
International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 5, Sep-Oct 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 142

Various RAM Technologies in the Reduction of Static and

Dynamic Power: A Survey
P. Lakshmi Priya1, R. Raj Kumar2

ME Research Scholar1, Assistant Professor2

 ECE Department,

SVS College of Engineering, Coimbatore

Tamil Nadu - Chennai

ABSTRACT
Power consumption is becoming one of the most important constraints in the VLSI field in nano-meter scale

technologies. Especially, as a transistor for supply voltage and threshold voltage are scaled down, leakage energy

consumption is increased even when the transistor is not switching. This paper proposes to use various techniques in

reducing the static power as well as dynamic power consumption by using different cache techniques and various

types of RAM.

Keywords:- Caches, instruction caches, loop caches, low power, power gating, spin-transfer torque RAM (STT-

RAM), power efficiency, static power and dynamic power.

 I. INTRODUCTION

 Magnetic Random Access Memory

(MRAM) has been considered as one of the most

promising universal memory technologies due to its

non-volatility, fast speed, zero standby power, and

high density. Over the past two decades, the CMOS

microprocessor design process has been confronted

by a number of seemingly insurmountable

technological challenges (e.g., the memory wall and

the wire delay problem). At each turn, new classes of

systems have been architected to meet these

challenges, and microprocessor performance has

continued to scale with exponentially increasing

transistor budgets. With more than two billion

transistors integrated on a single die, power

dissipation has become the current critical challenge

facing modern chip design. On-chip power

dissipation now exhausts the maximum capability of

conventional cooling technologies; any further

increases will require expensive and challenging

solutions (e.g., liquid cooling), which would

significantly increase overall system cost. Multicore

architectures emerged in the early 2000s as means of

avoiding the power wall, increasing parallelism under

a constant clock frequency to avoid an increase in

dynamic power consumption. Although multicore

systems did manage to keep power dissipation at bay

for the past decade, with the impending transition to

32nm CMOS, they are starting to experience

scalability problems of their own. To maintain

constant dynamic power at a given clock rate, supply

and threshold voltages must scale with feature size,

but this approach induces an exponential rise in

leakage power, which is fast approaching dynamic

power in magnitude. Under this poor scaling

behavior, the number of active cores on a chip will

have to grow much more slowly than the total

transistor budget allows; indeed, at 11nm, over 80%

of all cores may have to be dormant at all times to fit

within the chip’s thermal envelope .

This paper presents resistive computation,

an architectural technique that aims at developing a

new class of power- efficient, scalable

microprocessors based on emerging resistive memory

technologies. Power- and performance-critical

hardware resources such as caches, memory

controllers, and floating-point units are implemented

using spin-torque transfer magneto resistive RAM

(STT-MRAM)—a CMOS- compatible, near-zero

static-power, persistent memory that has been in

development since the early 2000s and is expected to

replace commercially available magnetic RAMs by

2013.

II. 3D STACKING MAGNETIC RAM

(MRAM)

A. MRAM CIR4CUIT DESIGN

This section introduces the physical

mechanism of MRAM, and discusses the circuit

design for MRAM.

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 5, Sep-Oct 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 143

1) Fundamental of MRAM

MTJ (Magnetic Tunnel Junction) is the

storage element of MRAM cells. Normally, there are

two ways to form an MRAM cell – the cross-point

(“XPT”) structure and one transistor, one MTJ

(“1T1J”) structure [2, 3]. Because current XPT

structure has very poor read performance[1].

 For a 1T1J MRAM cell, as illustrated in

Fig. 1, each MTJ is connected in series with a

NMOS. The gate of the NMOS is connected to the

word line (WL), and the NMOS is turned on if its

connected MTJ needs read or write operations. As

shown in Fig. 1, the source of the NMOS is

connected to the source line (SL), and the free

ferromagnetic layer is connected to the bit line (BL).

