
International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 4, Jul-Aug 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 184

Encryption Algorithms - Parallelization
Shweta Kumari1, Abhishek Kumar2

School of Computing Science and Engineering

Galgotias University

Greater Noida

U.P-India

ABSTRACT
Most cryptographic algorithms function more efficiently when implemented in hardware than in software running on single

processor. However, systems that use hardware implementations have significant drawbacks: they are unable to respond to

flaws discovered in the implemented algorithm or to changes in standards. As an alternative, it is possible to implement

cryptographic algorithms in software running on multiple processors. In this paper, encryption has been implemented with

parallel processor and the result has been compared.

Keywords:- Cryptography, Parallelization, Comparison.

I. INTRODUCTION

The emergence of the Internet as a trusted medium for

commerce and communication has made cryptography an

essential component of modern information systems.

Cryptography provides the mechanisms necessary to
implement accountability, accuracy, and confidentiality in

communications [1]. As demands for secure communication

bandwidth grow, efficient cryptographic processing will

become increasingly vital to good system performance. To

introduce cryptography, an understanding of issues related to

information security in general is necessary. Information

security manifests itself in many ways according to the
situation and requirement. Regardless of who is involved, to

one degree or another, all parties to a transaction must have

confidence that certain objectives associated with information

security have been met. Over the centuries, an elaborate set of

protocols and mechanisms has been created to deal with

information security issues when the information is conveyed

by physical documents. Often the objectives of information

security cannot solely be achieved through mathematical

algorithms and protocols alone, but require procedural
techniques and abidance of laws to achieve the desired result.

For example, privacy of letters is provided by sealed

envelopes delivered by an accepted mail service. The physical

security of the envelope is, for practical necessity, limited and

so laws are enacted which make it a criminal offense to open

mail for which one is not authorized. It is sometimes the case

that security is achieved not through the information itself but

through the physical document recording it. For example,

paper currency requires special inks and materials to prevent

counterfeiting. Achieving information security in an

electronic society requires a vast array of technical and legal

skills. There is, however, no guarantee that all of the

information security objectives deemed necessary can be

adequately met. The technical means is provided through

cryptography.

II. CRYPTOGRAPHY GOALS

Cryptography is the study of mathematical techniques

related to aspects of information security such as

confidentiality, data integrity, entity authentication, and data

origin authentication [1]. Cryptography is not the only means

of providing information security, but rather one set of

techniques.

The following four cryptographic goals form a framework

from which other goals are derived:

A. Confidentiality

It is a service used to keep the content of information from

all but those authorized to have it.

B. Data integrity

It is a service which addresses the unauthorized alteration

of data. 3.

C. Authentication

It is a service related to identification.

C. Non-repudiation

It is a service which prevents an entity from denying

previous commitments or actions. When disputes arise due to

an entity denying that certain

actions were taken, a means to resolve the situation is

necessary.

III. SYMMETRIC-KEY CRYPTOGRAPHY

Symmetric-key cryptography, also called secret key

cryptography, is the most intuitive kind of cryptography. It

involves the use of a secret key known only to the participants

of the secure communication. Symmetric-key cryptography

can be used to transmit information over an insecure channel,

but it has also other uses, such as secure storage on insecure

media or strong mutual authentication. In symmetric-key

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 4, Jul-Aug 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 185

cryptography [2], the key must be shared by both the sender

and the receiver. The sender applies the encryption function

using the key to the plaintext to produce the cipher text. The

cipher text is sent to the receiver, who then applies the

decryption function using the same shared key. Since the

plaintext cannot be derived from the cipher text without

knowledge of the key, the cipher text can be sent over public

networks such as the Internet. Therefore, symmetric key

cryptography is characterized by the use of a single key to

perform both the encrypting and decrypting of data. Since the

algorithms are public knowledge, security is determined by

the level of protection afforded the key. If key is kept secret,

both the secrecy and authentication services are provided.

Secrecy is provided, because if the message is intercepted, the

intruder cannot transform the cipher text into its plaintext

format.

Assuming that only two users know the key, authentication is

provided because only a user with the key can generate cipher

text that a recipient can transform into meaningful plaintext.

