
International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 5, Sep-Oct 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 101

A Review of Object-Oriented Coupling and Cohesion Metrics

Sushma Yadav1, Dr. Sunil Sikka2, Uttpal Shrivastava3

M.Tech Research Scholar1, Assistant Professor2, Senior Lecturer3

Department of Computer Science & Engineering

Amity University

Haryana - India

ABSTRACT

Software metrics are essential to improve the quality of software during the development process. Coupling and cohesion

measures are used in various activities such as impact analysis, assessing the fault proneness of classes, fault prediction, re-

modularization, identifying of software component, design patterns, assessing software quality etc. Low coupling and high

cohesion are better for good software quality. Coupling and cohesion metrics can be applied at the early phase of the software

development process. This paper reviews various coupling and cohesion metrics for object-oriented software.

Keywords: - Software Metrics, Coupling Metric, Cohesion Metric.

I. INTRODUCTION

Success of any software system depends upon the

properly used metrics. Coupling and cohesion measures

can be defined as the indication of relationships among

elements of the source code. Classes, methods and

attributes in the object-oriented software systems can be

consider as elements [1].

 “Coupling is the measure of the strength of association

established by a connection from one module to another”.

[2] If module A and B are strongly interconnected than

modules are highly coupled while loosely coupled module

have weak interconnections. If module A and B are

independent than there is no interconnection [3].

Modification becomes simple, if modules are loosely

coupled. Reusability and maintainability are the

advantages of low coupling. [4]

Cohesion refers to the degree to which the elements of a

module belongs together [5]. “Cohesion can be measured

by inspecting the connection between all pairs of its

processing elements”[2]. Degree of cohesion of software

module is high when element of that module exhibit high

degree of semantic relatedness [6]. Reusability,

maintainability and extensibility are advantages of high

cohesion [4].

This paper provides a review of various object-oriented

coupling and cohesion metrics. Static coupling metrics of

Chidamber and Kemerer[11][12], Li and Henry[14],

Abreu et al[15][16], Martin[17],and Bansiya et al.[18]

are discussed. Dynamic coupling metrics of Yacoub[19],

Arisholm et al.[20], Hassoun et al.[22][23], Beszedes et

al.[24] and Singh and Singh[25][26] are discussed. Static

cohesion metrics of Chidamber and Kemerer[27][28],

Briand et al.[29], Bieman and Kang [30], Li and

Henry[31], Hitz and Montazeri[32], Henderson-

Sellers[33], Xu and Zhou[34], Yang Metric[35], Badri et

al[36], Bonja et al[37], Fernandez et al[38]., Jehad Al

Dallal[39], Michael Bowman et al.[40] and Jehad et

al.[41], are discussed. Dynamic cohesion metrics of Gupta

et al.[43] and Mitchell [44][45]are discussed.

Rest of the paper is organised into two sections. Section 2

presents the review of various coupling and cohesion

metrics cohesion. Section 3 concludes the paper and

provides the scope of future work.

II. REVIEW OF COUPLING AND

COHESION METRICS

Various coupling and cohesion metrics have been

proposed by many researchers in the literature. Coupling

and cohesion metric can be classified into two categories -

static and dynamic. The static software metrics are

obtained from static analysis, whereas the dynamic

software metrics are computed on the basis of data

collected during run time execution of the software [7].

Static metrics are easy to calculate while dynamic metrics

are tough to calculate. Static metrics are useful when we

need result from small programs. Ability of static metric

is to quantify various aspects of the design complexity or

source code of a software system, make them useful in

software engineering [8]. Static metrics are inefficient to

deal with object-oriented features such as polymorphism,

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 5, Sep-Oct 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 102

dynamic binding and the presence of unused code [7].

Inefficiency of static metrics to deal with object-oriented

features raised the need of dynamic metrics [7].

1.1 STATIC COUPLING METRICS

Non object-oriented programming can be measured using

static coupling metrics [9]. Some static coupling metrics

are simple and some are more complex [9].

