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ABSTRACT 
Most cryptographic algorithms function more efficiently when implemented in hardware than in software running on single 

processor. However, systems that use hardware implementations have significant drawbacks: they are unable to respond to 

flaws discovered in the implemented algorithm or to changes in standards. As an alternative, it is possible to implement 

cryptographic algorithms in software running on multiple processors. In this paper, encryption has been implemented with 

parallel processor and the result has been compared. 
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I.     INTRODUCTION 

 
The emergence of the Internet as a trusted medium for 

commerce and communication has made cryptography an 

essential component of modern information systems. 

Cryptography provides the mechanisms necessary to 
implement accountability, accuracy, and confidentiality in 

communications [1]. As demands for secure communication 

bandwidth grow, efficient cryptographic processing will 

become increasingly vital to good system performance. To 

introduce cryptography, an understanding of issues related to 

information security in general is necessary. Information 

security manifests itself in many ways according to the 
situation and requirement. Regardless of who is involved, to 

one degree or another, all parties to a transaction must have 

confidence that certain objectives associated with information 

security have been met. Over the centuries, an elaborate set of 

protocols and mechanisms has been created to deal with 

information security issues when the information is conveyed 

by physical documents. Often the objectives of information 

security cannot solely be achieved through mathematical 

algorithms and protocols alone, but require procedural 
techniques and abidance of laws to achieve the desired result. 

For example, privacy of letters is provided by sealed 

envelopes delivered by an accepted mail service. The physical 

security of the envelope is, for practical necessity, limited and 

so laws are enacted which make it a criminal offense to open 

mail for which one is not authorized. It is sometimes the case 

that security is achieved not through the information itself but 

through the physical document recording it. For example, 

paper currency requires special inks and materials to prevent 

counterfeiting. Achieving information security in an 

electronic society requires a vast array of technical and legal 

skills. There is, however, no guarantee that all of the 

information security objectives deemed necessary can be 

adequately met. The technical means is provided through 

cryptography. 

II.     CRYPTOGRAPHY GOALS 

 
Cryptography is the study of mathematical techniques 

related to aspects of information security such as 

confidentiality, data integrity, entity authentication, and data 

origin authentication [1]. Cryptography is not the only means 

of providing information security, but rather one set of 

techniques. 

The following four cryptographic goals form a framework 

from which other goals are derived: 

A. Confidentiality 

It is a service used to keep the content of information from 

all but those authorized to have it. 

B. Data integrity 

It is a service which addresses the unauthorized alteration 

of data. 3. 

C. Authentication  

It is a service related to identification. 

C. Non-repudiation 

It is a service which prevents an entity from denying 

previous commitments or actions. When disputes arise due to 

an entity denying that certain 

actions were taken, a means to resolve the situation is 

necessary. 

III. SYMMETRIC-KEY CRYPTOGRAPHY  

 
Symmetric-key cryptography, also called secret key 

cryptography, is the most intuitive kind of cryptography. It 

involves the use of a secret key known only to the participants 

of the secure communication. Symmetric-key cryptography 

can be used to transmit information over an insecure channel, 

but it has also other uses, such as secure storage on insecure 

media or strong mutual authentication. In symmetric-key 
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cryptography [2], the key must be shared by both the sender 

and the receiver. The sender applies the encryption function 

using the key to the plaintext to produce the cipher text. The 

cipher text is sent to the receiver, who then applies the 

decryption function using the same shared key. Since the 

plaintext cannot be derived from the cipher text without 

knowledge of the key, the cipher text can be sent over public 

networks such as the Internet. Therefore, symmetric key 

cryptography is characterized by the use of a single key to 

perform both the encrypting and decrypting of data. Since the 

algorithms are public knowledge, security is determined by 

the level of protection afforded the key. If key is kept secret, 

both the secrecy and authentication services are provided. 

Secrecy is provided, because if the message is intercepted, the 

intruder cannot transform the cipher text into its plaintext 

format. 

Assuming that only two users know the key, authentication is 

provided because only a user with the key can generate cipher 

text that a recipient can transform into meaningful plaintext. 