The main aims of this thesis are to implement encryption in

serial, find out its performance on single processor and

compare the performance with parallel implementations of

encryption with 2, 4, and 8 processors varying different

parameters such as key size, number of rounds and extended

key size, and show how parallel implementation of the AES

offers better performance yet flexible enough for

cryptographic algorithms.

IV CONVENTIONAL ENCRYPTION

Cryptography (from Greek kryptÃ³s, "hidden", and

grÃ¡phein, "to write") is generally understood to be the study

of the principles and techniques by which information is

converted into an encrypted version that is difficult (ideally

impossible) for any unauthorized person to convert to the

original information, while still allowing the intended reader

to do so. In fact, cryptography covers rather more than merely

encryption and decryption. It is, in practice, a specialized

branch of information theory with substantial additions from

other branches of mathematics. Cryptography is probably the

most important aspect of communications security and is

becoming increasingly important as a basic building block for

computer security [3].

There are, in general, two types of cryptographic schemes

typically used to accomplish these goals:

A. Secret Key (or symmetric or conventional) cryptography

and

B. Public Key (or asymmetric) cryptography.

In symmetric-key cryptography, an algorithm is used to

scramble the message using a secret key in such a way that it

becomes unusable to all except the ones that have access to

that secret key. The most widely known symmetric

cryptographic algorithm is DES, developed by IBM in the

seventies. It uses a key of 56 bits and operates on chunks of 64

bits at a time. In public key cryptography [4], algorithms use

two different keys: a private and a public one. A message

encrypted with a private key can be decrypted with its public

key (and vice versa). The two basic building blocks of all

encryption techniques are substitution and transposition.

Figure 1 Two types of cryptography

Symmetric-key cryptography schemes are generally

categorized as being either stream ciphers or block ciphers

[5]. Stream ciphers operate on a single bit (byte or computer

word) at a time, and implement some form of feedback

mechanism so that the key is constantly changing. A block

cipher is so-called because the scheme encrypts one block of

data at a time using the same key on each block. In general,

the same plaintext block will always encrypt to the same

cipher text when using the same key in a block cipher whereas

the same plaintext will encrypt to different cipher text in a

stream cipher. Stream ciphers come in several flavours but

two are widely used. Self-synchronizing stream ciphers

calculate each bit in the key stream as a function of the

previous n bits in the key stream. It is termed "self-

synchronizing" because the decryption process can stay

synchronized with the encryption process merely by knowing

how far into the n-bit key stream it is. One problem is error

propagation; a garbled bit in transmission will result in n

garbled bits at the receiving side [6].

Synchronous stream ciphers generate the key stream in a

fashion independent of the message stream but by using the

same key stream generation function at sender and receiver.

While stream ciphers do not propagate transmission errors,

they are, by their nature, periodic so that the key stream will

eventually repeat [7]. Block ciphers can operate in one of

several modes; the following four are the most important:

A. Electronic Codebook (ECB) mode is the simplest most

obvious application: the secret key is used to encrypt the

plaintext block to form a cipher text block. Two identical

plaintext blocks, then, will always generate the same

cipher text block. Although this is the most common mode

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 4, Jul-Aug 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 186

of block ciphers, it is susceptible to a variety of brute-force

attacks.

B. Cipher Block Chaining (CBC) mode adds a feedback

mechanism to the encryption scheme. In CBC, the plaintext is

exclusively-ORed (XORed) with the previous ciphertext block

prior to encryption. In this mode, two identical blocks of

plaintext never encrypt to the same cipher text.

C. Cipher Feedback (CFB) mode is a block cipher

implementation as a self-synchronizing stream cipher.

CFB mode allows data to be encrypted in units smaller

than the block size, which might be useful in some

applications such as encrypting interactive terminal input.

In case of 1-byte CFB mode, for example, each incoming

character is placed into a shift register the same size as the

block, encrypted, and the block transmitted [8]. At the

receiving side, the ciphertext is decrypted and the extra

bits in the block (i.e., everything above and beyond the

one byte) are discarded.

D. Output Feedback (OFB) mode is a block cipher

implementation conceptually similar to a synchronous stream

cipher. OFB prevents the same plaintext block from

generating the same ciphertext block by using an internal

feedback mechanism that is independent of both the plaintext

and ciphertext bit streams.

