
International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 4, Jul-Aug 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 197

Evaluation of Active Queue Management Algorithms
Arsh Arora1, Lekha Bhambhu2

Research Scholar1, HOD2

Department of Computer Science and Engineering

Jan Nayak Ch. Devi Lal Memorial Enginerring College, Sirsa

Haryana-India

ABSTRACT
As the internet is evolved, the users have dramatically increases, as the demand increases than available resources, congestion

increases. The congestion creates many problems like data loss, long delay, wastage of resources and many more. In congestion,

Active Queue Management (AQM) algorithms are very utilizing schemes. In order to reduce the increasing packet loss rates

caused by an exponential increase in network traffic, researchers have been considering the exploitation of active queue

management algorithms. In this paper we will discuss about congestion, congestion management and evaluate the active queue

management algorithms such as Droptail, RED, RRED, WRED, ARED BLUE, REM,. These algorithms have been selected

amongst the many published over the past few years, will be described in a simplified manner.

Keywords:- AQM, Congestion, Congestion Management, TCP, Droptail, RED, RRED, WRED, ARED, BLUE, REM

I. INTRODUCTION

The Internet and wireless technologies are developing rapidly

and have been a magnificent success in the past few years. Its

presence in everyday life is a fact. Traditional slow speed

networks have been enforced to merge with the high speed

networks. But due to increase in Internet size and no. of users,

users are likely to experience longer delay, more packet loss

and other performance humiliation issues because of network

congestion. It has a huge influence to both wired network and

wireless network and causes the problem of packet loss,

packet delay and lock out. To control congestion we have to

deploy congestion management. Congestion management

features allow us to control congestion by determining the

order in which packets are sent out an interface based on

priorities assigned to those packets. To control congestion

there are many techniques, such as exponential back off,

congestion control in TCP, priority schemes and queue

management techniques. To reduce the increasing packet loss

rates caused by an exponential increase in network traffic,

researchers have been taking into consideration the

implementation of active queue management algorithms

(AQM).

AQM is a router-based congestion control technique wherein

routers notify end-systems of emerging congestion. All AQM

designs function by detecting impending queue build up and

notifying sources before the queue in a router overflows. The

various designs proposed for AQM differ in the mechanisms

used to detect congestion and in the type of control

mechanisms used to achieve a stable operating point for the

queue size. The basic goal of all AQM techniques is to keep

the average queue size in routers small [5]. This has a number

of desired effects including (1) Controls average queue size,

(2) Absorbs bursts without dropping packets, (3) Prevents bias

against bursty connections, (4) Avoids global synchronization

of TCP, (5) Reduces the number of timeouts in TCP, and (6)

Take actions against misbehaving flows.

II. CONGESTION MANAGEMENT

Congestion management [2] features allow you to control

congestion by determining the order in which packets are sent

out an interface. Congestion management necessitates the

formation of queues, allocation of packets to those queues

based on the specification and scheduling of the packets in a

queue for transmission. During periods with light traffic, when

there is no congestion departs, packets are sent out the

interface as soon as they reach. During periods of transmit

congestion at the outgoing interface, packets reach faster than

the interface can send them to their destination. By using

congestion management features, packets build up at an

interface are queued until the interface is free to send them;

they are then scheduled for transmission according to their

assigned priority or the queuing mechanism configured for the

interface. The router regulates the of packet transmission by

controlling which packets are placed in which queue and how

queues are serviced with respect to each other.

For congestion management there are many techniques, such

as exponential back off, congestion control in TCP, priority

schemes and queue management techniques:

.

A. Exponential Back off

Exponential back off is used in CSMA for Congestion

Avoidance, which is sensing schema of 802.11. The sender

senses the channel before the transmission of data. If the

channel is busy it wait until idle and sends the data after a

random period of time. The random period is calculated by

exponential back off [1].

Congestion control in TCP consists of slow start, fast

transmission, fast recovery, congestion avoidance [3]. It is a

method to controlling the transmission rate of the sender. The

TCP flows starts at a very slow rate and increase

exponentially to a threshold. Congestion avoidance then

happens and congestion window increases by one segment

each time for one successful transmission.

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 4, Jul-Aug 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 198

B. Congestion Control in TCP

There are four congestion control algorithms are now in

common use. Each of the algorithms described in this paper

was actually established long before the standard was

published [3]. The four algorithms described below are Slow

Start, Congestion Avoidance, Fast Retransmit and Fast

Recovery.

