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ABSTRACT  
Power consumption is becoming one of the most important constraints in the VLSI field in nano-meter scale 

technologies. Especially, as a transistor for supply voltage and threshold voltage are scaled down, leakage energy 

consumption is increased even when the transistor is not switching. This paper proposes to use various techniques in 

reducing the static power as well as dynamic power consumption by using different cache techniques and various 

types of RAM. 
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      I.     INTRODUCTION 

  Magnetic Random Access Memory 

(MRAM) has been considered as one of the most 

promising universal memory technologies due to its 

non-volatility, fast speed, zero standby power, and 

high density. Over the past two decades, the CMOS 

microprocessor design process has been confronted 

by a number of seemingly insurmountable 

technological challenges (e.g., the memory wall and 

the wire delay problem). At each turn, new classes of 

systems have been architected to meet these 

challenges, and microprocessor performance has 

continued to scale with exponentially increasing 

transistor budgets. With more than two billion 

transistors integrated on a single die, power 

dissipation has become the current critical challenge 

facing modern chip design. On-chip power 

dissipation now exhausts the maximum capability of 

conventional cooling technologies; any further 

increases will require expensive and challenging 

solutions (e.g., liquid cooling), which would 

significantly increase overall system cost. Multicore 

architectures emerged in the early 2000s as means of 

avoiding the power wall, increasing parallelism under 

a constant clock frequency to avoid an increase in 

dynamic power consumption. Although multicore 

systems did manage to keep power dissipation at bay  

for the past decade, with the impending transition to 

32nm CMOS, they are starting to experience 

scalability problems of their own. To maintain 

constant dynamic power at a given clock rate, supply 

and threshold voltages must scale with feature size, 

but this approach induces an exponential rise in 

leakage power, which is fast approaching dynamic 

power in magnitude. Under this poor scaling 

behavior, the number of active cores on a chip will 

have to grow much more slowly than the total 

transistor budget allows; indeed, at 11nm, over 80% 

of all cores may have to be dormant at all times to fit 

within the chip’s thermal envelope . 

This paper presents resistive computation, 

an architectural technique that aims at developing a 

new class of power- efficient, scalable 

microprocessors based on emerging resistive memory 

technologies. Power- and performance-critical 

hardware resources such as caches, memory 

controllers, and floating-point units are implemented 

using spin-torque transfer magneto resistive RAM 

(STT-MRAM)—a CMOS- compatible, near-zero 

static-power, persistent memory that has been in 

development since the early 2000s and is expected to 

replace commercially available magnetic RAMs by 

2013.  

II.   3D STACKING MAGNETIC RAM 

(MRAM) 

 

A. MRAM CIR4CUIT DESIGN 

 

This section introduces the physical 

mechanism of MRAM, and discusses the circuit 

design for MRAM. 
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1) Fundamental of MRAM 

 

MTJ (Magnetic Tunnel Junction) is the 

storage element of MRAM cells. Normally, there are 

two ways to form an MRAM cell – the cross-point 

(“XPT”) structure and one transistor, one MTJ 

(“1T1J”) structure [2, 3]. Because current XPT 

structure has very poor read performance[1]. 

 

 For a 1T1J MRAM cell, as illustrated in 

Fig. 1, each MTJ is connected in series with a 

NMOS. The gate of the NMOS is connected to the 

word line (WL), and the NMOS is turned on if its 

connected MTJ needs read or write operations. As 

shown in Fig. 1, the source of the NMOS is 

connected to the source line (SL), and the free 

ferromagnetic layer is connected to the bit line (BL). 

The read and write operations are explained as 

follows: 

 

• Read Operation  

 

On a read operation, a negative voltage 

difference is applied on BL relative to SL . This 

negative voltage is usually very small, which is -0.1V 

in our design. This voltage difference will lead to a 

current passing through the MTJ, which is small 

enough and will not invoke a disturbed write 

operation? The value of the current is mainly 

dependent on the resistance of the MTJ. Finally, a 

sense amplifier compares this current with a 

reference current and then decides whether a “0" or a 

“1" is stored in the selected MRAM cell. 