The read and write operations are explained as

follows:

• Read Operation

On a read operation, a negative voltage

difference is applied on BL relative to SL . This

negative voltage is usually very small, which is -0.1V

in our design. This voltage difference will lead to a

current passing through the MTJ, which is small

enough and will not invoke a disturbed write

operation? The value of the current is mainly

dependent on the resistance of the MTJ. Finally, a

sense amplifier compares this current with a

reference current and then decides whether a “0" or a

“1" is stored in the selected MRAM cell.

Fig 1.Demonstration of a MRAM cell (a) structural view (b)
schematic view

• Write Operation

When writing “0" state into MRAM cells,

positive voltage difference is established between SL

and BL; when writing “1" state, vice versa. The

current amplitude required to reverse the direction of

the free ferromagnetic

III. AVOIDING THE POWER WALL

WITH LOW-LEAKAGE, STT-MRAM

BASED COMPUTING

A. Memory Cells and Array Architecture

STT-MRAM relies on magneto resistance to

encode information. Figure 1 depicts the fundamental

building block of an MRAM cell [1], the magnetic

tunnel junction (MTJ). An MTJ consists of two

ferromagnetic layers and a tunnel barrier layer, often

implemented using a magnetic thin-film stack

comprising Co40Fe40B20 for the ferromagnetic

layers, and MgO for the tunnel barrier.

 One of the ferromagnetic layers, the pinned

layer, has a fixed magnetic spin, whereas the spin of

the electrons in the free layer can be influenced by

first applying a high-amplitude current pulse through

the pinned layer to polarize the current[9], and then

passing this spin-polarized current through the free

layer.The spin polarity of the free layer on the

direction of the current, can be made either parallel or

anti-parallel to that of the pinned layer.

 Fig 2.Illustrative example of a MagnetoTunnel Junction(MTJ)
in (a) Low-resistance parallel and (b) High-resistance antiparallel

states

Applying a small bias voltage (typically

0.1V) across the MTJ causes a tunneling current to

flow through the MgO tunnel barrier without

perturbing the magnetic polarity of the free layer and

thus, the resistance of the MTJ—is determined by the

polarity of the two ferromagnetic layers: a lower,

parallel resistance (RP in Figure 2) state is

experienced when the spin polarities agree[8], and a

higher, anti parallel resistance state is observed when

the polarities disagree (RAP in Figure 2). When the

polarities of the two layers are aligned, electrons with

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 5, Sep-Oct 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 144

polarity anti-parallel to the two layers can travel

through the MTJ easily, while electrons with the

same spin as the two layers are scattered; in contrast,

when the two layers have anti-parallel polarities,

electrons of either polarity are largely scattered by

one of the two layers, leading to much lower

conductivity, and thus, higher resistance .These low

and high resistances are used to represent different

logic values.

Fig 3. Illustrated example of a 1T-1MTJ cell

An MTJ [5] can be written in a thermal

activation mode through the application of a long,

low-amplitude current pulse (>10ns), under a

dynamic reversal regime with inter-mediate current

pulses (3-10ns), or in a processional switching

regime with a short (<3ns), high-amplitude current

pulse .In a 1T-1MTJ cell with a fixed-size MTJ, a

tradeoff exists between switching time (i.e., current

pulse width) and cell area. In processional mode, the

required current density Jc(t) to switch the state of

the MTJ is inversely proportional to switching time _

 (t) +

Where Jc0 is a process-dependent intrinsic current

density parameter and C is a constant that depends on

the angle of the magnetization vector of the free

layer. Hence, operating at a faster switching time

increases energy-efficiency: a 2× shorter write pulse

requires a less than 2× increase in write current, and

thus, lower write energy.

TABLE I. STT-MRAM parameters at 32nm based on ITRS’09
projections

IV. INSTRUCTION FETCH ENERGY

REDUCTION USING LOOP CACHES

A. Loop Cache Organization:

Figure 4 shows the organization of a 2W-

entry loop cache and how it is being accessed with an

instruction address A [31:0]. A loop cache does not

have an address tag store. The loop cache array can

be implemented as a direct mapped Array. It is

indexed using the index (A) field of the instruction

address. The index (A) field is w-bit wide. The array

can store 2w instructions. By definition of a sbb, the

maximum program loop size that can be recognized

and captured by the loop cache is 2w instructions.