1) Slow Start:

Slow Start, is TCP software implementations mechanism used

by the sender to control the transmission rate, and then rate of

acknowledgements returned by the receiver determine the rate at

which the sender can transmit data. When a TCP connection starts,

the Slow Start algorithm establishes a congestion window to a

segment, which is the maximum segment size (MSS) initialized by

the receiver during the connection establishment phase. The

congestion window increases by one segment for each

acknowledgement send by the receiver to sender. Thus, the sender

can transmit the minimum of the congestion window and the

advertised window of the receiver is known as transmission window

[4].

Slow Start is actually is worthy when network is not congested and

response time is good. When the congestion window may become

too large for the network or network conditions may change, in that

scenario packets may be dropped. Packets lost will trigger a timeout

acknowledgement at the sender. After that, the sender goes into

congestion avoidance mode as described in the next section.

2) Congestion Avoidance:

Congestion Avoidance is used to slow the transmission rate of

packets. However, Slow Start is used in aggregation with Congestion

Avoidance as the means to get the data transfer going again so it

doesn’t slow its transmission rate and stay slow. In Congestion

Avoidance algorithm a retransmission timeout or the receiving of

duplicate ACKs can indirectly points to the sender, that network

congestion is taking place. The sender immediately decreases its

transmission window size to half of its current size (the minimum of

the congestion window size and the receiver’s advertised window

size). If congestion was occurred by timeout, the congestion window

is reset to one segment, which puts the sender into Slow Start mode

automatically. If congestion was occurred by duplicate ACKs, then

Fast Retransmit and Fast Recovery algorithms are invoked (we will

discuss them in next section). As the data is received by destination

during Congestion Avoidance in network, the congestion window is

increased. However, Slow Start is only used till the halfway point

where congestion originally started [4].

After this halfway point, congestion window is increased by one

segment for all acknowledged segments in transmission window. In

this mechanism sender will be forced to slow its transmission rate, so

that it will approach the point where congestion had been detected.

3) Fast Retransmission:

The TCP receiver sends duplicate ACK whenever the out

of order segment reaches. The duplicate ACK is used to

indicate the sender that an out-of-order segment is received.

From the sender’s perspective duplicate ACK can be received

by number of network problems. These ACKs can be caused

by dropped segments, re-ordering of data segments by the

network, data segments by the network or replication of ACK.

A TCP receiver should send an immediate ACK when the

incoming segment fills in all or part of a gap in the sequence

space. This will generate information more timely to the

sender, so that sender can recover a loss through a fast

retransmit, a retransmission timeout, an experimental loss

recovery algorithm, such as NewReno [FH98].

The fast retransmit algorithm uses the 3 duplicate ACKs as an

indication that a segment has been lost or damaged. After

receiving 3 duplicate ACKs, TCP performs a retransmission

of the missing segment, without waiting for expiration of the

retransmission timer.

4) Fast Recover:

Since, fast retransmit algorithm sends the missing segment, but

the fast recovery algorithm governs the new data until a non-

duplicate ACKs reaches; Fast recovery is an improvement that

allows high throughput under moderate congestion, specifically for

large windows [4].

To summarize this section of the paper, figure 1 below shows what a

TCP data transfer phase with TCP congestion control might look like.

Notice the periods of exponential window size increase, linear

increase and drop-off. Each of these scenarios shows the sender’s

response to implicit or explicit signals it receives about network

conditions.

C. Priority Queues:

Priority queue schemes allow defining how traffic is

prioritized in the network. Configure the traffic priorities, the

queue with the highest priority is serviced first until it is

empty, then the lower queues are serviced in sequence [2].

During transmission, priority is given to the queues absolute

preferential treatment over low priority queues; we can give

the highest priority to the important traffic, which always

takes precedence over less important traffic. Packets are

classified based on user-specified criteria and placed into one

of the four output queues- high, medium, normal, and low—

based on the assigned priority. Packets that are not classified

by priority fall into the normal queue.

D. Queue Management Techniques:

Priority queue schemes allow defining how traffic is

prioritized in the network. Configure the traffic priorities, the

queue with the highest priority is serviced first until it is

empty, then the lower queues are serviced in sequence [2].