 

                        

      
 
Fig 1.Demonstration of a MRAM cell (a) structural view (b) 
schematic view 

 

• Write Operation  

When writing “0" state into MRAM cells, 

positive voltage difference is established between SL 

and BL; when writing “1" state, vice versa. The 

current amplitude required to reverse the direction of 

the free ferromagnetic 

III.  AVOIDING THE POWER WALL 

WITH LOW-LEAKAGE, STT-MRAM 

BASED COMPUTING 

 

A. Memory Cells and Array Architecture  

 

STT-MRAM relies on magneto resistance to 

encode information. Figure 1 depicts the fundamental 

building block of an MRAM cell [1], the magnetic 

tunnel junction (MTJ). An MTJ consists of two 

ferromagnetic layers and a tunnel barrier layer, often 

implemented using a magnetic thin-film stack 

comprising Co40Fe40B20 for the ferromagnetic 

layers, and MgO for the tunnel barrier. 

 

 One of the ferromagnetic layers, the pinned 

layer, has a fixed magnetic spin, whereas the spin of 

the electrons in the free layer can be influenced by 

first applying a high-amplitude current pulse through 

the pinned layer to polarize the current[9], and then 

passing this spin-polarized current through the free 

layer.The spin polarity of the free layer  on the 

direction of the current, can be made either parallel or 

anti-parallel to that of the pinned layer. 

                     

     
      Fig 2.Illustrative example of a MagnetoTunnel Junction(MTJ) 
in (a) Low-resistance parallel and (b) High-resistance antiparallel 

states 

 

Applying a small bias voltage (typically 

0.1V) across the MTJ causes a tunneling current to 

flow through the MgO tunnel barrier without 

perturbing the magnetic polarity of the free layer and 

thus, the resistance of the MTJ—is determined by the 

polarity of the two ferromagnetic layers: a lower, 

parallel resistance (RP in Figure 2) state is 

experienced when the spin polarities agree[8], and a 

higher, anti parallel resistance state is observed when 

the polarities disagree (RAP in Figure 2). When the 

polarities of the two layers are aligned, electrons with 
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polarity anti-parallel to the two layers can travel 

through the MTJ easily, while electrons with the 

same spin  as the two layers are scattered; in contrast, 

when the two layers have anti-parallel polarities, 

electrons of either polarity are largely scattered by 

one of the two layers, leading to much lower 

conductivity, and thus, higher resistance .These low 

and high resistances are used to represent different 

logic values. 

 

 
 
Fig  3.       Illustrated example of a 1T-1MTJ cell 

 

 

An MTJ [5] can be written in a thermal 

activation mode through the application of a long, 

low-amplitude current pulse (>10ns), under a 

dynamic reversal regime with inter-mediate current 

pulses (3-10ns), or in a processional switching 

regime with a short (<3ns), high-amplitude current 

pulse .In a 1T-1MTJ cell with a fixed-size MTJ, a 

tradeoff exists between switching time (i.e., current 

pulse width) and cell area. In processional mode, the 

required current density Jc(t ) to switch the state of 

the MTJ is inversely proportional to switching time _ 

                                

                  (t) +  

            

Where Jc0 is a process-dependent intrinsic current 

density parameter and C is a constant that depends on 

the angle of the magnetization vector of the free 

layer. Hence, operating at a faster switching time 

increases energy-efficiency: a 2× shorter write pulse 

requires a less than 2× increase in write current, and 

thus, lower write energy. 

 
TABLE I.  STT-MRAM parameters at 32nm based on ITRS’09   
projections 

 

 

IV.  INSTRUCTION FETCH ENERGY 

REDUCTION USING LOOP CACHES 

 

A. Loop Cache Organization: 

 

Figure 4 shows the organization of a 2W-

entry loop cache and how it is being accessed with an 

instruction address A [31:0]. A loop cache does not 

have an address tag store. The loop cache array can 

be implemented as a direct mapped Array. It is 

indexed using the index (A) field of the instruction 

address. The index (A) field is w-bit wide. The array 

can store 2w instructions. By definition of a sbb, the 

maximum program loop size that can be recognized 

and captured by the loop cache is 2w instructions. 