2.1.1 Chidamber and Kemerer (CK) Metrics – CK

metrics are most discussed metrics in the world of

software engineering. Among six CK metrics, two metrics

Coupling Between Object Classes (CBO) and Response

For a Class (RFC) are coupling metrics.

2.1.1.1 CBO: CBO [10] for a class is the count of the

number of other classes to which it is coupled. A class is

coupled with another class if the method declared in one

class use method or instance variable defined by another

class. CBO includes inheritance based coupling (i.e.

coupling between classes related via inheritance). For

good software quality, high CBO is undesirable. Coupling

metric is good predictors for the maintainability of

components in object oriented systems [11].

2.1.1.2 RFC: RFC [12] can be defined as the set of

methods that can potentially be executed in response to a

message received by an object of that class.

 RFC = |RS|

Where, RS = the response set for the class.

The response set for the class can be defined as:

RS = { M } { Ri }for all i

Where, {Ri} is set of methods called by method i and

{M} is set of all methods in the class. Complexity of the

class increases as RFC increases [13].

2.1.2 Li and Henry [14] proposed various metrics, which

includes two coupling metrics.
2.1.2.1 Message Passing Coupling (MPC): MPC is the

total number of function and procedure calls made to

external unit. Higher MPC leads to higher complexity and

system is difficult to maintain [13].

2.1.2.2 Data Abstraction Coupling (DAC): DAC

counts the total number of instances of other classes

within a given class.

2.1.3 Abreu et al. [15][16] proposed Coupling Factor

(COF) metric. COF used for the design quality evaluation

of object-oriented software systems.

2.1.3.1 COF [46]: COF is defined as the ratio of the

maximum number of possible couplings in the system to

the actual number of couplings which are not related to

inheritance[e]. COF also counts the number of inter-class

communication.

COF =

Where client(CiCj) = iff => ^ ≠

tc = Total number of classes in the system under

consideration.

Ci = client class

Cj = server class

Ci => Cj represents the relationship between client and

server class.

 Client Class contains at least one non-inheritance

reference to a feature of the server class.

2.1.4 Martin Metrics [17] used to measure the quality of

an object-oriented design in terms of the interdependence

between the subsystems of that design.

2.1.4.1Afferent Coupling (Ca): Ca also known as

incoming coupling. Ca is the number of packages which

is depending on classes within the package. Ca points out

package’s responsibility.

2.1.4.2Efferent Coupling (Ce) – Ce also known as

outgoing coupling. Ce is the number of packages in which

the package depends upon. Ce points out package’s

independence.

2.1.5 Bansiya et al. QMOOD [18] proposed Direct

Class Coupling Metric (DCC).

2.1.5.1 DCC: It is a count of different number of classes

that a class is directly related to.

1.2 DYNAMIC COUPLING METRICS[8]

Actual coupling taking place between a pair of objects or

classes at runtime can be measure using dynamic coupling

metrics. These metrics are measured at object level and

can be collect to class or system level.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 5, Sep-Oct 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 103

2.2.1 Yacoub et al.[19] proposed two object level

dynamic coupling metrics- Export Object Coupling(EOC)

and Import Object Coupling (IOC).

2.2.1.1 EOCx(oi; oj): EOCx(oi; oj) for an object oi with

respect to an object oj, is defined as the percentage of the

number of messages sent from oi to oj with respect to the

total number of messages exchanged during the execution

of scenario x. A class’s object with higher EOC to another

specific object is more critical to changes due to

maintenance [11].

2.2.1.2 IOCx(oi; oj): IOCx(oi; oj) for an object oi with

respect to an object oj , is the percentage of the number of

messages received by object oi that were sent by object oj

with respect to the total number of messages exchanged

during the execution of a scenario x. A class’s object with

higher IOC to another specific object is more likely to

import changes due to maintenance in the class from

which that specific object is instantiated [11].