 

The main aims of this thesis are to implement encryption in 

serial, find out its performance on single processor and 

compare the performance with parallel implementations of 

encryption with 2, 4, and 8 processors varying different 

parameters such as key size, number of rounds and extended 

key size, and show how parallel implementation of the AES 

offers better performance yet flexible enough for 

cryptographic algorithms. 

IV      CONVENTIONAL ENCRYPTION 

Cryptography (from Greek kryptÃ³s, "hidden", and 

grÃ¡phein, "to write") is generally understood to be the study 

of the principles and techniques by which information is 

converted into an encrypted version that is difficult (ideally 

impossible) for any unauthorized person to convert to the 

original information, while still allowing the intended reader 

to do so. In fact, cryptography covers rather more than merely 

encryption and decryption. It is, in practice, a specialized 

branch of information theory with substantial additions from 

other branches of mathematics. Cryptography is probably the 

most important aspect of communications security and is 

becoming increasingly important as a basic building block for 

computer security [3]. 

There are, in general, two types of cryptographic schemes 

typically used to accomplish these goals:  

 

A. Secret Key (or symmetric or conventional) cryptography 

and  

B. Public Key (or asymmetric) cryptography.  

 

In symmetric-key cryptography, an algorithm is used to 

scramble the message using a secret key in such a way that it 

becomes unusable to all except the ones that have access to 

that secret key. The most widely known symmetric 

cryptographic algorithm is DES, developed by IBM in the 

seventies. It uses a key of 56 bits and operates on chunks of 64 

bits at a time. In public key cryptography [4], algorithms use 

two different keys: a private and a public one. A message 

encrypted with a private key can be decrypted with its public 

key (and vice versa). The two basic building blocks of all 

encryption techniques are substitution and transposition.  

 
Figure 1 Two types of cryptography 

 
Symmetric-key cryptography schemes are generally 

categorized as being either stream ciphers or block ciphers 

[5]. Stream ciphers operate on a single bit (byte or computer 

word) at a time, and implement some form of feedback 

mechanism so that the key is constantly changing. A block 

cipher is so-called because the scheme encrypts one block of 

data at a time using the same key on each block. In general, 

the same plaintext block will always encrypt to the same 

cipher text when using the same key in a block cipher whereas 

the same plaintext will encrypt to different cipher text in a 

stream cipher. Stream ciphers come in several flavours but 

two are widely used. Self-synchronizing stream ciphers 

calculate each bit in the key stream as a function of the 

previous n bits in the key stream. It is termed "self-

synchronizing" because the decryption process can stay 

synchronized with the encryption process merely by knowing 

how far into the n-bit key stream it is. One problem is error 

propagation; a garbled bit in transmission will result in n 

garbled bits at the receiving side [6]. 

 

Synchronous stream ciphers generate the key stream in a 

fashion independent of the message stream but by using the 

same key stream generation function at sender and receiver. 

While stream ciphers do not propagate transmission errors, 

they are, by their nature, periodic so that the key stream will 

eventually repeat [7]. Block ciphers can operate in one of 

several modes; the following four are the most important: 

 

A. Electronic Codebook (ECB) mode is the simplest most 

obvious application: the secret key is used to encrypt the 

plaintext block to form a cipher text block. Two identical 

plaintext blocks, then, will always generate the same 

cipher text block. Although this is the most common mode 
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of block ciphers, it is susceptible to a variety of brute-force 

attacks. 

 

B. Cipher Block Chaining (CBC) mode adds a feedback 

mechanism to the encryption scheme. In CBC, the plaintext is 

exclusively-ORed (XORed) with the previous ciphertext block 

prior to encryption. In this mode, two identical blocks of 

plaintext never encrypt to the same cipher text. 

 

C. Cipher Feedback (CFB) mode is a block cipher 

implementation as a self-synchronizing stream cipher. 

CFB mode allows data to be encrypted in units smaller 

than the block size, which might be useful in some 

applications such as encrypting interactive terminal input. 