V. MODEL OF SYMMETRIC-KEY

CRYPTOSYSTEM

 A symmetric or conventional encryption scheme has five

ingredients (Figure 2):

Plaintext /Message: This is the original intelligible message

or data that is fed into the algorithm as input [9].

Encryption Algorithm: The encryption algorithm performs

various substitution and transformation on the plaintext.

Secret Key: The secret key is also the input to the encryption

algorithm. The key is a value independent of the plaintext.

The algorithm will produce a different output depending on

the specific key being used at the time. The exact substitutions

and transformations performed by the algorithm depend on the

key.

Ciphertext: This is the scrambled message produced as output.

It depends on the plaintext and secret key. For a given

message, two different keys will produce two different

ciphertexts.

Decryption Algorithm: This is essentially the encryption

algorithm run in reverse. It takes the ciphertext and the secret

key and produces the original plaintext.

Figure 2 Model of Symmetric-key Cryptosystem

There are two requirements for secure use of symmetric-

key encryption:

A. A strong encryption algorithm. At a minimum, the

algorithm to be such that an opponent who knows the

algorithm and has access to one or more ciphertexts would be

unable to decipher the ciphertext or figure out the key. This

requirement is usually stated in a stronger form: The opponent

should be unable to decrypt ciphertext or discover the key

even if he or she is in possession of a number of ciphertexts

together with the plaintext that produced each ciphertext.

B. Sender and receiver must have obtained copies of the secret

key in a secure fashion and must keep the key secure. If some

can discover the key and knows the algorithm, all

communication using this key is readable [10].

A. Importance of Symmetric-key Cryptography

 The primary advantage of public-key cryptography is

increased security and convenience. Private keys never need

to transmitted or revealed to anyone. In a symmetric-key

system, by contrast, the symmetric keys must be transmitted

(either manually or through a communication channel), and

there may be a chance that an enemy can discover the

symmetric keys during their transmission. Another major

advantage of public-key systems is that they can provide a

method for digital signatures. Authentication via symmetric-

key systems requires the sharing of some symmetric keys and

sometimes requires trust of a third party as well. As a result, a

sender can repudiate a previously authenticated message by

claiming that the shared symmetric key was somehow

compromised by one of the parties sharing the symmetric-key.

Public-key authentication, on the other hand, prevents this

type of repudiation; each user has sole responsibility for

protecting his or her private key. This property of public-key

authentication is often called nonrepudiation [11].

A disadvantage of using public-key cryptography for

encryption is speed; there are

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 4, Jul-Aug 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 187

popular symmetric-key encryption methods that are

significantly faster than any currently available public-key

encryption method. Nevertheless, public-key cryptography

can be used with symmetric-key cryptography to get the best

of both worlds. For encryption, the best solution is to

combine public- and symmetric-key systems in order to get

both the security advantages of public-key systems and the

speed advantages of symmetric-key systems. The public-key

system can be used to encrypt a symmetric- key which is used

to encrypt the bulk of a file or message.

Such a protocol is called a digital envelope.

B. Advantages of symmetric-key cryptography

1. Symmetric-key ciphers can be designed to have high rates

of data throughput.

2. Keys for symmetric-key ciphers are relatively short [12].

3. Symmetric-key ciphers can be employed as primitives to

construct various cryptographic mechanisms including

pseudorandom number generators, hash functions, and

computationally efficient digital signature schemes, to name

just a few.

4. Symmetric-key ciphers can be composed to produce

stronger ciphers. Simple transformations which are easy to

analyze, but on their own weak, can be used to construct

strong product ciphers.

C. Disadvantages of symmetric-key cryptography

1. In a two-party communication, the key must remain secret

at both ends.

2. In a large network, there are many key pairs to be managed.

Consequently, effective key management requires the use of

an unconditionally trusted TTP.

3. In a two-party communication between entities A and B,

sound cryptographic practice dictates that the key be changed

frequently and perhaps for each communication session.

Digital signature mechanisms arising from symmetric-key

encryption typically require either large keys for the public

verification function or the use of a TTP.

D. Advantages of public-key cryptography

1. Only the private key must be kept secret (authenticity of

public keys must, however, be guaranteed).