2.2.3 Arisholm et al.[20][8] extended the concept of

Yacoub[19]. They proposed number of dynamic coupling

metrics. Some of them are defined at class level and some

are defined at object level. Name of each dynamic metric

starts with either IC or EC based on the direction of the

method calls. ‘IC’ stands for import coupling and ‘EC’

stands for export coupling. Counting of messages which

are sent from an object or class is defined by import

coupling. Counting of messages which are received by an

object or class is defined by export coupling. The third

letter indicate the mapping level ‘O’ for object and ‘C’ for

class. The last letters D, M and C denotes the strength of

coupling. Strength of coupling measures the amount of

association between the two objects. D denotes dynamic

messages. M denotes distinct method invocation, and C

denotes distinct classes.

C = counts the number of distinct classes that a method in

a given class or object uses or is used by.

M = counts the number of distinct methods invoked by

each method in each class or object.

 D = counts the total number of dynamic messages sent

or received from one class/object to or from other classes

or objects. All import and export coupling metrics are

defined as following:-

2.2.3.1 IC_OD: This metric count the total number of

messages sent from one object to other objects.

2.2.3.2 IC _OM: This metric count the number of distinct

methods invoked from one object to other objects.

2.2.3.3 IC_OC: This metric counts the number of distinct

server classes used by the methods of the given object.

2.2.3.4 IC_CD: This metric counts the total number of

messages sent by all methods in all objects of a class.

2.2.3.5 IC_CM: This metric counts the number of distinct

methods invoked by all methods in all the objects of a

class.

2.2.3.6 IC_CC: This metric counts the number of distinct

server classes used by all methods of all objects of a class.

2.2.3.7 EC_OD: This metric counts the total number of

messages received by one object from other objects.

2.2.3.8 EC_OM: This metric counts the number of

distinct methods received by an object.

2.2.3.9 EC_OC: This metric counts the number of

distinct client classes that in a given object are being used.

2.2.3.10 EC_CD: This metric counts the total number of

messages received by all methods of all objects of a class.

2.2.3.11EC_CM: This metric counts the number of

distinct methods received by all methods of all objects of

a class.

2.2.3.12 EC_CC: This metric counts the number of

distinct client classes that in all objects of a given class

are being used.

2.2.4 Hassoun et al. proposed Dynamic Coupling Metric

(DCM).

2.2.4.1 DCM: DCM measures the degree of interaction

between object A and object B from a dynamic rather

than static context [21]. “DCM defines the coupling

between object A and object B as varying in time”[22].

Runtime complexity of a system may be predicted using

this metric. DCM measures the coupling of specific

objects and or the whole system at runtime [23].

2.2.5 Beszedes et al. [24] proposed Dynamic Function

Coupling (DFC).

 2.2.5.1 DFC: It is defined as the minimal level of

indirection among all possible occurrences of the two

functions in the traces.

2.2.6 Singh et al.[25][26] proposed metrics are used to

evaluate the quality of object oriented software system.

2.2.6.1 Dynamic Afferent Coupling (DCa): It defines

the percentage of number of classes accessing the

methods of a class at runtime to the total number of

classes.

2.2.6.2 Dynamic Key Server Class (DKSC): It defines

the percentage of number of calls sent to a class at

runtime to the total number of static calls sent to all the

classes.

2.2.6.3 Dynamic Key Client Class (DKCC): It defines

the percentage of number of calls sent by a class at

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 5, Sep-Oct 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 104

runtime to the total number of static calls sent by all the

classes.

2.2.6.4 Dynamic Key Class (DKC): It defines the

percentage of sum of calls sent out from the class and

calls received by the class at runtime turned on the total

number of static calls sent and received by all the classes.

2.2.6.5 Percentage Active Classes (PAC): It defines the

percentage of number of classes sending or receiving at

least one method calls from/to another class at runtime to

the total number of classes.

1.3 STATIC COHESION METRIC

Static cohesion metrics are also used to measure non

object-oriented programming. A large number of static

cohesion metrics are proposed for measuring cohesion.

2.3.1 Chidamber and Kemerer proposed Lack of

Cohesion in Methods (LCOM1)[27] and LCOM2[28].

2.3.1.1 LCOM1 [27]: LCOM1counts the number of pairs

of methods that do not share attributes. In LCOM1 if a

class and substance are not clearly defined than software

becomes harder to maintain [28].