In case of 1-byte CFB mode, for example, each incoming 

character is placed into a shift register the same size as the 

block, encrypted, and the block transmitted [8]. At the 

receiving side, the ciphertext is decrypted and the extra 

bits in the block (i.e., everything above and beyond the 

one byte) are discarded. 

 

D. Output Feedback (OFB) mode is a block cipher 

implementation conceptually similar to a synchronous stream 

cipher. OFB prevents the same plaintext block from 

generating the same ciphertext block by using an internal 

feedback mechanism that is independent of both the plaintext 

and ciphertext bit streams. 

V. MODEL OF SYMMETRIC-KEY 

CRYPTOSYSTEM 

 
      A symmetric or conventional encryption scheme has five 

ingredients (Figure 2): 

Plaintext /Message: This is the original intelligible message 

or data that is fed into the algorithm as input [9]. 

Encryption Algorithm: The encryption algorithm performs 

various substitution and transformation on the plaintext. 

Secret Key: The secret key is also the input to the encryption 

algorithm. The key is a value independent of the plaintext. 

The algorithm will produce a different output depending on 

the specific key being used at the time. The exact substitutions 

and transformations performed by the algorithm depend on the 

key. 

Ciphertext: This is the scrambled message produced as output. 

It depends on the plaintext and secret key. For a given 

message, two different keys will produce two different 

ciphertexts. 

Decryption Algorithm: This is essentially the encryption 

algorithm run in reverse. It takes the ciphertext and the secret 

key and produces the original plaintext. 

 
Figure 2 Model of Symmetric-key Cryptosystem 

 

There are two requirements for secure use of symmetric-

key encryption: 

A. A strong encryption algorithm. At a minimum, the 

algorithm to be such that an opponent who knows the 

algorithm and has access to one or more ciphertexts would be 

unable to decipher the ciphertext or figure out the key. This 

requirement is usually stated in a stronger form: The opponent 

should be unable to decrypt ciphertext or discover the key 

even if he or she is in possession of a number of ciphertexts 

together with the plaintext that produced each ciphertext. 

B. Sender and receiver must have obtained copies of the secret 

key in a secure fashion and must keep the key secure. If some 

can discover the key and knows the algorithm, all 

communication using this key is readable [10].  

A.    Importance of Symmetric-key Cryptography 

 The primary advantage of public-key cryptography is 

increased security and convenience. Private keys never need 

to transmitted or revealed to anyone. In a symmetric-key 

system, by contrast, the symmetric keys must be transmitted 

(either manually or through a communication channel), and 

there may be a chance that an enemy can discover the 

symmetric keys during their transmission. Another major 

advantage of public-key systems is that they can provide a 

method for digital signatures. Authentication via symmetric-

key systems requires the sharing of some symmetric keys and 

sometimes requires trust of a third party as well. As a result, a 

sender can repudiate a previously authenticated message by 

claiming that the shared symmetric key was somehow 

compromised by one of the parties sharing the symmetric-key. 

Public-key authentication, on the other hand, prevents this 

type of repudiation; each user has sole responsibility for 

protecting his or her private key. This property of public-key 

authentication is often called nonrepudiation [11].  

 

A disadvantage of using public-key cryptography for 

encryption is speed; there are 
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popular symmetric-key encryption methods that are 

significantly faster than any currently available public-key 

encryption method. Nevertheless, public-key cryptography 

can be used with symmetric-key cryptography to get the best 

of both worlds. For encryption, the best solution is to 

combine public- and symmetric-key systems in order to get 

both the security advantages of public-key systems and the 

speed advantages of symmetric-key systems. The public-key 

system can be used to encrypt a symmetric- key which is used 

to encrypt the bulk of a file or message. 

Such a protocol is called a digital envelope. 

B.    Advantages of symmetric-key cryptography 

1. Symmetric-key ciphers can be designed to have high rates 

of data throughput. 

2. Keys for symmetric-key ciphers are relatively short [12]. 

3. Symmetric-key ciphers can be employed as primitives to 

construct various cryptographic mechanisms including 

pseudorandom number generators, hash functions, and 

computationally efficient digital signature schemes, to name 

just a few. 