During transmission, priority is given to the queues absolute

preferential treatment over low priority queues; we can give

the highest priority to the important traffic, which always

takes precedence over less important traffic. Packets are

classified based on user-specified criteria and placed into one

of the four output queues- high, medium, normal, and low—

based on the assigned priority. Packets that are not classified

by priority fall into the normal queue.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 4, Jul-Aug 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 199

III. ACTIVE QUEUE MANAGEMENT

An advancement of the router based queue management is

known as Active Queue management. Generally, AQM

schemes controls the congestion by controlling flow.

Congestion is measured and control actions are taken. There

are two approaches for measuring congestion [6].

Queue based: In queue based AQMs congestion is measured

by queue size and action is taken by maintaining a set of

queues by Internet routers, one per interface, that hold packets

scheduled to start extinct on that interface. In such queues a

packet is set onto the queue if the queue is shorter than its

upper limit size, and dropped otherwise. The limitation of this

is that a backlog of packets is inherently required by the

control mechanism when the congestion is observed in queue

is already positive.

Flow based: In Flow based AQMs, congestion is observed

and action is taken based on the packet arrival rate. For such

schemes, backlog, and all its unfavorable implications, is not

necessary for the control mechanism.

There are many AQM schemes that have proposed in the

literature. Here are the recently proposed AQM algorithms.

 Drop tail

 Random early detection (RED)

 Robust Random Early Detection (RRED)

 Weighting Random Early Detection (WRED)

 Adaptive Random Early Detection (ARED)

 BLUE

 Random Exponential Marking (REM)

A. Drop Tail

Tail Drop is the default congestion avoidance mechanism.

It also impacts on the efficiency of network bandwidth

utilization. When the Output Queue is filled with the packets

and some of them arrive in on the Input Queue, then the

packets which are arriving on the interface will be dropped. It

does not matter whether it is a voice packet or a data packet,

all packets will be dropped by default when Tail Drop is in

action. This method has served the Internet well for years, but

it has three important drawbacks [5].

Lock-Out: In some situations drop tail allows a single

connection or a few flows to control queue space, preventing

other connections from getting room in the queue. This "lock-

out" phenomenon is often the result of synchronization or

other timing effects.

Full Queues: The drop tail discipline allows queues to

maintain a full (or, almost full) status for long periods of time,

since tail drop signals congestion (via a packet drop) only

when the queue has become full. It is important to reduce the

queue size, and this is perhaps queue management's most

important goal.

Global TCP Synchronization: When TCP Slow Start strike out,

all senders on the network back off and you can see a drop in

the bandwidth, then slowly everyone starts sending packets at

higher rate as they find out no more packet loss, so all senders

on the network starts sending the packets again at higher rate

and you see peaks in the network bandwidth. At this time the

interfaces can get congested again and packets can be dropped,

which then makes all senders to drop their sending rate and

wait for certain time interval where they see no more packet

loss, this leads TCP Senders to again increase the sending rate.

This goes on in cycles and this behaviour means a lot of

bandwidth is just getting wasted. If you are monitoring the

bandwidth with a graph, you will something like below graph

in the utilization charts.

Fig. 1: Drop Tail mechanism of bandwidth utilization

This behaviour is also called as “Global TCP

Synchronization” and it is responsible for a lot of network

bandwidth wastage.

Nevertheless, drop tail has some weakness, such as

the bad fairness, sharing among TCP connections and the

throughput and link efficiency suffer severe degradation if

congestion is making worse.

B. Random Early Detection (RED)

Random Early Detection (RED) was proposed by

Floyd and Jacobson as an efficient congestion avoidance

mechanism in the network routers/gateways. It also helps to

prevent the global synchronization in the TCP connections

sharing a congested router and to decrease the bias against

bursty connections. It is assumed to solve the traditional

problems of queue management techniques. It was an

improvement over the previous techniques such as Random

Drop and Early Random Drop [7]. RED use probabilistic

discard methodology of queue fill before overflow conditions

are reached. By detecting incipient congestion early and to

convey congestion notification to the end-hosts, allowing

them to decrease their transmission rates before queues in the

network overflow and packets are dropped.

The RED gateway computes the average queue size

by using a low pass filter along with an exponential weighted

moving average. The average queue size is compared with

two thresholds: a minimum and a maximum threshold. When

the size of average queue is less than the minimum threshold,

no packets are marked. When the size of average queue is

http://www.ijcstjournal.org/
http://en.wikipedia.org/w/index.php?title=Random_Exponential_Marking&action=edit&redlink=1
http://netcerts.net/wp-content/uploads/2011/06/Congestion-avoidance.jpg

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 4, Jul-Aug 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 200

greater than the maximum threshold, every arriving packet

from gateway is marked. If marked packets are, in fact,

dropped or if all source nodes are collaborative, this assures

that the average queue size does not significantly exceed the

maximum threshold.

