION

Software clones appear in code due to reasons like:

 Code reuse by copying pre-existing codes

 Coding styles is similar.

 Instantiations of definitional computations.

 Failure to use/identify abstract data types.

 Performance enhancement of a project.

 Accidently using same technique.

The software life cycle comprises of three steps: first we

have to clearly define the Requirement implement these

requirements; and then we have to maintain the software

and evolve it according to user’s requirements. But from

the development point of view maintenance is the most

crucial activity in terms of cost and effort. Code clones

are considered one of the bad smells of software system

and indicators of poor maintainability. Various studies

show that the software system with code clones is

difficult to maintain as compared to non-cloned code

software system.

 Code clones are the result of copy paste activities which

are syntactically or semantically similar. The reason

behind cloning can be intentional or unintentional.[2]

Copying existing code fragments and pasting them with

or without modifications into other sections of code is a

frequent process in software development. The copied

code is called a software clone and the process is called

software cloning. Code clone has no single or generic

definition, each researcher has own definition. [5]

 Figure 1.: Code Clone [28]

A. Code Fragment

A code fragment (CF) is any sequence of code lines (with

or without comments). It can be of any granularity, e.g.

function definition, begin-end block, or sequence of

statements. A CF is identified by its file name and begin-

end line numbers in the original code base and is denoted

as a triple (CF.FileName, CF.BeginLine, CF.EndLine).

B. Code Clone: A code fragment CF2 is a clone of

another code fragment CF1 if they are similar by some

given definition of similarity, that is, f(CF1) = f(CF2)

where f is the similarity function. Two fragments that are

similar to each other form a clone pair (CF1; CF2), and

when many fragments are similar, they form a clone class

or clone group. [3]

C. Clone Pair: A pair of identical or similar code

fragments.

D. Clone Set: A set of identical or similar fragments.

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 4, Jul-Aug 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 165

A clone relation is defined as an equivalence relation on

code portions. For given clone relation, a pair of code

portions is called clone pair if the clone relation holds

between the portions. An equivalence class of clone

relation is called clone class. That is, a clone class is

maximal set of code portions in which a clone relation

holds between any pair of code portions.[3]

 Figure 2: Clone Pair

and Clones Set.[28]

E. Clone Types: There are two main kinds of similarity

between code fragments. Fragments can be similar

based on the similarity of their program text, based on

their functionality. The first kind of clone is often the

result of copying a code fragment and pasting into

another location. In the following the types of clones

based on both the textual (Types 1 to 3) [1] and

functional (Type 4) similarities are described:

Type-1(Exact clones): Identical code fragments except

for variations in whitespace, layout and comments.

Type-2(renamed/parameterized): Syntactically

identical fragments except for variations in identifiers,

literals, types, whitespace, layout and comments.

Type-3(near miss clones): Copied fragments with

further modifications such as changed, added or

removed statements, in addition to variations in

identifiers, literals, types, whitespace, layout and

comments.

Type-4(semantic clones): Two or more code fragments

that perform the same computation but are implemented

by different syntactic variants.

F. Clone Detection Process:

A clone detector tool must try to find pieces of code of

high similarity in a system’s source code or text. The

main problem is that, it is not known initially which code

fragments may be repeated. Thus the detector really

should compare every possible code of fragment with

every other possible fragment. Such a comparison is

expensive from a computational point of view and thus,

several measures are used to reduce the domain of

comparison before performing the actual comparisons.

Even after identifying potentially cloned fragments,

further analysis and tool support may be required to

identify the actual clones. In this section, an overall

summary of the basic steps in a clone detection process is

provided. This generic overall picture allows us to

compare and evaluate clone detection tools with respect

to their underlying mechanisms for the individual steps

and their level of support for these steps. Figure 1 shows

the set of steps that a typical clone detector may follow in

general (although not necessarily). The generic process

shown is a generalization unifying the steps of existing

techniques, and thus not all techniques include all the

steps.

1) Preprocessing: At the beginning of any clone

detection approach, the source code is divided and the

domain of the comparison is determined. There are three

main objectives in this phase:

Remove uninteresting parts: All the source code

uninteresting to the comparison phase is filtered out in

this phase. For example, partitioning is applied to

embedded code to separate different languages (e.g., SQL

embedded in Java code, or Assembler in C code). This is

especially important if the tool is not language

independent. Similarly, generated code (e.g., LEX- and

YACC-generated code) and sections of source code that

are likely to produce many false positives (such as table

initialization) can be removed from the source code

before proceeding to the next phase [21].