4. Symmetric-key ciphers can be composed to produce 

stronger ciphers. Simple transformations which are easy to 

analyze, but on their own weak, can be used to construct 

strong product ciphers. 

C.    Disadvantages of symmetric-key cryptography 

1. In a two-party communication, the key must remain secret 

at both ends. 

2. In a large network, there are many key pairs to be managed. 

Consequently, effective key management requires the use of 

an unconditionally trusted TTP. 

3. In a two-party communication between entities A and B, 

sound cryptographic practice dictates that the key be changed 

frequently and perhaps for each communication session. 

Digital signature mechanisms arising from symmetric-key 

encryption typically require either large keys for the public 

verification function or the use of a TTP. 

D.    Advantages of public-key cryptography 

1. Only the private key must be kept secret (authenticity of 

public keys must, however, be guaranteed). 

2. Depending on the mode of usage, a private key/public key 

pair may remain unchanged for considerable periods of time, 

e.g., many sessions (even several years). 

3. Many public-key schemes yield relatively efficient digital 

signature mechanisms. The key used to describe the public 

verification function is typically much smaller than for the 

symmetric-key counterpart. 

4. In a large network, the number of keys necessary may be 

considerably smaller than in the symmetric-key scenario. 

E.    Disadvantages of public-key encryption 

1. Throughput rates for the most popular public-key 

encryption methods are several orders of magnitude slower 

than the best-known symmetric-key schemes. 

2. Key sizes are typically much larger than those required for 

symmetric-key encryption, and the size of public-key 

signatures is larger than that of tags providing data origin 

authentication from symmetric-key techniques. 

F.    Summary of comparison 

1. Public-key cryptography facilitates efficient signatures 

(particularly nonrepudiation) 

and key management, and 

2. Symmetric-key cryptography is efficient for encryption and 

some data 

integrity applications. 

VI.   PARALLEL IMPLEMENTATION OF 

ENCRYPTION ALGORITHM 

    The current trend in high performance computing is 

clustering and distributed computing. In clusters, powerful 

low cost workstations and/or PCs are linked through fast 

communication interfaces to achieve high performance 

parallel computing. Recent increases in communication 

speeds, microprocessor clock speeds, availability of high 

performance public domain software including operating 

system, compiler tools and message passing libraries, make 

cluster based computing appealing in terms of both high 

performance computing and cost effectiveness. Parallel 

computing on clustered systems is a viable and attractive 

proposition due to the high communication speeds of modern 

networks [13]. To efficiently use more than one processor in a 

program, the processors must share data and co-ordinate 

access to and updating of the shared data. The most popular 

approach to this problem is to exchange of data through 

messages between computers.  

 

The MPI (message Passing Interface) approach is considered 

to be one of the most mature methods currently used in 

parallel programming mainly due to the relative simplicity of 

using the method by writing a set of library functions or an 

API (Application Program Interface) callable from C, C++ or 

Fortran Programs. MPI was designed for high performance on 

both massively parallel machines and clusters. Today, MPI is 

considered a de facto standard for message passing in the 

parallel-computing paradigm. For implementing the 

encryption algorithm in parallel, the MPI based cluster is used 

in the present chapter. 

 

The performance of a parallel algorithm depends not only on 

input size but also on the architecture of the parallel computer, 

the number of processors, and the interconnection network. In 

this chapter, different types of parallel architectures and 

interconnection networks are discussed before actually 

implementing the parallel algorithm of encryption. At the end 

of this paper, some sample input/output are shown varying the 

key size, number of rounds and the number of processors to 

verify the correctness of parallel algorithm. Finally, the run 

time complexity of the parallel algorithm is shown to measure 
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the performance improvement of the parallel implementation 

over the serial implementation. 

VII    PARALLEL ARCHITECTURE 

A.    SIMD Architecture 

SIMD (Single-Instruction Stream Multiple-Data Stream) [19] 

architectures are essential in the parallel world of computers. 