2. Depending on the mode of usage, a private key/public key

pair may remain unchanged for considerable periods of time,

e.g., many sessions (even several years).

3. Many public-key schemes yield relatively efficient digital

signature mechanisms. The key used to describe the public

verification function is typically much smaller than for the

symmetric-key counterpart.

4. In a large network, the number of keys necessary may be

considerably smaller than in the symmetric-key scenario.

E. Disadvantages of public-key encryption

1. Throughput rates for the most popular public-key

encryption methods are several orders of magnitude slower

than the best-known symmetric-key schemes.

2. Key sizes are typically much larger than those required for

symmetric-key encryption, and the size of public-key

signatures is larger than that of tags providing data origin

authentication from symmetric-key techniques.

F. Summary of comparison

1. Public-key cryptography facilitates efficient signatures

(particularly nonrepudiation)

and key management, and

2. Symmetric-key cryptography is efficient for encryption and

some data

integrity applications.

VI. PARALLEL IMPLEMENTATION OF

ENCRYPTION ALGORITHM

 The current trend in high performance computing is

clustering and distributed computing. In clusters, powerful

low cost workstations and/or PCs are linked through fast

communication interfaces to achieve high performance

parallel computing. Recent increases in communication

speeds, microprocessor clock speeds, availability of high

performance public domain software including operating

system, compiler tools and message passing libraries, make

cluster based computing appealing in terms of both high

performance computing and cost effectiveness. Parallel

computing on clustered systems is a viable and attractive

proposition due to the high communication speeds of modern

networks [13]. To efficiently use more than one processor in a

program, the processors must share data and co-ordinate

access to and updating of the shared data. The most popular

approach to this problem is to exchange of data through

messages between computers.

The MPI (message Passing Interface) approach is considered

to be one of the most mature methods currently used in

parallel programming mainly due to the relative simplicity of

using the method by writing a set of library functions or an

API (Application Program Interface) callable from C, C++ or

Fortran Programs. MPI was designed for high performance on

both massively parallel machines and clusters. Today, MPI is

considered a de facto standard for message passing in the

parallel-computing paradigm. For implementing the

encryption algorithm in parallel, the MPI based cluster is used

in the present chapter.

The performance of a parallel algorithm depends not only on

input size but also on the architecture of the parallel computer,

the number of processors, and the interconnection network. In

this chapter, different types of parallel architectures and

interconnection networks are discussed before actually

implementing the parallel algorithm of encryption. At the end

of this paper, some sample input/output are shown varying the

key size, number of rounds and the number of processors to

verify the correctness of parallel algorithm. Finally, the run

time complexity of the parallel algorithm is shown to measure

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 4, Jul-Aug 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 188

the performance improvement of the parallel implementation

over the serial implementation.

VII PARALLEL ARCHITECTURE

A. SIMD Architecture

SIMD (Single-Instruction Stream Multiple-Data Stream) [19]

architectures are essential in the parallel world of computers.

In SIMD architectures, several processing elements are

supervised by one control unit. All the processing units

receive the same instruction from the control unit but operate

on different data sets, which come from different data flows,

meaning that they execute programs in a lockstep mode, in

which each processing element has its own data stream. There

are two types of SIMD architectures: the True SIMD and the

Pipelined SIMD. Each has its own advantages and

disadvantages but their common attribute is superior ability to

manipulate vectors.

Figure 5.1 Model of SIMD architecture

B. MIMD Architecture

 Multiple instruction stream, multiple data stream (MIMD)

[20] machines have a number of processors that function

asynchronously and independently. At any time, different

processors may be executing different instructions on different

pieces of data. MIMD architectures may be used in a number

of application areas such as computer-aided design/computer-

aided manufacturing, simulation, modeling, and as

communication switches. MIMD machines can be of either

shared memory or distributed memory categories. These

classifications are based on how MIMD

processors access memory. Shared memory machines may be

of the bus-based, extended, or hierarchical type. Distributed

memory machines may have hypercube or mesh

interconnection schemes.