Determine source units: After removing the

uninteresting code, the remaining source code is

partitioned into a set of disjoint fragments called source

units. These units are the largest source fragments that

may be involved in direct clone relations with each other.

Source units can be at any level of granularity, for

example, files, classes, functions/methods, begin-end

blocks, statements, or sequences of source lines.

Determine comparison units / granularity: Source units

may need to be further partitioned into smaller units

depending on the comparison technique used by the tool.

For example, source units may be subdivided into lines or

even tokens for comparison. Comparison units can also

be derived from the syntactic structure of the source unit.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 4, Jul-Aug 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 166

For example, an if statement can be further partitioned

into conditional expression, then and else blocks. The

order of comparison units within their corresponding

source unit may or may not be important, depending on

the comparison technique. Source units may themselves

be used as comparison units. For example, in a metrics

based tool, metrics values can be computed from source

units of any granularity and therefore, subdivision of

source units is not required in such approaches.

2). Transformation: Once the units of comparison are

determined, if the comparison technique is other than

textual, the source code of the comparison units is

transformed to an appropriate intermediate representation

for comparison. This transformation of the source code

into an intermediate representation is often called

extraction in the reverse engineering community. Some

tools support additional normalizing transformations

following extraction in order to detect superficially

different clones. These normalizations can vary from

very simple normalizations, such as removal of

whitespace and comments [18], to complex

normalizations, involving source code transformations

[23]. Such normalizations may be done either before or

after extraction of the intermediate representation.

(i) Extraction: Extraction transforms source code to the

form suitable as input to the actual comparison algorithm.

Depending on the tool, it typically involves one or more

of the following steps.

Tokenization: In case of token-based approaches, each

line of the source is divided into tokens according to the

lexical rules of the programming language of interest.

The tokens of lines or files then form the token sequences

to be compared. All whitespace (including line breaks

and tabs) and comments between tokens are removed

from the token sequences. CCFinder [23] and Dup [24]

are the leading tools that use this kind of tokenization on

the source code.

Parsing: In case of syntactic approaches, the entire

source code base is parsed to build a parse tree or

(possibly annotated) abstract syntax tree (AST). The

source units to be compared are then represented as sub-trees

of the parse tree or the AST, and comparison algorithms look

for similar sub-trees to mark as clones [25].

Control and Data Flow Analysis: Semantics-aware approaches

generate program dependence graphs (PDGs) from the source

code. The nodes of a PDG represent the statements and

conditions of a program, while edges represent control and

data dependencies. Source units to be compared are

represented as sub-graphs of these PDGs.

(ii) Normalization: Normalization is an optional step

intended to eliminate superficial differences such as

differences in whitespace, commenting, formatting or

identifier names.

Removal of whitespace: Almost all approaches disregard

whitespace, although line-based approaches retain line

breaks. Some metrics-based approaches however use

formatting and layout as part of their comparison.

Removal of comments: Most approaches remove and

ignore comments in the actual comparison.

Normalizing identifiers: Most approaches apply an

identifier normalization before comparison in order to

identify parametric Type-2 clones. In general, all

identifiers in the source code are replaced by the same

single identifier in such normalizations. However, Baker

[22] uses an order-sensitive indexing scheme to

normalize for detection of consistently renamed Type-2

clones.

Pretty-printing of source code: Pretty printing is a

simple way of reorganizing the source code to a standard

form that removes differences in layout and spacing.

Pretty printing is normally used in text-based clone

detection approaches to find clones that differ only in

spacing and layout.

Structural transformations: Other transformations may

be applied that actually change the structure of the code,

so that minor variations of the same syntactic form may

be treated as similar [23].

 (iii) Match Detection: The transformed code is then fed

into a comparison algorithm where transformed

comparison units are compared to each other to find

matches. Often adjacent similar comparison units are

joined to form larger units. For techniques/tools of fixed

granularity (those with a predetermined clone unit, such

as a function or block), all the comparison units that

belong to the target granularity clone unit are aggregated.

For free granularity techniques/tools (those with no

predetermined target clone unit) aggregation is continued

as long as the similarity of the aggregated sequence of

comparison units is above a given threshold, yielding the

longest possible similar sequences. The output of match

detection is a list of matches in the transformed code

which is

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 4, Jul-Aug 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 167

Below figure 1:3 show A generic clone detection process

 Code Base

 Preprocessing

Remover uninteresting code, determine

source and comparison

units/granularities.