In SIMD architectures, several processing elements are 

supervised by one control unit. All the processing units 

receive the same instruction from the control unit but operate 

on different data sets, which come from different data flows, 

meaning that they execute programs in a lockstep mode, in 

which each processing element has its own data stream. There 

are two types of SIMD architectures: the True SIMD and the 

Pipelined SIMD. Each has its own advantages and 

disadvantages but their common attribute is superior ability to 

manipulate vectors. 

 
Figure 5.1 Model of  SIMD architecture 

B. MIMD Architecture 

 

    Multiple instruction stream, multiple data stream (MIMD) 

[20] machines have a number of processors that function 

asynchronously and independently. At any time, different 

processors may be executing different instructions on different 

pieces of data. MIMD architectures may be used in a number 

of application areas such as computer-aided design/computer-

aided manufacturing, simulation, modeling, and as 

communication switches. MIMD machines can be of either 

shared memory or distributed memory categories. These 

classifications are based on how MIMD 

processors access memory. Shared memory machines may be 

of the bus-based, extended, or hierarchical type. Distributed 

memory machines may have hypercube or mesh 

interconnection schemes. 

 
Figure 5.2 Model of MISD architecture 

 

VIII    ALGORITHM FOR PARALLEL 

IMPLEMENTATION OF AES 

 
    There are two major components of parallel algorithm 

design. The first one is the identification and specification of 

the overall problem as a set of tasks that can be performed 

concurrently. The second is the mapping of these tasks onto 

different processors so that the overall communication 

overhead is minimized. The first component specifies 

concurrency, and the second one specifies data locality. The 

performance of an algorithm on a parallel architecture 

depends on both. Concurrency is necessary to keep the 

processors busy. Locality is important because it minimizes 

communication overhead. Ideally, a parallel algorithm should 

have maximum concurrency and locality. However, for most 

algorithms, there is a tradeoff. An algorithm that has more 

concurrency often has less locality. 

 

To implement the AES algorithm in parallel, data blocks 

(Figure 5.3) and a key are distributed among the available 

processors. Each processor will encrypt different data blocks 

using the same key. For example, in order to encrypt n 

number of data blocks with p processors, n/p data blocks will 

be encrypted by each processor. As each processor has its own 

data blocks and a key (increases data locality), all the 

10/12/14 rounds (consists of four transformations) will be 

executed by each processor for encrypting each data block. 

After encrypting all the data blocks of each processor, the 

encrypted data will be merged (Figure 5.4) in tree structure 

and return back to the main processor. For example, if there 

are four processors working in parallel, processor P1 will send 

its encrypted data to P0 and P0 will merge its encrypted data 

with P1; processor P3 will send its encrypted data to P2, and 

P2 will merge its encrypted data with P3. Finally processor P2 

will send its (P2 & P3) encrypted data to P0 and P0 will 

merge its (P0 & P1) encrypted data with P2. This technique of 

merging and returning data to the main processor will increase 

the concurrency and reduce the idle time of each processor. 
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Figure 5.3 a) Data blocks are distributed between 2 processors 

 

b) Data blocks are distributed among 4 

processors[14] 

Decryption is done in the same way as the 

encryption. After decrypting the data blocks, the 

plain texts are merged and return back to the main 

processor in the same way as described above. 

 
Figure 5.4 Encrypted data blocks are merged in tree structure 

 

IX    THE OVERALL PARALLEL 

ALGORITHM OF AES CIPHER IS 

DESCRIBED BELOW 

 
Constant: ArraySize = 160 ; int Nb = 4; 

int Nr = 10, 12, or 14; // rounds, for Nk = 4, 6, or 8 

Inputs: int nProcessors = 2/4/8/16 processors 

int tNumberOfBlocks // number of blocks to be encrypted 

unsigned char key[16] // key for encrypting data 

int k = 0; 

array w of 4*Nb*(Nr+1) bytes // expanded key 

 

X    SAMPLE INPUT/OUTPUT 
 

128-bit data, 128-bit Key 

2 processors, each processor processes 4 data blocks 

Encrypting . . . 