Thus accessing the loop cache during program loop 

execution is guaranteed to be unique and non-

compacting. That is: (i) an instruction in the program 

loop will always be mapped to a unique location in 

the loop cache array; and (ii) there could never be 

more than one instruction from a given program  loop 

to compete for a particular cache location. When the 

program loop being captured is smaller than the loop 

cache size, only part of the loop cache array is 

utilized.  

Unlike many other loop caching schemes, 

our loop caching scheme does not require the 

program loop to be aligned to any particular address 

boundary. The software can place a loop at any 

arbitrary starting address. 

 

                          

 
 
                        Fig  4.   Loop cache organisation 

 

V.  DETERMINING LOOP CACHE 

HIT/MISS EARLY 

In order to determine in advance, whether 

the next instruction fetch will hit in the loop cache, 

the controller needs the following information on a 

cycle-to-cycle basis: (a) is the next instruction fetch a 

sequential fetch or is there a change of control flow 

(cot)? (b) if there is a cof, is it caused by the 

triggering sbb? (c) is the loop cache completely 

warmed up with the program loop so we could access 

Parameter value 

Cell size 

Switching current 

Switching time 

Write energy 

MTJ,Resistance(                                                         

/ ) 

10  

50  

6.7ns 

0.3pJ/bit                                           

2.5kΩ / 

6.25kΩ 
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the loop cache instead of the main cache? 

Information pertaining to (a) can be easily obtained 

from the instruction decode unit as well as the fetch 

and branch unit in the pipeline. 

  

A. Loop cache controller  

 

The state transition diagram for the loop 

cache controller is show in Figure5. The controller 

ensures that the loop caches warmed up before it is 

being utilized. It begins with an IDLE state. When a 

sbb is decoded, its Id field is loaded into the Count-

Register. If the sbb is taken, the controller enters a 

FILL state. The sbb becomes the triggering sbb. 

When inthe ELL state, the controller fills the loop 

cache with the instructions being fetched from the 

main cache. As the value in the Count-Register 

increases and becomes zero, the controller knows that 

the instruction currently being executed is the 

triggering sbb. If the triggering sbb is not taken, the 

controller returns to the IDLE state. Otherwise, it 

enters an ACTIVE state. While in the FILL state, if 

there is a cof that is not caused by the triggering sbb, 

the controller also returns to the IDLE state   

 

                

 
   
    

  Fig  5.             Loop cache controller 

 

 

When in the ACTIVE state, the controller 

directs all the instruction requests to the loop cache. 

When in the ACTIVE state, [12] the controller will 

returns to the IDLE state if one of the following two 

events occurs: (i) the triggering sbb is not taken    

(the loop sequentially exits through the sbb); or (ii) 

there is a cof that is not caused by the triggering sbb. 

 

 

VI. COMPARISON OF VARIOUS   

CACHES 

 
A. Drowsy caches 

  The key difference between drowsy caches 

and caches that use gated-VDD is that in drowsy 

caches the cost of being wrong—putting a line into 

drowsy mode that is accessed soon thereafter—is 

relatively small. The only penalty one must contend 

with is an additional delay and energy cost for having 

to wake up a drowsy line. One of the simplest 

policies that one might consider is one where, 

periodically, all lines in the cache—regardless of 

access patterns—are put into drowsy mode and a line 

is woken up only when it is accessed again.  

 

B. Reconfigurable hybrid cache: 

  

We evaluate the proposed RHC design on a 

simulation platform built upon Simics with GEMS. 

Table III shows the parameters used in our model. 

The value K represents the number of cache ways 

that are powered on in a specific L2 cache 

configuration [4], which also equals the amount of 

“active” cache associativity. Notice that the 

configuration of the processor core, L1 caches, and 

main memory remains the same through all 

simulations. 