2.3.1.2 LCOM2: LCOM2 [28] is defined as LCOM1

minus number of pairs of methods that use common

attribute.

LCOM2= P – Q if P – Q ≥ 0

0 otherwise.

Where, P=number of pairs of methods that do not share

attributes.

 Q=number of pair of methods that share attributes.

 2.3.2 Briand et al. [29] proposed high level design

metrics for object-oriented system. These metrics are used

to identify error prone software parts. All metrics

discussed in this section satisfies the properties of

normalization, monotonicity and cohesive modules.

2.3.2.1 Ratio of Cohesive Interactions (RCI): cohesive

interactions only happen within modules, but not

everywhere in modules. The Ratio of Cohesive

Interactions for software part (sp) is -

Where, CI(sp) = The set of cohesion interaction in a

module M.

M(sp) = The maximal set of cohesive interaction of the

software part(sp) i.e. the set of includes all of sp’s

possible cohesion interaction.

2.3.2.2 Neutral Ratio of Cohesive Interactions (NRCI):

NRCI(sp) is undefined if and only if no information is

available on cohesive interactions.
Unknown CIs are not taken into account.

Where, K(sp) = The set of known interactions of a

software part (sp).

M(sp) = The maximal set of cohesive interaction of the

software part(sp).

U(sp) = The set of unknown interaction.

2.3.2.3 Pessimistic Ratio of Cohesive Interaction

(PRCI): This metric is equal to RCI(sp). PRCI considers

undefined CIs, if they were known not to be actual

interactions.

 P

 2.3.2.4 Optimistic Ratio of Cohesive Interactions

(ORCI): If unknown CIs are known to be actual

interaction than they may be consider.

2.3.3 Bieman and Kang [30] proposed Tight Class

Cohesion (TCC) and Loose Class Cohesion (LCC).

2.3.3.1 TCC: The measure TCC is defined as the

percentage of pairs of public methods of the class with

common attribute usage.

2.3.3.2 LCC: - LCC defines the relative number of

directly or indirectly connected pairs of methods, wherein

two methods are transitively connected if they are directly

or indirectly connected to an attribute.

2.3.4 Li and Henry [31] proposed LCOM3.

2.3.4.1 LCOM3: It is the number of connected

components in graph. To compute LCOM3 each method

represented as a node and the use of at least one attribute

as an edge.

2.3.5 Hitz and Montazeri [32] proposed LCOM4.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 5, Sep-Oct 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 105

2.3.5.1 LCOM4: It is similar to LCOM3, To represent

method invocation additional edges are used.

2.3.6 Henderson-Sellers [33] proposed a cohesion metric

LCOM5.

2.3.6.1 LCOM5: LCOM5 =

Where, h=number of attributes

m=number of methods

a=summation of the number of definite attributes that are

accessed by each method in a class.

 2.3.7 Xu and Zhou [34] gave Improved Cohesion Based

on Member Connectivity (ICBMC):

2.3.7.1 ICBMC:

 ICBMC (G) = Fc(G) × Fs(G)

 Where , Fc(G) =

E (G) = number of edges in the cut set of G,

M (G) = number of non-special methods represented in

graph G multiplied by the number of attributes.

Fs(G) =

2.3.8 Yang [35] gave their OLn metric. It satisfies all

class cohesion properties [28].

2.3.8.1 OLn: This metric can be defined as the common

strength of attributes; the strength of the attribute can be

defined as the common strength of the methods that

approach that attribute. Where n are the number of

iteration which are used to calculate OL.

2.3.9 Badri et al.[36] proposed connectivity based

metrics Degree of Direct Cohesion () and Degree of

Indirect Cohesion(DCi).

 2.3.9.1 : It defines the relative number of straightly

connected pairs of methods. It satisfies the condition of

TCC metric.

2.3.9.2 DCi: It defines the relative number of straightly or

transitively connected pairs of methods. It satisfies the

condition of LCC metric.

2.3.10 Bonja et al.[37] proposed Class Cohesion (CC)

metric.