Processor 0: 

Plaintext1 32 43 F6 A8 88 5A 30 8D 31 31 98 A2 E0 37 07 34 

Plaintext2 38 21 1A 00 0B 23 DE 93 F7 B6 65 7D F9 AE C4 

D1 

Plaintext3 AF DA 94 A5 E5 3C A1 25 B0 39 D3 58 0 CE BF 

CA 

Plaintext4 8E 9C 32 1E 84 47 CD BC 9B 67 7E B9 B6 23 5E 

1A 

Key 2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C 

Ciphertext1 39 25 84 1D 02 DC 09 FB DC 11 85 97 19 6A 0B 

32 

Ciphertext2 E3 97 D6 93 C8 82 E9 DF 8A CD 3D 35 2A 20 

0A 47 

Ciphertext3 71 FB 5E D7 3E D0 76 AE C5 A1 89 14 86 70 16 

3F 

Ciphertext4 DB CA D3 9F C2 FC B6 EF F5 1B 60 39 53 1B 

2B 24 

Processor 1: 

Plaintext1 D1 5B 5F 58 91 EA 82 C0 1F 28 4B 1A 37 B3 73 

89 

Plaintext2 3F 91 38 5A E1 F3 7B 9C 3D C2 AA 7B 9B F2 7C 

23 

Plaintext3 7C 70 DC B2 0F CC CA 20 5F 48 4F E7 43 34 07 

88 

Plaintext4 46 BA 06 15 41 1F 0F 96 30 46 06 AA 3E 76 A8 

72 

Key 2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C 

Ciphertext1 B4 FD 4B E9 64 FF 4F 80 84 59 24 88 0F 21 54 

F5 

Ciphertext2 23 20 B7 96 CC 27 7A 91 E4 CC 1D 48 D4 75 

3C 44 

Ciphertext3 BC BD C4 72 EE F1 A7 9F 51 FF C3 2A E7 B1 

52 7C 

Ciphertext4 0F E9 FB 87 42 0F AA DD 0C C6 9C E1 40 F5 

8B E4 

Decrypting . . . 

Processor 0: 

Ciphertext1 39 25 84 1D 02 DC 09 FB DC 11 85 97 19 6A 0B 

32 

Ciphertext2 E3 97 D6 93 C8 82 E9 DF 8A CD 3D 35 2A 20 

0A 47 

Ciphertext3 71 FB 5E D7 3E D0 76 AE C5 A1 89 14 86 70 16 

3F 

Ciphertext4 DB CA D3 9F C2 FC B6 EF F5 1B 60 39 53 1B 

2B 24 

Key 2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C 

Plaintext1 32 43 F6 A8 88 5A 30 8D 31 31 98 A2 E0 37 07 34 

Plaintext2 38 21 1A 00 0B 23 DE 93 F7 B6 65 7D F9 AE C4 

D1 

Plaintext3 AF DA 94 A5 E5 3C A1 25 B0 39 D3 58 00 CE 

BF CA 
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Plaintext4 8E 9C 32 1E 84 47 CD BC 9B 67 7E B9 B6 23 5E 

1A 

Processor 1: 

Ciphertext1 B4 FD 4B E9 64 FF 4F 80 84 59 24 88 0F 21 54 

F5 

Ciphertext2 23 20 B7 96 CC 27 7A 91 E4 CC 1D 48 D4 75 

3C 44 

Ciphertext3 BC BD C4 72 EE F1 A7 9F 51 FF C3 2A E7 B1 

52 7C 

Ciphertext4 0F E9 FB 87 42 0F AA DD 0C C6 9C E1 40 F5 

8B E4 

Key 2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C 

Plaintext1 D1 5B 5F 58 91 EA 82 C0 1F 28 4B 1A 37 B3 73 

89 

Plaintext2 3F 91 38 5A E1 F3 7B 9C 3D C2 AA 7B 9B F2 7C 

23 

Plaintext3 7C 70 DC B2 F CC CA 20 5F 48 4F E7 43 34 7 88 

Plaintext4 46 BA 6 15 41 1F F 96 30 46 6 AA 3E 76 A8 72 

128-bit data, 192-bit Key 

2 processors, each processor processes 4 data blocks 

Encrypting . . . 