Preprocessed Code

 Transformation

One or more extraction and/or

transformation techniques are applied to

the preprocessed code to obtain an

intermediate representation of the code.

Transformed Code

 Match detection

Transformed comparison units are

compared to find similar source units in

the transformed code.

Clones on transformed

code

Clone pair /class locations of transformed

code are mapped to the original code base

by the numbers file. loaction

 Clone pairs/ classes

Post-preprocessed:Filtering

In this post-preprocessed phase clones are

extracted from the source, visualized with

tools and manully analyed to filter out

false positives

Filtered clone Pairs/ Classes

 Aggregation

In order to reduce the amount of data or for

ease of analysis, clone pairs are aggregated

to form clone classes or families

Filtered clone classes

 Formatting

Get Original

Code

Mapped to the

Original Code

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 4, Jul-Aug 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 168

represented or aggregated to form a set of candidate clone

pairs. Each clone pair is normally represented as the source

coordinates of each of the matched fragments in the

transformed code.

(iv)Formatting: In this phase, the clone pair list for the

transformed code obtained by the comparison algorithm is

converted to a corresponding clone pair list for the original

code base. Source coordinates of each clone pair obtained in

the comparison phase are mapped to their positions in the

original source files.

(v) Post-processing / Filtering: In this phase, clones are

ranked or filtered using manual analysis or automated

heuristics.

Manual Analysis: After extracting the original source code,

clones are subjected to a manual analysis where false positive

clones are filtered out by a human expert. Visualization of the

cloned source code in a suitable format (e.g., as an HTML

web page [23]) can help speed up this manual filtering step.

Automated Heuristics: Often heuristics can be defined based

on length, diversity, frequency, or other characteristics of

clones in order to rank or filter out clone candidates

automatically.

(vi) Aggregation: While some tools directly identify clone

classes, most return only clone pairs as the result. In order to

reduce the amount of data, perform subsequent analyses or

gather overview statistics, clones may be aggregated into

clone classes.

II. OVERVIEW OF CLONE DETECTION

TECHNIQUES

The area of clone detection has considerably evolved over the

last decade, leading to approaches with better results, but at

same time with increasing complexity using tool chains.

Some existing techniques for clone detection are Textual

comparison, Token comparison, Abstract Syntax trees

comparison, Program dependency graph comparison, Metrics

based comparison. No clone detection tool has been

proposed for the detection of all four types of clones. This is a

proposal for a new technique for code clone detection, which

helps us to detect clones in web application environment

made by PHP or JSP. Our proposal is the hybrid combination

of metrics based approach and Textual Comparison. [4][29]

A. Textual Comparison: The textual or text-based

techniques use little or no transformation on the

source code before the actual comparison, and in

most cases raw source code is used directly in clone

detection process. Though text based approach is the

efficient technique but it can detect type 1 clone

only. This approach cannot be assured because it

cannot detect the structural type of clones having

different coding but same logic. Examples: Solid

SDD, NICAD, Simian1, DuDe etc.

B. Token Based Comparison:

Lexical approaches (or token-based techniques)

begin by transforming the source code into a

sequence of lexical “tokens” using compiler-style

lexical analysis. The sequence is then scanned for

duplicated subsequences of tokens and the

corresponding original code is returned as clones.

Lexical approaches are generally more robust over

minor code changes such as formatting, spacing, and

renaming than textual techniques. The technique

allows one to detect Type1 and Type2 clones and

Type3 clones can be found by concatenating Type1

or Type2 clones if they are toxically not father than a

user- threshold away from each other.

Examples:CPFinder Dup,CCFinder etc.

C. Abstract Syntax Tree Based

Comparison:Syntactic approaches use a parser to

convert source programs into parse trees or abstract

syntax trees which can then be processed using

either tree matching or structural metrics to find

clones. The result obtained through this comparison

is quite efficient but it is very difficult and complex

to create an abstract syntax tree and the scalability is

also not good.

Examples: CloneDr, Deckard, CloneDigger etc.

D. Program Dependency Graph Comparison:

Program dependence Graph show control flow and

data dependencies. Once the PDG is obtained from

the source code, an isomorphic graph comparison is

applied to find the clones, and original code slices

represented by a sub- graph which are returned as a

clone. This approach is more efficient because they

detect both semantic and syntactic clones. But the

drawback with this approach is that for large

software it is very complex to obtain the program

dependence graph and the cost is also very high.

Examples: Duplix, GPLAG etc.