CC: CC is the ratio of the summation of the similarities

between all pairs of methods to the total number of pairs

of methods. The similarity between methods m and n is:

Similarity (M, n) =

where, Mm, Mn = sets of attributes that are referenced by

methods m and n, respectively

2.3.11 Fernandez et al. [38] proposed Class Cohesion

metric (SCOM).

2.3.11.1 SCOM: This metric is the ratio of the summation

of the similarities between all pairs of methods to the total

number of pairs of methods. The similarity between

methods m and n is defined as:

Similarity (m,n) = | Mm∩Mn|.|MmUMn|

2.3.12 Jehad Al Dallal Metrics [39] proposed Path

Connectivity Class Cohesion (PCCC)

2.3.12.1 PCCC:

PCCC =

Where, m = no. of attributes

n = no. of methods

NSP = number of simple paths in graph Gc

FGc = corresponding fully connected graph

2.3.13 Michael Bowman et al. [40] proposed a procedure

based on a multi-objective genetic algorithm (MOGA)

which uses class coupling and cohesion measurement for

describing fitness functions. Their work has some

similarity with refactoring. They did most of the work on

source code refactoring, although it is concluded that

refactoring obtains higher levels of abstraction, such as

refactoring of UML models

2.3.14 Jehad et al. [41] proposed Method-Method

through Attributes Cohesion (MMAC).
MMAC: The MMAC can be defined as the average

cohesion of all pairs of methods

MMAC(C) =

m = no. of attributes

n = no. of methods

xi = number of methods that have a or a return type j.

1.4 DYNAMIC COHESION METRICS

As above mentioned in this paper that dynamic cohesion

metrics performs better than static cohesion metrics.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 5, Sep-Oct 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 106

Dynamic metrics supports graphical user interface(GUI)

also.

2.4.1 Gupta et al. Metrics [42, 43] Bieman and Ott [29]

proposed the Strong Functional Cohesion (SFC) metric

and Weak Functional Cohesion(WFC) metric. The work

of Bieman and Ott is redefined by Gupta et al.. Gupta et al

starts the dynamic cohesion measurement using program

execution based approach on the basis of dynamic slicing.

2.4.2 Mitchell et al. [44][45] provide a new technique for

collecting dynamic trace information from Java GUI

programs and a number of simple runtime metrics are

proposed.

2.4.2.1 The exPubMet.Ob: This metric gives an

approximation of level of coupling present in a GUI

program.

2.4.2.2 priMet.ob: This metric present that simple

programs give a greater proportion of their method access

to the internal working of their classes than the GUI

program.

2.4.2.3 meth.ob: This metric used to measure the

program size.

 meth.ob =

2.4.2.4 meth.inst: GUI metric gives an estimation of the

memory use of the methods.

 meth.inst =

III. OBSERVATION AND FUTURE

WORKS

This paper reviews various coupling and cohesion

metrics. Metrics have been discussed with their definition

and formulas. Only some class level and GUI based

metrics have been discussed in this paper. Other metrics

can be discussed in next paper.

REFERENCES

[1] Shweta Sharma, Dr. S. Srinivasan, “A review of

Coupling and Cohesion metrics in Object Oriented

Environment”, International Journal of Computer

Science &Engineering Technology, vol 4, no.8,2013.

[2]W.P. Stevens, G.J. Myers, and L. L. Constantine.

Structured design., IBM Systems Journal, vol.13,

no.2, pp.115-139, 1974.

[3] Pankaj Jalote, “An Integrated Approach to
Software Engineering,” Springer publication,
Third edition , North and South America, Europe,

Australia, parts of Asia/Africa, ISBN: 0-387-20881-

X.

[4]Pressman,Roger, “Software Engineering - A

Practitioner’s Approach,” Fourth Edition, 1982,

ISBN 0-07-052182-4.

[5]Edward Yourdan and Larry L. Constantine, “Structural

– Fundamentals of Discipline of Computer Program

and Design.

[6]O.Ormandjieva, M.Kassab, C.Constantinides,

“Measurement of Coupling and Cohesion in OO

Analysis model: based on crosscutting concerns,”

IWSM, pp. 3-13, 2005.