Figure 5.2 Model of MISD architecture

VIII ALGORITHM FOR PARALLEL

IMPLEMENTATION OF AES

 There are two major components of parallel algorithm

design. The first one is the identification and specification of

the overall problem as a set of tasks that can be performed

concurrently. The second is the mapping of these tasks onto

different processors so that the overall communication

overhead is minimized. The first component specifies

concurrency, and the second one specifies data locality. The

performance of an algorithm on a parallel architecture

depends on both. Concurrency is necessary to keep the

processors busy. Locality is important because it minimizes

communication overhead. Ideally, a parallel algorithm should

have maximum concurrency and locality. However, for most

algorithms, there is a tradeoff. An algorithm that has more

concurrency often has less locality.

To implement the AES algorithm in parallel, data blocks

(Figure 5.3) and a key are distributed among the available

processors. Each processor will encrypt different data blocks

using the same key. For example, in order to encrypt n

number of data blocks with p processors, n/p data blocks will

be encrypted by each processor. As each processor has its own

data blocks and a key (increases data locality), all the

10/12/14 rounds (consists of four transformations) will be

executed by each processor for encrypting each data block.

After encrypting all the data blocks of each processor, the

encrypted data will be merged (Figure 5.4) in tree structure

and return back to the main processor. For example, if there

are four processors working in parallel, processor P1 will send

its encrypted data to P0 and P0 will merge its encrypted data

with P1; processor P3 will send its encrypted data to P2, and

P2 will merge its encrypted data with P3. Finally processor P2

will send its (P2 & P3) encrypted data to P0 and P0 will

merge its (P0 & P1) encrypted data with P2. This technique of

merging and returning data to the main processor will increase

the concurrency and reduce the idle time of each processor.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 4, Jul-Aug 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 189

Figure 5.3 a) Data blocks are distributed between 2 processors

b) Data blocks are distributed among 4

processors[14]

Decryption is done in the same way as the

encryption. After decrypting the data blocks, the

plain texts are merged and return back to the main

processor in the same way as described above.

Figure 5.4 Encrypted data blocks are merged in tree structure

IX THE OVERALL PARALLEL

ALGORITHM OF AES CIPHER IS

DESCRIBED BELOW

Constant: ArraySize = 160 ; int Nb = 4;

int Nr = 10, 12, or 14; // rounds, for Nk = 4, 6, or 8

Inputs: int nProcessors = 2/4/8/16 processors

int tNumberOfBlocks // number of blocks to be encrypted

unsigned char key[16] // key for encrypting data

int k = 0;

array w of 4*Nb*(Nr+1) bytes // expanded key

X SAMPLE INPUT/OUTPUT

128-bit data, 128-bit Key

2 processors, each processor processes 4 data blocks

Encrypting . . .

Processor 0:

Plaintext1 32 43 F6 A8 88 5A 30 8D 31 31 98 A2 E0 37 07 34

Plaintext2 38 21 1A 00 0B 23 DE 93 F7 B6 65 7D F9 AE C4

D1

Plaintext3 AF DA 94 A5 E5 3C A1 25 B0 39 D3 58 0 CE BF

CA

Plaintext4 8E 9C 32 1E 84 47 CD BC 9B 67 7E B9 B6 23 5E

1A

Key 2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C

Ciphertext1 39 25 84 1D 02 DC 09 FB DC 11 85 97 19 6A 0B

32

Ciphertext2 E3 97 D6 93 C8 82 E9 DF 8A CD 3D 35 2A 20

0A 47

Ciphertext3 71 FB 5E D7 3E D0 76 AE C5 A1 89 14 86 70 16

3F

Ciphertext4 DB CA D3 9F C2 FC B6 EF F5 1B 60 39 53 1B

2B 24

Processor 1:

Plaintext1 D1 5B 5F 58 91 EA 82 C0 1F 28 4B 1A 37 B3 73

89

Plaintext2 3F 91 38 5A E1 F3 7B 9C 3D C2 AA 7B 9B F2 7C

23

Plaintext3 7C 70 DC B2 0F CC CA 20 5F 48 4F E7 43 34 07

88

Plaintext4 46 BA 06 15 41 1F 0F 96 30 46 06 AA 3E 76 A8

72

Key 2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C

Ciphertext1 B4 FD 4B E9 64 FF 4F 80 84 59 24 88 0F 21 54

F5

Ciphertext2 23 20 B7 96 CC 27 7A 91 E4 CC 1D 48 D4 75

3C 44

Ciphertext3 BC BD C4 72 EE F1 A7 9F 51 FF C3 2A E7 B1

52 7C

Ciphertext4 0F E9 FB 87 42 0F AA DD 0C C6 9C E1 40 F5

8B E4

Decrypting . . .