E. Metrics Based Comparison:

This approach calculates the metrics from source

code and uses these metrics to measure clones in

software. Rather than working on source code

directly this approach use metrics to detect the

clones. Many tools are available for calculating

metrics of source code. Columbus is the tool which

calculates metrics that are useful in detecting clones,

but this tool does not work for Java programs. And

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 4, Jul-Aug 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 169

the tool available for the calculation of Java code

metrics is Source Monitor but the metrics provided

by this tool are not so efficient in providing the

result for detection of clones. Other tools that are

available for calculating Java code metrics are very

complex like Datrix which are designed for

extending the quality of Java code. The metrics

calculated by this tool are useful for detecting clones

in the Java software and it is easy to use too. Metrics

are calculated from names, layout expressions and

control flow of functions. Metrics-based approaches

have also been applied to finding duplicate web

pages and clones in web applications.

 Table1: Classification of code clone techniques. [29]

Type of

comparison

Text based Token based AST Based PDG Based

Category Textual Textual Semntic Semntic

Supported Type1 Type 1,2 Type 1,2,3 Type 1,2,3

Portability Good Average Poor Poor

 Integrality Depends on

algorithm

Good Depends

on algorithm

Medium

Efficiency High Low High High

Complexity O(n) O(n) O(n) O(n3)

Meaning

 of (n)

Lines of code No. of token Node of AST Node of PDG

 .

III. RELATED WORK

Andrea De Lucia et al. [1] This paper presents an

approach for reengineering Web Applications based on

clone analysis that aims at identifying and generalizing

static and dynamic pages and navigational patterns of a

web application. Clone analysis is also helpful for

identifying literals that can be generated from a database. A

case study is described which shows how the proposed

approach can be used for restructuring the navigational

structure of a Web Application by removing redundant

code. A tool to identify and analyze cloned patterns in web

applications using clone analysis and clustering of static

and dynamic web pages. The tool has been implemented

for WAs developed using PHP or JSP technology. It

supports the user to filter out details that do not contribute

to the analysis of cloned patterns.

Chancal K.Roy et al. [2] A qualitative comparison and

evaluation of the current state-of-the art in clone detection

techniques and tools, and organize the large amount of

information into a coherent conceptual framework. We then

classify, compare and evaluate the techniques and tools in

two different dimensions. First, we classify and compare

approaches based on a number of facets, each of which has

a set of attributes. Second, we qualitatively evaluate the

classified techniques and tools with respect to taxonomy of

editing scenarios designed to model the creation of Type-1,

Type-2, Type-3 and Type-4 clones.

Deepak sethi et al. [3] the code clone or duplicated code is

one of the main factors that degrades the design and the

structure of software. We can implemented using standard

parsing technology, detects clones in arbitrary language

constructs, and detects the number clones without affecting

the operation of the program. Clone detection can also be

implemented to more complex applications such as web

based applications. Solid SDD tool provides a way of

visualizing clone detection results in a manner that is

observably different from the popular visualization using

scatter plots.

Gupta et al. [4] to design and implement a Code Clone

Detector tool to detect clones. The novel aspect of the work

is done by using metric based approach on Java source

codes. For calculating metrics Java byte code is used and

after that source code refactoring is done in order to reduce

code clones. Since the byte code is taken which converts

the source code into uniform representation and it is given

as an input to the tool for calculating metrics value, so up to

some extent it is able to identify the semantic clones.

Moreover byte code is platform independent which makes

this tool more efficient than the already existing tools. As

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 4, Jul-Aug 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 170

abstract syntax tree based approach and program

dependence graph approach takes a lot of time and they are

complex too for detection of clones so the proposed tool

have reduced the work by identifying potential clones with

more ease.

James R Cordy et al. [5] The NiCad Clone Detector is a

scalable, flexible clone detection tool designed to

implement the NiCad (Automated Detection of Near-Miss

Intentional Clones) hybrid clone detection method in a

convenient, easy-to-use command line tool that can easily

be embedded in IDEs and other environments. NiCad is

very efficient in its resource usage, and can handle even the

largest systems (over 60 million lines) in 2 Gb of memory

on a standard single-processor laptop. DebCheck

command-line tool. DebCheck can check a system of a few

hundred files in less than five minutes on a standard 2 GB

single processor home computer. DebCheck will extract all

of the C functions embedded in C source files of the system

and check every one of them for near-miss clones in the

Debian open source distribution, the world’s largest

packaged collection of open source code.