Processor 0: 

Plaintext1 46 B7 15 DA 1A 1B 88 E4 15 23 C4 75 D7 C0 85 

A5 

Plaintext2 27 6B F4 4E 8B 66 D6 6F 15 44 04 CE 7F AB 1B 

E2 

Plaintext3 7B 59 74 EF 44 65 57 73 79 C7 6B C1 2B 1B 71 

EC 

Plaintext4 35 A2 32 E6 CB 8A B6 E9 56 6F B7 16 7F 21 55 

5D 

Key E9 55 A9 D5 0A B2 91 60 E0 0B 3B 86 41 A8 5C 77 

22 5C 7A AA AE 54 FF 19 

Ciphertext1 FE 90 46 41 DB FC 64 28 D7 52 97 48 25 77 C1 

92 

Ciphertext2 EF AD 0A 1D CA 8D F1 97 CA 4C 26 E3 B0 9D 

A3 D0 

Ciphertext3 62 7B 8C DE B8 2D 32 28 52 11 A0 9A EE BE 

AA 69 

Ciphertext4 F1 6C AC BB C6 30 7A 6E BA AD A3 FA C9 

1A 24 11 

Processor 1: 

Plaintext1 8A A8 C 9C E6 85 E2 B 02 3B E5 D7 62 0E D4 

0D 

Plaintext2 F1 0B 1D BA 99 48 07 51 11 6D 31 4C F6 73 3B 

16 

Plaintext3 1E AC C3 29 29 4 93 73 58 86 18 FF A3 22 17 D1 

Plaintext4 05 AD 9B 12 1B 29 32 6D ED 47 58 B8 0C 2A 34 

D7 

Key E9 55 A9 D5 A B2 91 60 E0 0B 3B 86 41 A8 5C 77 

22 5C 7A AA AE 54 FF 19 

Ciphertext1 EF 26 42 A5 62 DC 10 77 46 B0 14 13 A2 D2 69 

86 

Ciphertext2 C8 AC E9 E3 6E D8 9B 93 B9 B0 9D 63 05 F0 

E6 14 

Ciphertext3 8A 76 86 D3 E4 F2 85 D1 78 BA 52 0A 6C 6E 

83 BE 

Ciphertext4 32 CE E2 54 8E 3A F2 E6 13 66 A8 C3 FE 26 6B 

6B 

Decrypting . . . 

Processor 0: 

Ciphertext1 FE 90 46 41 DB FC 64 28 D7 52 97 48 25 77 C1 

92 

Ciphertext2 EF AD 0A 1D CA 8D F1 97 CA 4C 26 E3 B0 9D 

A3 D0 

Ciphertext3 62 7B 8C DE B8 2D 32 28 52 11 A0 9A EE BE 

AA 69 

Ciphertext4 F1 6C AC BB C6 30 7A 6E BA AD A3 FA C9 

1A 24 11 

Key E9 55 A9 D5 A B2 91 60 E0 B 3B 86 41 A8 5C 77 

22 5C 7A AA AE 54 FF 19 

Plaintext1 46 B7 15 DA 1A 1B 88 E4 15 23 C4 75 D7 C0 85 

A5 

Plaintext2 27 6B F4 4E 8B 66 D6 6F 15 44 4 CE 7F AB 1B 

E2 

Plaintext3 7B 59 74 EF 44 65 57 73 79 C7 6B C1 2B 1B 71 

EC 

Plaintext4 35 A2 32 E6 CB 8A B6 E9 56 6F B7 16 7F 21 55 

5D 

Processor 1: 