Processor 0:

Ciphertext1 39 25 84 1D 02 DC 09 FB DC 11 85 97 19 6A 0B

32

Ciphertext2 E3 97 D6 93 C8 82 E9 DF 8A CD 3D 35 2A 20

0A 47

Ciphertext3 71 FB 5E D7 3E D0 76 AE C5 A1 89 14 86 70 16

3F

Ciphertext4 DB CA D3 9F C2 FC B6 EF F5 1B 60 39 53 1B

2B 24

Key 2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C

Plaintext1 32 43 F6 A8 88 5A 30 8D 31 31 98 A2 E0 37 07 34

Plaintext2 38 21 1A 00 0B 23 DE 93 F7 B6 65 7D F9 AE C4

D1

Plaintext3 AF DA 94 A5 E5 3C A1 25 B0 39 D3 58 00 CE

BF CA

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 4, Jul-Aug 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 190

Plaintext4 8E 9C 32 1E 84 47 CD BC 9B 67 7E B9 B6 23 5E

1A

Processor 1:

Ciphertext1 B4 FD 4B E9 64 FF 4F 80 84 59 24 88 0F 21 54

F5

Ciphertext2 23 20 B7 96 CC 27 7A 91 E4 CC 1D 48 D4 75

3C 44

Ciphertext3 BC BD C4 72 EE F1 A7 9F 51 FF C3 2A E7 B1

52 7C

Ciphertext4 0F E9 FB 87 42 0F AA DD 0C C6 9C E1 40 F5

8B E4

Key 2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C

Plaintext1 D1 5B 5F 58 91 EA 82 C0 1F 28 4B 1A 37 B3 73

89

Plaintext2 3F 91 38 5A E1 F3 7B 9C 3D C2 AA 7B 9B F2 7C

23

Plaintext3 7C 70 DC B2 F CC CA 20 5F 48 4F E7 43 34 7 88

Plaintext4 46 BA 6 15 41 1F F 96 30 46 6 AA 3E 76 A8 72

128-bit data, 192-bit Key

2 processors, each processor processes 4 data blocks

Encrypting . . .

Processor 0:

Plaintext1 46 B7 15 DA 1A 1B 88 E4 15 23 C4 75 D7 C0 85

A5

Plaintext2 27 6B F4 4E 8B 66 D6 6F 15 44 04 CE 7F AB 1B

E2

Plaintext3 7B 59 74 EF 44 65 57 73 79 C7 6B C1 2B 1B 71

EC

Plaintext4 35 A2 32 E6 CB 8A B6 E9 56 6F B7 16 7F 21 55

5D

Key E9 55 A9 D5 0A B2 91 60 E0 0B 3B 86 41 A8 5C 77

22 5C 7A AA AE 54 FF 19

Ciphertext1 FE 90 46 41 DB FC 64 28 D7 52 97 48 25 77 C1

92

Ciphertext2 EF AD 0A 1D CA 8D F1 97 CA 4C 26 E3 B0 9D

A3 D0

Ciphertext3 62 7B 8C DE B8 2D 32 28 52 11 A0 9A EE BE

AA 69

Ciphertext4 F1 6C AC BB C6 30 7A 6E BA AD A3 FA C9

1A 24 11

Processor 1:

Plaintext1 8A A8 C 9C E6 85 E2 B 02 3B E5 D7 62 0E D4

0D

Plaintext2 F1 0B 1D BA 99 48 07 51 11 6D 31 4C F6 73 3B

16

Plaintext3 1E AC C3 29 29 4 93 73 58 86 18 FF A3 22 17 D1

Plaintext4 05 AD 9B 12 1B 29 32 6D ED 47 58 B8 0C 2A 34

D7

Key E9 55 A9 D5 A B2 91 60 E0 0B 3B 86 41 A8 5C 77

22 5C 7A AA AE 54 FF 19

Ciphertext1 EF 26 42 A5 62 DC 10 77 46 B0 14 13 A2 D2 69

86

Ciphertext2 C8 AC E9 E3 6E D8 9B 93 B9 B0 9D 63 05 F0

E6 14

Ciphertext3 8A 76 86 D3 E4 F2 85 D1 78 BA 52 0A 6C 6E

83 BE

Ciphertext4 32 CE E2 54 8E 3A F2 E6 13 66 A8 C3 FE 26 6B

6B

Decrypting . . .