[7]Varun Gupta, Phd Thesis, “Object-Oriented Static and

Dynamic Software Metrics for Design and

Complexity,” National Institute of Technology,

Kurukshetra-136119 India, June 2010.

[8] Jitender Kumar Chhabra et al., “A Survey of Dynamic

Software Metrics,” journal of computer science and

technology, vol.25,no.5, Sept. 2010.

[9] Vasudha et al., “Static and Dynamic Coupling and

Cohesion Measures in Object-Oriented

Programming,” International Journal of Engineering

and Research, vol.2,issue 7,pp. 472-477

[10] S.R. Chidamber and C.F. Kemerer., “Towards a

metrics suite for object-oriented design”,In Object

Oriented Programming Systems Languages and

Applications, Phoenix, Arizona, USA, pp.197-211,

November 1991.

[11] Melis Dagpiner and Jens H.Jahnke., “Predicting

maintainability with onject-oriented metrics and

empirical comparison”, Proceeding of the 10th

working conference on reverse engineering, 2003.

[12] S.R. Chidamber and C.F. Kemerer., “A metrics suite

for object-oriented design”, IEEE Transactions on

Software Engineering, vol.20, no.6, pp.467-493,

June1994.

[13] Jonas Lindell Mats Hägglund , “Maintainability

metrics for object oriented systems”.

[14] W. Li and S. Henry., “Object-oriented metrics that

predict maintainability”, The Journal of Systems and

Software, vol.23, no.2, pp.111-122.

[15] F. Abreu, M. Goulo, and R. Esteves., “ Toward the

http://www.ijcstjournal.org/
http://www.springeronline.com/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 5, Sep-Oct 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 107

design quality evaluation of object-oriented

software systems,” In Fifth International

Conference on Software Quality, Austin, Texas,

USA, pp.44-57,Oct 1995.

[16] Abreu and Melo, F. Brito e Abreu, Walcelio Melo.,

“Evaluating the impact of Object-Oriented Design on

Software Quality,” Proceedings of 3rd International

Software Metrics Symp., Berlin, 1996.

[17]R. Martin. OO design quality metrics, “An analysis of

dependencies”, In Proceedings Workshop on

Pragmatic and Theoretical Directions in Object-

Oriented Software Metrics, 1994.

[18]Sonia Chawla, “Review of MOOD and QMOOD

metric sets”, International journal of advanced

research in computer science and software

engineering, vol.3, issue 3, March 2013.

[19]S.M. Yacoub, H.H. Ammar, and T. Robinson.,

“Dynamic metrics for object oriented designs”, In

Software Metrics Symposium, Boca Raton,Florida,

USA, pp. 50-6, Nov 1999.

[20]E. Arisholm, L.C. Briand, and A. Foyen., “Dynamic

coupling measures for object- oriented software”,

IEEE Transactions on Software,vol. 30,no.8,pp. 491-

506,2004.

[21]S. M. Yacoub, T. Robinson, and H. H. Ammar,

“Dynamic metrics for object oriented design,” in

Proc. International Symposium on Software Metrics,

pp. 50–58, 1999.

[22] Y. Hassoun, R. Johnson, and S. Counsell,“A

dynamic runtime coupling metric for meta-level

architectures,”in Software Maintenance and

Reengineering, CSMR Proceedings. Eighth European

Conference on. IEEE, pp. 339–346, 2004.

[23] Y. Hassoun, R. Johnson, S. Counsell., “A Dynamic

Runtime Coupling Metric for Meta Level

Architectures”, In Proceedings of Eighth Euromicro

Working Conference on Software Maintenance and

Reengineering (CSMR ’04), pp. 339, 2004.

[24]A. BeszedesT. Gergely S. Farago., “Dynamic

Function Coupling Metric and Its Use in Software

Evolution”,In Proceedings of the Eleventh European

Conference on Software Maintenance and

Reengineering(CSMR),IEEE Computer Society,

Washington DC, 2007,pp. 103-112

[25]P. Singh H. Singh., “Class-level Dynamic Coupling

Metrics for Static and Dynamic Analysis of Object-

Oriented Systems”, International Journal of

Information and Telecommunication Technology,

vol.1,no.1, pp.16-28, 2010.