When the average queue size is varying in between

the minimum and maximum thresholds, each arriving packet

is marked with a probability , where , is a function of the

average queue size . Each time a packet is marked, the

probability that a packet is marked from a particular link is

roughly relative to that connection’s share of the bandwidth at

the gateway. The general RED algorithm is given below:

For each packet arrival

calculate the average queue size

if

calculate probability

with probability :

mark the arriving packet

else if ≥

mark the arriving packet

Fig. 2. General algorithm for RED gateways [10]

Thus, the RED gateway has two separate algorithms. One of

those computes the average queue size determines the degree

of burstiness that will be allowed in the gateway queue. And

the other one calculates the packet-marking probability that

determines how often the gateway marks packets; give the

current level of congestion. The goal of gateway is to mark the

packets at fairly evenly spaced intervals, in order to avoid

biases and avoid global synchronization, and to mark packets

sufficiently frequently to control the average queue size.

C. Robust Random Early detection (RRED)

RED can detect and respond to long-term traffic patterns,

but it cannot detect congestion caused by short-term traffic

load changes. In addition, it is well known that an appropriate

tuning of RED parameters is not an easy task and may result

in a non-stabilizing controls scheme. Robust random early

detection (RRED) [8] is a queuing discipline for a network

scheduler. The existing random early detection (RED)

algorithm and its variants are found vulnerable to emerging

attacks, especially the Low-rate Denial-of-Service

attacks (LDoS). Experiments have confirmed that the existing

RED-like algorithms are notably vulnerable under LDoS

attacks due to the oscillating TCP queue size caused by the

attacks. The Robust RED (RRED) algorithm was proposed to

increase the efficiency of TCP throughput against LDoS

attacks. The basic idea behind the RRED is to detect and filter

out attack packets before a normal RED algorithm is applied

to incoming flows. RRED algorithm can significantly improve

the performance of TCP under Low-rate denial-of-service

attacks [9].

Fig.3 - Architecture of Robust RED

A detection and filter block is added in front of a

regular RED block on a router. The basic idea behind the

RRED is to detect and filter out LDoS attack packets from

incoming explosions before they feed to the RED to a very

hungry monkey algorithm. How to distinguish an attacking

packet from normal TCP packets is critical in the RRED

design.

Within a benign TCP flow, the sender will delay

sending new packets if loss is detected (e.g., a packet is

dropped). Consequently, a packet is suspected to be an

attacking packet if it is sent within a short-range after a packet

is dropped. This is the basic idea of the detection algorithm of

Robust RED (RRED).

D. Weighted Random Early Detection (WRED)

By randomly dropping packets precedence to periods of

high congestion, WRED tells the packet source to decrease the

rate of its transmission. WRED drops packets built on IP

precedence. Packets with a higher IP precedence are less

expected to be dropped than packets with a lower precedence.

WRED can selectively discard lower priority traffic when the

interface begins to get congested and provide differentiated

performance characteristics for different classes of service. By

dropping some packets early rather than waiting until the

queue is full, WRED avoids dropping large numbers of

packets at once and minimizes the chances of global

synchronization [10].

For interfaces configured to utilize the Resource

Reservation Protocol (RSVP) attributes, WRED chooses

packets from other flows to drop rather than the RSVP flows.

Also, IP Precedence controls which packets are dropped—

traffic that is at a lower precedence has a higher drop rate and

therefore is more likely to be choked back.

WRED be at variance with other congestion avoidance

techniques such as queuing strategies because it attempts to

anticipate and avoid congestion rather than control congestion

once it occurs.

Detect

ion
and

Filteri

ng

RED

Packets from attack flows

Drop packet feed back

Robust RED

http://www.ijcstjournal.org/
http://en.wikipedia.org/wiki/Network_scheduler
http://en.wikipedia.org/wiki/Network_scheduler
http://en.wikipedia.org/wiki/Random_early_detection
http://en.wikipedia.org/wiki/Denial-of-service_attack#Low-rate_Denial-of-Service_attacks
http://en.wikipedia.org/wiki/Denial-of-service_attack#Low-rate_Denial-of-Service_attacks

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 4, Jul-Aug 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 201

Fig4: Weighted Random Early Detection

WRED and distributed WRED (DWRED)—both of which are

the Cisco implementations of RED. Within the section on

WRED, the following related features are discussed:

 Flow-based WRED. Flow-based WRED extends

WRED to provide greater fairness to all flows on an

interface in regard to how packets are dropped.