Processor 0:

Ciphertext1 FE 90 46 41 DB FC 64 28 D7 52 97 48 25 77 C1

92

Ciphertext2 EF AD 0A 1D CA 8D F1 97 CA 4C 26 E3 B0 9D

A3 D0

Ciphertext3 62 7B 8C DE B8 2D 32 28 52 11 A0 9A EE BE

AA 69

Ciphertext4 F1 6C AC BB C6 30 7A 6E BA AD A3 FA C9

1A 24 11

Key E9 55 A9 D5 A B2 91 60 E0 B 3B 86 41 A8 5C 77

22 5C 7A AA AE 54 FF 19

Plaintext1 46 B7 15 DA 1A 1B 88 E4 15 23 C4 75 D7 C0 85

A5

Plaintext2 27 6B F4 4E 8B 66 D6 6F 15 44 4 CE 7F AB 1B

E2

Plaintext3 7B 59 74 EF 44 65 57 73 79 C7 6B C1 2B 1B 71

EC

Plaintext4 35 A2 32 E6 CB 8A B6 E9 56 6F B7 16 7F 21 55

5D

Processor 1:

Ciphertext1 EF 26 42 A5 62 DC 10 77 46 B0 14 13 A2 D2 69

86

Ciphertext2 C8 AC E9 E3 6E D8 9B 93 B9 B0 9D 63 05 F0

E6 14

Ciphertext3 8A 76 86 D3 E4 F2 85 D1 78 BA 52 0A 6C 6E

83 BE

Ciphertext4 32 CE E2 54 8E 3A F2 E6 13 66 A8 C3 FE 26 6B

6B

Key E9 55 A9 D5 A B2 91 60 E0 B 3B 86 41 A8 5C 77

22 5C 7A AA AE 54 FF 19

XI RUN TIME COMPLEXITY OF THE

PARALLEL IMPLEMENTATION

 Time complexity is the most important measure of the

performance of a parallel algorithm, since the primary

motivation for parallel computation is to achieve a speedup in

the computation. Parallel algorithms are executed by a set of

processors and usually require inter-processor data transfers to

complete execution successfully. The time complexity of a

parallel algorithm to solve a problem of size n is a function

T(n,p) which is the maximum time that elapses between the

start of the algorithm’s execution by one processor and its

termination by one or more processors with regard to any

arbitrary input. There are two different kinds of operations

associated with parallel algorithms[15]:

• Elementary operation

• Data routing operation

Elementary operation is an arithmetic or logical operation

performed locally by a processor. Data routing operations

refer to the routing of data among processors for exchanging

the information. The time complexity of a parallel algorithm is

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 4, Jul-Aug 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 191

determined by counting both elementary steps and data

routing steps.

It is also important to evaluate the speedup factor and

efficiency of the algorithm. All of them are described below:

A. Run Time

The serial run time of a program is the time elapsed between

the beginning and the end of its execution on a sequential

computer. The parallel run time is the time that elapses from

the moment that a parallel computation starts to the moment

that the last processor finishes execution. The serial and

parallel run time is denoted by TS and TP respectively.

B. Speed-up

When evaluating a parallel system, it is often important to

know how much performance gain is achieved by

parallelizing a given application over a sequential

implementation. Speed-up is defined as the ratio of the time

taken to solve a problem on a single processor to the time

required to solve the same problem on a parallel computer

with p identical processors. The speedup is denoted by the

symbol S. Therefore, S = TS / TP Formally, the speedup S is

defined as the ratio of the serial run time of the best

sequential algorithm for solving a problem to the time taken

by the parallel algorithm to solve the same problem on P

processors [16].