Saif et al. [6] we have presented a new code clone

detection technique. Our technique is capable of identifying

clones within large source codes and is distinctive in its

ability to detect code duplication independent of the source

language. We are also working on some of its future

directions including the removal of the clones detected

from the source code.

Tariq Muhammad et al [26] We have presented Dynamic

web pages composed of inter-woven (tangled) source code

written in multiple programming languages (e.g., HTML,

PHP, JavaScript, CSS) makes it difficult to analyze and

manage clones in web applications. Despite more than a

decade of research on software clones, there are not many

studies towards the investigation of code clones in web

applications. In this paper, we present an in-depth study on

the patterns (i.e., forking and templating) of exact and near-

miss code clones in two industrial dynamic web

applications having distinct architecture. The findings of

our study confirm the believed patterns for cloning and

suggest that specialized techniques and tool support are

necessary for effectively managing clones in the tangled

source code of dynamic web applications. We present an

exploratory study on the patterns of both exact (Type-1)

and near-miss (Type-2 and Type- 3) code clones in two

industrial web applications, which underwent two different

development styles. One was developed using the traditional style

where HTML mark-up and PHP code were put together on

dynamic web pages. The other was developed following a more

sophisticated approach using the MVC (Model-View-Controller)

pattern that resulted in a relatively more modularized

implementation.

Y.Ueda et al. [7] developed a maintenance support environment

based on code clone analysis called Gemini. CC-Finder then

represents the information of the detected code clones to the user

through various GUIs.

IV. CONCLUSION

Clone detection is live problem in an active search area

with plenty of work on detecting and removing clones from

software. It usually caused by programmer’s copy and

paste activates. Code clone detection and removal is still

not settled well. In this paper, we conducted a literature

review on code clone.

In future we developed tool in JAVA for the system and it

detects the higher- level clone called Directory Clones in

JAVA. The novelty of this system is that it combines both

the metric based and text based techniques in detecting the

files clones in JAVA. Various metrics have been formed

and their values are used in detection process. If match

exists in the metric values then the textual comparison is

performed to con firm the clone pair.

REFERENCES

[1] Andrea De Lucia, Rita Francese, Giuseppe Scanniello,

Genoveffa Tortora, “Understanding Cloned Patterns

in Web Applications,” Proceedings of the 13th

International Workshop on Program Comprehension

(IWPC’05), IEEE.

[2] Chanchal K. Roya, James R. Cordy, Rainer

Koschke,“Comparison and evaluation of code clone

detection techniques and tools: A qualitative

approach,” Science of Computer programming,

ELSEVIER, pp 470-495, 2009.

[3] Deepak Sethi, Manisha Sehrawat, Bharat bhushan

Naib, “Detection of Code Clone using Datasets,”

IEEE TRANSACTIONS ON SOFTAWRAE

ENGINEERING, TSE-0079-0207,R2.

[4] Girija Gupta, Indu Singh, “A Novel Approach Towards

Code Clone Detection and Redesigning,” IJARCSSE,

pp. 331-338,September-2013.

[5] James R Cordy, Chanchal K. Roy, “The NiCad Clone

Detector & DebCheck: Efficient Checking for Open

Source Code Clones in Software Systems,”19th IEEE

International Conference on Program Comprehension,

IEEE, 2011.

[6] Salf Ur. Rehman, Ramran khan,Simon Fong, Robert

Biuk-Aghai, “ An Efficient New Multi-Language

Clone Detection Approach from Large Source Code,”

IEEE 2012.

[7] Y. Ueda, T. Kamiya, S. Kusumoto, K. Inoue,

“Gemini: Maintenance Support Environment Based

on Code Clone Analysis”, 8th International

Symposium on Software Metrics, pages 67-76, June

4-7, 2002.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 4, Jul-Aug 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 171

[8] Md. Rakibul Islam, Md. Rafiqullslam, Md. Maidull

slam, Tasneem Halim, “A Study of Code Cloning in

Server Pages of Web Applications Developed Using

Classic ASP.NET and ASP.NET MVC Framework”,

Proceedings of 14th International Conference on

Computer and Information Technology (ICCIT 2011)

22-24 December, 2011, Dhaka, Bangladesh

[9] Dhavleesh Rattan, Rajesh Bhatia, Maninder

Singh,“Software Clone Detection: Systematic

Review,”Information And Software Techmology,

ELSERVIER, pp 1165-1199, 2013.

[10] Z. Li, S. Lu, S. Myagmar and Y. Zhou, “CP-Miner:

Finding copy-paste and related bugs in large-scale

software code,” IEEE, 2006, pp1-2.