 
TABLE II.  Comparison of various memory technologies 

 

 

   Features 

   

SRAM 

    

MRAM 

    

 PRAM 

Non-volatility  

No 

 

Yes 

 

Yes 

 

Leakage 

Power` 

 

High 

 

Low 

 

Low 

 

Dynamic 

Power 

 

Low 

Low for 

read 

Very high 

for write 

Medium for 

read 

High for 

write 

 

Density 

 

Low 

 

High 

 

Very high 

 

Speed 

 

Very fast 

Fast for 

read 

Slow for 

write 

Slow for 

read 

very slow 

for write 

 

Scalability 

 

Yes 

 

Yes 

 

Yes 

 

 
TABLE  III.  Comparison of STT-RAM with SRAM,                                                                                                                

PRAM 

 
                     

SRAM 

 

STT-RAM 

 

PRAM 

        

Density 

 

1X 

 

4X 

 

16X 

 

Read time 

 

Very fast 

 

Fast 

 

Slow 

   Very          
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Write time Very fast Slow slow 

 

Read power 

 

Low 

 

Low 

 

Medium 

 

Write 

power 

 

Low 

 

High 

 

High 

Leakage 

power 

 

High 

 

Low 

Low 

       

Endurance 
 4×   

 

C. Loop Cache: 

A loop cache is a tiny buffer that is used for 

storing instructions of a small loop body .When a 

small loop that can fit into the loop cache is detected 

by monitoring short backward branches1 (called 

trigger branches), instructions are loaded into the 

loop cache and then the instructions for the next 

iterations are  fetched from the loop cache until the 

processor exits the loop. Trigger branch detection 

[12] is performed by a simple additional hardware 

unit; neither the processor nor the target applications 

need to be modified at all. In addition, a loop cache 

itself typically does not have a tag array and valid 

bits because it is used only for loops whose body 

does not exceed its capacity (i.e., no conflict miss). 

Instead, a counter is added to determine whether the 

loop is completely loaded into the loop cache or not 

(once a backward branch is detected, the counter is 

used to count up the fetched instructions to see if all 

the instructions in the loop are cached). It is known 

that a loop cache has the ability to reduce dynamic 

energy of an L1 instruction cache. 

                  
Fig 6.     Proposed STT-RAM instruction cache architecture 

1) Static energy reduction via Loop cache: 

In order to reduce leakage energy[5] consumed in I-

cache we proposed to combine the loop cache with 

CMOS circuits having sleep mode such as ABB-

MTCMOS and drowsy caches. 

 
TABLE IV. Simulator configuration 

  Even when instructions are supplied from 

loop cache, static power is consumed by I-cache. 

Therefore we propose to move I-cache into sleep 

mode, where threshold voltage of all transistors is 

increased and thus leakage current is reduced, during 

the loop cache is active. Because I-cache is not 

accessed during the active mode, almost no latency 

penalty is expected .only when the loop cache 

controller returns to the idle mode from active mode, 

a penalty is required to activate the sleeping I-cache. 

Because a tight loop stored in the loop cache [10] has 

a lot of iteration, this penalty is expected to be 

negligible. 

2) Loop aware sleep controller  

We propose a loop-aware sleep controller to 

coordinate the loop cache and the power-gated L1 

instruction cache. Fig.7 shows a state diagram of the 

proposed controller.2 our policy is composed of three 

states related to the 

loop cache, which are standby (S), fill (F), and active 

(A1 and A2). The active state is divided into two 

substates according to whether the L1 instruction 

cache is in sleep mode (A2) or not (A1).          

 

 

Processor 1GHZ,in-order,two-issue 

superscalar 

Loop Cache(SRAM) 2KB,direct mapped,64b blocks 

L1 

 

I-cache 

(SRAM or    STT-

RAM) 

16KB,4way,64 B blocks,1/1-

cycle(SRAM read/write) or 

1/11-cycle(STT-RAM 

read/write) latency 

L1 

D-Cache(SRAM) 

16KB,4-way,64B blocks,1-

cycle latency 

 

L2 Cache 

512KB,8-way,64Bblocks,9-

cycle  latency 

Main   memory 200-cycle latency 
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Fig 7. State diagram of the loop aware sleep controller 

 

In the standby state, the loop cache is not 

used at all and instructions are fetched from the L1 

instruction cache. During this state, the controller 

monitors trigger branches and changes its state to fill 

when it detects a loop smaller than the loop cache 

with the mechanism explained in Section III-A. In the 

fill state, the L1 instruction cache still serves 

instructions to the processor, but every fetched 

instruction is also written to the loop cache. The 

controller still monitors[12] trigger branches in this 

state and changes its state to active when the trigger 

branch is taken again, showing that the loop cache is 

ready to be used. In the active state, the loop cache 

serves instructions to the processor instead of the L1 

instruction cache, and thus, the L1 instruction cache 

can be turned off completely (A2).  On loop cache 

misses, the controller powers up the L1 instruction 

cache to load the corresponding block from it (A1). 