C. Efficiency

Efficiency is defined as the Speed-up with N processors

divided by the number of processors N. Conceptually, the

efficiency of the algorithm measures how well all N

processors are being used when the algorithm is computed in

parallel. An efficiency of 100 percent means that all of the

processors are being fully used all the time. Efficiency is

denoted by E. Therefore,

E = S / P = TS / P TP

XII CONCLUDING REMARKS

 From the above discussions, it is found that the efficiency

of parallel AES ranges from 0.75 to 0.82 and the speedup is

less than the number of processors used in the parallel

implementation. In practice, it is not possible to achieve

speedup equal to P and efficiency equal to 1, because while

executing a parallel algorithm, the processors cannot devote

100 percent of their time to the computations of the algorithm.

The time to transfer data between processors is equally the

most significant source of parallel processing overhead.

Another reason is load unbalancing i.e. not all the processors

are equally busy while executing a parallel program. If

different processors have different workloads, some

processors may be idle during part of the time that others are

working on the problem. It is very difficult to develop any

parallel algorithm where each processor will work equal

amount of time. After implementing the encryption algorithm

in parallel, it is found that the performance of algorithm

increases significantly as the number of processor increases. It

is not possible to get the speedup factor equal to P (number of

processor), as some parallel processing overhead is also

occurred during the implementation of AES in parallel.

XIII SUGGESTION FOR FUTURE WORK

 As the performance of any parallel implementation depends

on the parallel architectures and the interconnection networks,

the same parallel implementation can give different

performance on different architectures and interconnection

networks. So, there is a good opportunity to work on some

other architectures and interconnection networks and find out

which architecture and interconnection network will be

suitable for parallel implementation of encryption.

REFERANCES

[1] Menezes, A. and Vanstone, S. “Handbook of Applied

Cryptography”, CRC Press, Inc. 1996

[2] National Bureau of Standards, NBS FIPS PUB 46, “Data
Encryption Standard,”, U.S. Department of Commerce,
January 1977.

[3] Coppersmith, D. “The Data Encryption Standard (DES)
and Its Strength Against Attacks.” IBM Journal of
Research and Development, May 1994.

[4] Diffie, W. and Hellman, M. “Multiuser Cryptographic
Techniques” proceedings of AFIPS National Computer
Conference, 1976, 109-112

[5] Korner. T. “The Pleasures of Counting”, Cambridge,
England, Cambridge University Press, 1996

[6] Khan, D. “The Codebreakers: The Story of Secret
Writing.” New York, 1996

[7] Schneier, B. “Applied Cryptgraphy.” New York: Wiley,
1996.

[8] Stallings, W. “Cryptography and Network Security:
Principles and Practices.” Third Edition, Pearson
Education, Inc. 2003.

[9] Rivest, R., Shamir, A. and Adleman, L. “A Method for
Obtaining Digital Signature and Public-Key
Cryptosystems.” Communication of the ACM, 21, 2,
Feb 1978, 120-126.

[10] RSA Laboratories, “The RSA Laboratories Secret-key
Challenge: Cryptographic Challenges” ,
www.rsasecurity.com/rsalabs/node.asp

[11] Daemon, J. and Rijmen, V. “The Rijndael Block Cipher:
AES Proposal”, NIST, Version 2, March 1999.

[12] Daemon, J., and Rijmen, V. “Rijndael: The Advanced
Encryption Standard.” Dr. Dobb’s Journal, 26, 3, March
2001, 137-139.

[13] Daemon, J., and Rijmen, V. “The Design of Rijndael:
The Wide Trail Strategy Explained.” New York,
Springer – Verlag, 2000.

[14] National Policy on the Use of the Advanced Encryption
Standard (AES) to Protect National Security Systems
and National Security Information, CNSS Policy No. 1,
Fact Sheet No. 1, June 2003,
www.nstissc.gov/Assets/pdf/fact%20sheet.pdf

[15] Bruce Schneier, John Kelsey, Doug Whiting, David
Wagner, Chris Hall, and Niels Ferguson. In Proc. 2nd
AES candidate conference, pp 15–34, NIST, 1999,
www.macfergus.com/pub/icrijndael.html

[16] Lidl, R., and Niederreiter, H. “Introduction to finite
fields and their applications” Cambridge University
Press, 1986.

http://www.ijcstjournal.org/