 DiffServ Compliant WRED. DiffServ Compliant

WRED extends WRED to support Differentiated

Services (DiffServ) and Assured Forwarding (AF)

Per Hop Behaviour (PHB). This feature enables

customers to implement AF PHB by coloring packets

according to differentiated services code point

(DSCP) values and then assigning preferential drop

probabilities to those packets.

E. Adaptive Random Early Detection (ARED)

ARED algorithm accomplishes whether to build RED

more or less violent based on the observation of the average

queue length [11]. If the average queue length moves back

and forth around then early detection is too violent. On

the other hand if the average queue length moves back and

forth around then early detection is being too

traditionalist. The algorithm changes the probability according

to how violent it senses it has been removing traffic. So,

adapting the RED parameter and automatically setting

the RED parameters and maintains a predictable

average queue size and reduces RED’s parameter sensitivity.

Adaptive RED, however, leaves the choice of the target queue

size to network operators who must make a policy trade-off

between utilization and delay.

F. BLUE

The blue algorithm resolves the shortcomings of RED

algorithm by employing the hybrid control scheme with queue

size congestion measuring scheme. It uses flow and queue

events to modify the congestion notification rate. This rate is

regulated by packet loss from queue congestion and link

utilization. The key difference between Blue from red is that

uses packet loss rather than average queue length [13].

BLUE maintains a single probability, , to mark or drop

packets. If the queue frequently dropping packets due to

buffer overflow, BLUE increases , thus increasing the rate

at which it sends back congestion notification or dropping

packets. On the other hand, if the queue is empty or if the link

becomes idle, BLUE decreases its marking probability .

This effectively allows BLUE to “learn” the correct rate it

needs to send back congestion notification or dropping

packets (Feng, 2002/b).

BLUE typically depends upon two parameters that are ,

and . determines the amount

by which is increased when the queue overflows, while

determines the amount by which is decreased when the

link is idle. determines the minimum time

interval between two successive updates of . This allows

the changes in the marking probability to take effect before

the value is updated again. Based on those parameters the

basic blue algorithms can be summarized as :

Upon packet loss event:

If((now-

) >)

 = + ;

 = now;

Upon link idle event:

if ((now -) >

)

 = - ;

 = now;

The BLUE algorithm

G. Random Exponential Marking (REM)

REM [1] is both a set of AQMs and a different technique

for communicating congestion information. REM embodies a

mechanism for the accurate communication of link congestion

prices, so that the link congestion state covariant is exactly the

congestion price as in the utility maximisation. A REM link

indicate a packet at link l with a possibility based on the link

price state, and a global encoding constant

Because sources know the usefulness of , they can calculate

the total end-to-end path congestion price. Therefore, in a

absolute deployment, REM requires a REM link algorithm

and a source algorithm able of decoding REM information. It

has been shown that inter-operation with the TCP-RENO

source algorithm with just the link REM AQM algorithm [5]

deployed is possible. In this case, the price state

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 4, Jul-Aug 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 202

covariant can be interpreted as the marking rate, just as the

former AQMs discussed. I definitely for << 1, we can

assume = by (1). With this in mind, the three

control laws PC1, PC2, PC3 can be interpreted as alternative

AQMs:

PC1 : (2)

PC2 : (3)

PC3: (4)

Where is the congestion notification rate, is a target

capacity just under the actual link capacity, is the

backlog, and and γ are control gain constants which

influence speed and firmness of control. It is clear that PC1

control law is parallel to the RED-like AQMs where the

congestion notification rate is proportional to backlog. The

control laws PC2 and PC3 that give a new approach to AQM

design. PC2 and PC3 disengage the congestion notification

rate from the backlog at the link. PC2 and PC3 evaluate the

arrival rate to the link to compute the congestion notification

rate instead of using the backlog. The congestion notification

rate is measured by an integral controller, whose error term is

the inconsistency between the cumulative arrival rate to the

link and the target link capacity. Note that PC2 and PC3 differ

only in that PC3 adds a backlog penalty term to the control

process; if there is a backlog then it makes the marking rate

increase with greater rate. This was set up to improve the

transient response of the PC2 controller, and decrease the

amount of backlog during transient periods when the load

alters. The stability properties of PC3 are evaluated in. Further

work in this area expands the analysis and improves the

framework of REM. Several of author’s papers focus on

improving the convergence rate of the basic REM algorithm.