In that case, the controller powers up   the L1 

instruction cache to load the corresponding block 

from it. After the iteration, it is turned off again to 

reduce static energy consumption.  

 
TABLE V.  Characteristics of the instruction caches 

 
 

 
     

Read          

Energy 

   

 Write 

Energy 

      

Static Power 

  

Loop 

Cache 

 

7.49pJ 

 

7.49pJ 

 

2.43 mW 

 

SRAM  

L1  

I-cache 

 

20.1 pJ 

 

20.1pJ 

 

21.6 mW 

 

STT-

RAM L1  

I-cache 

 

33.0 pJ 

 

647pJ 

 

10.4 mW 

 

Among the three loop cache states, the 

active state consumes the least power. In this state, 

not only the static power consumption is greatly 

reduced through powered-off instruction caches, but 

the dynamic power consumption is also reduced by 

small access energy of the loop cache compared with 

the L1 instruction cache. On the contrary, the fill 

state consumes slightly more dynamic power than the 

standby state because of the write energy of the loop 

cache. Its effect on the total power consumption is, 

however, small in general because it lasts for only 

one iteration per loop. 

 

 

VII. EVALUATION OF THE 

PROPOSED TECHNIQUE 
 

Note that STT-RAM is an emerging 

technology and thus the modeling results could be 

different from those of other researches. Although 

our STT-RAM caches are a bit ahead of the current 

technology, we believe that the technology will 

become available in the near future. STT-RAM was 

already used as L1 caches with read latency less than 

1ns in several previous researches. 

 

Power gating of the STT-RAM caches is 

modeled by referring to the results from the previous 

research that applied power gating to peripheral 

circuits of SRAM caches. This is because the only 

source of static power in STT-RAM technology is 

peripheral circuits, [12] which have a similar 

structure to those of SRAM. Among the three sleep 

modes defined in their research, the deepest sleep 

mode (the biggest leakage power reduction and the 

longest wake-up latency) is selected for our 

experiments. This is because our technique does not 

incur much performance degradation even with long 

wake-up latency. 

  
TABLE VI.  Summary of the experimental results 

 
  Static Energy Dynamic  

Energy 

Total Enegy 

   

   BASE-    

STT 

 

          -52% 

 

         +73% 

 

    +0.5% 

    

LOOP-

SRAM 

 

-11% 

 

-48% 

 

-14% 

     

LOOP-

STT 

 

-41% 

 

-29% 

 

-34% 
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LASIC 

 

-62% 

 

-30% 

 

-49% 

VIII.     CONCLUSION 

 

This paper has described various methods to 

reduce cache leakage power by exploiting 

generational characteristics of cache-line usage.   

Compared with the SRAM baseline, the STT-RAM    

baseline shows negligible performance degradation. 

Considering that, using STTRAM for the L1 data 

cache incurs severe performance overhead. This 

implies that instruction caches are a promising target 

for STT-RAM.  As mentioned before, the reason why 

long write latency does not take effect is that write 

operations are performed very rarely in the 

instruction cache. Our architecture also shows almost 

identical performance to that of the STT-RAM 

baseline. Theoretically, it is possible that our 

architecture might incur performance overhead 

compared with the LOOP-STT because, each time 

the L1 instruction cache is accessed during its sleep 

state (e.g., after loop cache deactivation or on 

misses), the processor needs to wait for it to be 

powered up. It is, however, limited to only 0.24% on 

average according to the experimental results. This is 

because our policy has a tendency to turn off the 

instruction cache only when long sleep duration is 

expected. Once the instruction cache is turned off, its 

sleep lasts for approximately 200 cycles on average, 

which is far longer than the break-even time. We also 

measure the performance overhead under various 

wakeup latencies from 4 to 30 cycles. According to 

our results, the performance overhead is limited to 

only 3% on average even with the longest wake-up 

latency. 
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