[26]Rani Geetika, Paramvir Singh, “Dynamic Coupling

Metrics for Object Oriented Software Systems- A

Survey”, ACM SIGSOFT Software Engineering

Notes, Vol. 39, March 2014.

[27]Chidamber, S.R., Kemerer, C.F., “Towards a metrics

suite for object-oriented design.” Object-Oriented

Programming Systems, Languages and Applications

(OOPSLA), vol. 26, pp.197–211, 1991.

[28] Chidamber, S.R., Kemerer, C.F., “A metrics suite for

object oriented design.”, IEEE Transactions on

Software Engineering, vol. 20, pp. 476–493, 1994.

[29]L.C. Briand, S. Morasca, and V. Basili., “ Defining

and validating high-level design metrics”,Technical

Report CS-TR 3301, Department of Computer

Science, University of Maryland, College Park, MD

20742, USA, 1994.

[30] Bieman, J., Kang, B., “Cohesion and reuse in an

object-oriented system.”, In: Proceedings of the 1995

Symposium on Software Reusability, Seattle,

Washington, United States, pp.259–262, 1995.

[31]Li, W., Henry, S.M., “Maintenance metrics for the

object oriented paradigm.” In: Proceedings of 1st

International Software Metrics Symposium,

Baltimore, pp.52–60, 1993.

[32] Hitz, M., Montazeri, B., “Measuring coupling and

cohesion in object oriented systems.”, Proceedings of

the International Symposium on Applied Corporate

Computing, pp. 25–27, 1995.

[33] Henderson-Sellers, B., “Object-Oriented Metrics

Measures of Complexity”, Prentice-Hall, 1996.

[34] xu, b., zhou, y., “comments on ‘a cohesion measure

for object-oriented classes”, software: practice &

experience, vol. 31, pp.1381–1388, 2001.

[35] Yang, x., “research on class cohesion measures.”,

m.s. thesis. department of computer science and

engineering, southeast university, 2002.

[36] Badri m. and badri l., “a proposal of a new class

cohesion criterion: an empirical study”, journal of

object technology, vol. 3, pp.145-159, 2004.

[37] Bonja, C. et al.., “Metrics for class cohesion and

similarity between methods.”, In: Proceedings of the

44th Annual ACM Southeast Regional Conference,

Melbourne, pp. 91–95, 2006.

[38]Fernández, l., pena, r., “a sensitive metric of class

cohesion”, international journal of information

theories and applications, vol. 13, pp.82–91, 2006.

[39]Amandeep et al., “Class Cohesion Metrics in Object

Oriented System”,International Journal of Software

and Web Sciences,vol 3,no-2, December, pp. 78-

82,2013.

[40]Bowman m., briand l.c. and labiche y., ieee

transactions on software engineering, pp.1-50, 2010.

[41] Jehad Al Dallal, “A Design Based Cohesion Metric

for Object-Oriented Classes”, World Academy of

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 5, Sep-Oct 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 108

Science, Engineering and Technology, vol.1,

21oct.2007.

[42] Bieman j m, ott l m., “measuring functional

cohesion”, ieee transactions on software engineering,

vol.20(8), pp. 644-657, 1994.

[43]Gupta n, rao p. , “program execution based module

cohesion measurement”, in proc. the 16th

international conference on automated on software

engineering , San diego, USA, pp.144-153, , Nov.

2001.

[44] [34] Mitchell A, Power J F. Run-time cohesion

metrics for the analysis of Java programs. Technical

Report, SeriesNo. NUIM-CS-TR-2003-08, National

University of Ireland, Maynooth, Co. Kildare,

Ireland, 2003.

[45] Mitchell A, Power J F, Run-time cohesion metrics:

An empirical investigation. In Proc. the International

Conference on Software Engineering Research and

Practice, Las Vegas,USA, Jun. 21-24, 2004, pp.532-

537.

[46] Prof. Jubair JAL – JAFFER et al., “Metric for

Object-Oriented design (MOOD) to assess java

programs.

http://www.ijcstjournal.org/