With a faster rate of convergence of arrival rate to the target

rate, jitter and the buffer requirements are reduced. An

enhancement to the control equation founded on a Newton-

like algorithm is evaluated. An approach using a deadbeat

controller is used. Experimental results shows that the control

laws PC2-PC3 are able to control the sources such so that the

mean backlog at the link is significantly reduced compared to

a tail-drop queue or RED. The result shows that these AQMs

are able to works with very low backlog, and preserve a high

link utilisation. The PC2-PC3 advance significantly both in

design and performance from the RED or tail-drop algorithm.

IV. CONCLUSIONS

In this paper, we have mentioned the terms Congestion

management and AQM (Active Queue Management). We

have explained the main goals of AQM. In this work, the

performance of seven AQM schemes, selected from amongst

the many published over the past ten years has been evaluated.

We have compared Droptail, RED, RRED, WRED, ARED,

BLUE and REM algorithms AQM algorithms are absolutely

useful because the management of packets to avoid congestion

occasionally requires exceeding hardware capabilities. As

long as this demand exceeding of hardware capabilities

continue AQM algorithms will be popular and studies on

networking flows area will go on.

ACKNOWLEDGMENT

Special thank you goes to those who contributed to this paper:

Mrs. Lekha Bhambhu for his valuable comments and sharing

her knowledge. Mr. Deepak Mehta & Mr. Gopal Sharma for

their keen interest, expert guidance, valuable suggestions and

persistent encouragement.

REFERENCES

[1] Long L., Aikat J., Jeffay K. and Smith F. 2005.The “Effects of

Active Queue Management and Explicit Congestion

Notification on Web Performance”. IEEE/ACM Transactions on

Networking.

[2] “Congestion management Overview”, Cisco IOS Quality of

Service Solutions Configuration Guide.

[3] Jacobson v. , August 1988 “Congestion Avoidance and

Control”, Computer Communications Review, Volume 18

number 4, pp. 314-329.

[4] M. Allman, et. al, “TCP Congestion Control”, RFC 2581, 2001.

[5] B. Braden, et al, Recommendations on Queue Management and

Congestion Avoidance in the Internet, RFC 2309, April, 1998.

[6] Serhat ÖZEKES, “EVALUATION OF ACTIVE QUEUE

MANAGEMENT ALGORITHMS”, stanbul Ticaret

Üniversitesi Fen Bilimleri Dergisi Yıl:4 Sayı:7 Bahar 2005/1

s.123-140

[7] Floyd, S., and Jacobson, V. (1993), Random Early Detection

gateways for Congestion Avoidance V.1 N.4, August 1993, pp.

397-413..

[8] Changwang Z., Jianping Y., Zhiping C., and Weifeng C (2010),

RRED: Robust RED Algorithm to Counter Low-Rate Denial-of-

Service Attacks IEEE COMMUNICATIONS LETTERS, VOL.

14, NO. 5, MAY 2010

[9] H. V. Shashidhara, Dr. S. Balaji, “Low Rate Denial of Service

(LDoS) attack – A Survey”, IJETAE, Volume 4, Issue 6, June

2014

[10] Congestion Avoidance Overview”, Cisco IOS Quality of

Service Solutions Configuration Guide QC-175, Weighted

Random Early Detection

[11] Sally Floyd, Ramakrishna Gummadi, and Scott Shenker,

“Adaptive RED: An Algorithm for Increasing the Robustness of

RED’s Active Queue Management”, AT&T Center for Internet

Research at ICSI August 1, 2001, under submission.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 4, Jul-Aug 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 203

[12] Feng W., Shin K. G., Kandlur D. D., Saha D., (2002/b), "The

BLUE active queue management algorithms", IEEE/ACM

Transactions on Networking, Vol.10, No:4, 513-528.

[13] S.Athuraliya, et. al, “An Enhanced random early marking

algorithm for internet flow control”, Proceedings of Infocom,

Isreal, 2000

http://www.ijcstjournal.org/