Ciphertext1 EF 26 42 A5 62 DC 10 77 46 B0 14 13 A2 D2 69 

86 

Ciphertext2 C8 AC E9 E3 6E D8 9B 93 B9 B0 9D 63 05 F0 

E6 14 

Ciphertext3 8A 76 86 D3 E4 F2 85 D1 78 BA 52 0A 6C 6E 

83 BE 

Ciphertext4 32 CE E2 54 8E 3A F2 E6 13 66 A8 C3 FE 26 6B 

6B 

Key E9 55 A9 D5 A B2 91 60 E0 B 3B 86 41 A8 5C 77 

22 5C 7A AA AE 54 FF 19 

XI    RUN TIME COMPLEXITY OF THE 

PARALLEL IMPLEMENTATION 

     Time complexity is the most important measure of the 

performance of a parallel algorithm, since the primary 

motivation for parallel computation is to achieve a speedup in 

the computation. Parallel algorithms are executed by a set of 

processors and usually require inter-processor data transfers to 

complete execution successfully. The time complexity of a 

parallel algorithm to solve a problem of size n is a function 

T(n,p) which is the maximum time that elapses between the 

start of the algorithm’s execution by one processor and its 

termination by one or more processors with regard to any 

arbitrary input. There are two different kinds of operations 

associated with parallel algorithms[15]: 

 

• Elementary operation 

• Data routing operation 

 

Elementary operation is an arithmetic or logical operation 

performed locally by a processor. Data routing operations 

refer to the routing of data among processors for exchanging 

the information. The time complexity of a parallel algorithm is 
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determined by counting both elementary steps and data 

routing steps. 

It is also important to evaluate the speedup factor and 

efficiency of the algorithm. All of them are described below: 

A.    Run Time 

The serial run time of a program is the time elapsed between 

the beginning and the end of its execution on a sequential 

computer. The parallel run time is the time that elapses from 

the moment that a parallel computation starts to the moment 

that the last processor finishes execution. The serial and 

parallel run time is denoted by TS and TP respectively. 

B.    Speed-up 

When evaluating a parallel system, it is often important to 

know how much performance gain is achieved by 

parallelizing a given application over a sequential 

implementation. Speed-up is defined as the ratio of the time 

taken to solve a problem on a single processor to the time 

required to solve the same problem on a parallel computer 

with p identical processors. The speedup is denoted by the 

symbol S. Therefore, S = TS / TP Formally, the speedup S is 

defined as the ratio of the serial run time of the best 

sequential algorithm for solving a problem to the time taken 

by the parallel algorithm to solve the same problem on P 

processors [16]. 

C.    Efficiency 

Efficiency is defined as the Speed-up with N processors 

divided by the number of processors N. Conceptually, the 

efficiency of the algorithm measures how well all N 

processors are being used when the algorithm is computed in 

parallel. An efficiency of 100 percent means that all of the 

processors are being fully used all the time. Efficiency is 

denoted by E. Therefore, 

E = S / P = TS / P TP 

XII    CONCLUDING REMARKS 

     From the above discussions, it is found that the efficiency 

of parallel AES ranges from 0.75 to 0.82 and the speedup is 

less than the number of processors used in the parallel 

implementation. In practice, it is not possible to achieve 

speedup equal to P and efficiency equal to 1, because while 

executing a parallel algorithm, the processors cannot devote 

100 percent of their time to the computations of the algorithm. 

The time to transfer data between processors is equally the 

most significant source of parallel processing overhead.  

 

Another reason is load unbalancing i.e. not all the processors 

are equally busy while executing a parallel program. If 

different processors have different workloads, some 

processors may be idle during part of the time that others are 

working on the problem. It is very difficult to develop any 

parallel algorithm where each processor will work equal 

amount of time. After implementing the encryption algorithm 

in parallel, it is found that the performance of algorithm 

increases significantly as the number of processor increases. It 

is not possible to get the speedup factor equal to P (number of 

processor), as some parallel processing overhead is also 

occurred during the implementation of AES in parallel.  

XIII    SUGGESTION FOR FUTURE WORK 

    As the performance of any parallel implementation depends 

on the parallel architectures and the interconnection networks, 

the same parallel implementation can give different 

performance on different architectures and interconnection 

networks. So, there is a good opportunity to work on some 

other architectures and interconnection networks and find out 

which architecture and interconnection network will be 

suitable for parallel implementation of encryption. 
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