[11] E. Choi, N. Yoshida, T. Ishio, K. Inoue, and T. Sano,

"Extracting code clones for refactoring using

combinations of clone metrics". In Proc. of the IWSC

2011, pages 7-13, 2011

[12] E. Juergens, F. Deissenboeck, B. Hummel, S.

Wagner,“Do code clones matter?,”ICSE’09:

Proceedings of the 2009 IEEE 31st International

Conference on Software Engineering, IEEE

Computer Society, 2009, pp. 485–495.

[13] Ms. Kavitha Esther Rajakumari, Dr. T. Jebarajan, “A

Novel Approach to Effective Detection and Analysis

of Code Clones,” IEEE, 2013.

[14] Fabio Calefato, Fillppo lanubile, Teresa Mallardo,

“Function Clone detection in Web Application:A

Semi automated Approach,” Journal of Web

Engineering, Vol.3, No.1, pp.003-021, 2004.

[15] C. Kapser, M.W. Godfrey, Supporting the analysis of

clones in software systems: research articles, Journal

of Software Maintenance and Evolution 18 (2) (2006)

61–82

[16] S. Thummalapenta, L. Cerulo, L. Aversano, M.D.

Penta, “ An empirical study on the maintenance of

source code clone”, Empirical Software Engineering

15 (1) (2010) 1–34.

[17] Katsuro Inoue, "Code Clone Analysis and Its

Application", Software Engineering Lab, Osaka

University.

[18] Rainer Koschke, "Survey of Research on Software

Clones", Dagstuhl Seminar Proceedings.

[19] Mohammed Abdul Bari, Dr. Shahanawaj Ahamad,

"Code Cloning: The Analysis, Detection and

Removal", International Journal of Computer

Applications (0975 –8887) Vol. 20, No.7, April 2011.

[20] G.Anil kumar, Dr.C.R.K.Reddy, Dr. A. Govardhan,

Gousiya Begum,“ Code Clone detection with

Refactoring support Through Textual Analysis,”

International Journal of Computer Trends And

Technology- Volume 2 Issue2-2011.

[21] M. Rieger, “Effective Clone Detection without

Language Barriers”, Ph.D. Thesis, University of

Bern, Switzerland, 2005.

[22] B. Baker, “A Program for Identifying Duplicated

Code”, in: Proceedings of Computing Science and

Statistics: 24th Symposium on the Interface, Vol.

24:4957, 24:49-57 (1992).

[23] C.K. Roy and J.R. Cordy, “NICAD: Accurate

Detection of Near-Miss Intentional Clones Using

Flexible Pretty- Printing and Code Normalization”,

in: Proceedings of the 16th IEEE International

Conference on Program Comprehension, ICPC 2008,

pp. 172-181 (2008).

[24] S. Bellon, R. Koschke, G. Antoniol, J. Krinke and E.

Merlo, “Comparison and Evaluation of Clone

Detection Tools”, Transactions on Software

Engineering, 33(9):577-591 (2007).

[25] I. Baxter, A. Yahin, L. Moura and M. Anna, “Clone

Detection Using Abstract Syntax Trees”, in:

Proceedings of the 14th International Conference on

Software Maintenance, ICSM 1998, pp. 368-377

(1998).

[26] Tariq Muhammad, Minhaz F. Zibran, Yosuke

Yamamoto, Chanchal K. Roy, “ Near-Miss clone

patterns in web applications : AN Empirical study

with Industrial Systems”, 2013 26th IEEE Canadian

Conference Of Electrical And Computer Engineering

(CCECE),2013 IEEE.

[27] Md. Monzur Morshed, Md. Arifur Rahman, Salah

Uddin Ahmed, “A Literature Review of Code Clone

Analysis to Improve Software Maintenance Process.”

IEEE.

[28] C.K. Roy, J.R. Cordy, “Near-miss function clones in

open source software: an empirical study, Journal of

Software Maintenance and Evolution:” Research and

Practice 22 (3) (2010) 165–189.

[29] Prajila Prem, “A Review on Code Clone Analysis and

Code Clone Detection.” International Journal of

Engineering and Innovative Technology (IJEIT)

Volume 2, Issue 12, June 2013.

[30] T. Kamiya, S. Kusumoto and K. Inoue, “CCFinder: A

Multilinguistic Token-Based Code Clone Detection

System for Large Scale Source Code”, IEEE

Transactions on Software Engineering, 28(7):654-

670 (20)

http://www.ijcstjournal.org/