Thus accessing the loop cache during program loop

execution is guaranteed to be unique and non-

compacting. That is: (i) an instruction in the program

loop will always be mapped to a unique location in

the loop cache array; and (ii) there could never be

more than one instruction from a given program loop

to compete for a particular cache location. When the

program loop being captured is smaller than the loop

cache size, only part of the loop cache array is

utilized.

Unlike many other loop caching schemes,

our loop caching scheme does not require the

program loop to be aligned to any particular address

boundary. The software can place a loop at any

arbitrary starting address.

 Fig 4. Loop cache organisation

V. DETERMINING LOOP CACHE

HIT/MISS EARLY

In order to determine in advance, whether

the next instruction fetch will hit in the loop cache,

the controller needs the following information on a

cycle-to-cycle basis: (a) is the next instruction fetch a

sequential fetch or is there a change of control flow

(cot)? (b) if there is a cof, is it caused by the

triggering sbb? (c) is the loop cache completely

warmed up with the program loop so we could access

Parameter value

Cell size

Switching current

Switching time

Write energy

MTJ,Resistance(

/)

10

50

6.7ns

0.3pJ/bit

2.5kΩ /

6.25kΩ

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 5, Sep-Oct 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 145

the loop cache instead of the main cache?

Information pertaining to (a) can be easily obtained

from the instruction decode unit as well as the fetch

and branch unit in the pipeline.

A. Loop cache controller

The state transition diagram for the loop

cache controller is show in Figure5. The controller

ensures that the loop caches warmed up before it is

being utilized. It begins with an IDLE state. When a

sbb is decoded, its Id field is loaded into the Count-

Register. If the sbb is taken, the controller enters a

FILL state. The sbb becomes the triggering sbb.

When inthe ELL state, the controller fills the loop

cache with the instructions being fetched from the

main cache. As the value in the Count-Register

increases and becomes zero, the controller knows that

the instruction currently being executed is the

triggering sbb. If the triggering sbb is not taken, the

controller returns to the IDLE state. Otherwise, it

enters an ACTIVE state. While in the FILL state, if

there is a cof that is not caused by the triggering sbb,

the controller also returns to the IDLE state

 Fig 5. Loop cache controller

When in the ACTIVE state, the controller

directs all the instruction requests to the loop cache.

When in the ACTIVE state, [12] the controller will

returns to the IDLE state if one of the following two

events occurs: (i) the triggering sbb is not taken

(the loop sequentially exits through the sbb); or (ii)

there is a cof that is not caused by the triggering sbb.

VI. COMPARISON OF VARIOUS

CACHES

A. Drowsy caches

 The key difference between drowsy caches

and caches that use gated-VDD is that in drowsy

caches the cost of being wrong—putting a line into

drowsy mode that is accessed soon thereafter—is

relatively small. The only penalty one must contend

with is an additional delay and energy cost for having

to wake up a drowsy line. One of the simplest

policies that one might consider is one where,

periodically, all lines in the cache—regardless of

access patterns—are put into drowsy mode and a line

is woken up only when it is accessed again.

B. Reconfigurable hybrid cache:

We evaluate the proposed RHC design on a

simulation platform built upon Simics with GEMS.

Table III shows the parameters used in our model.

The value K represents the number of cache ways

that are powered on in a specific L2 cache

configuration [4], which also equals the amount of

“active” cache associativity. Notice that the

configuration of the processor core, L1 caches, and

main memory remains the same through all

simulations.

TABLE II. Comparison of various memory technologies

 Features

SRAM

MRAM

 PRAM

Non-volatility

No

Yes

Yes

Leakage

Power`

High

Low

Low

Dynamic

Power

Low

Low for

read

Very high

for write

Medium for

read

High for

write

Density

Low

High

Very high

Speed

Very fast

Fast for

read

Slow for

write

Slow for

read

very slow

for write

Scalability

Yes

Yes

Yes

TABLE III. Comparison of STT-RAM with SRAM,

PRAM

SRAM

STT-RAM

PRAM

Density

1X

4X

16X

Read time

Very fast

Fast

Slow

 Very

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 5, Sep-Oct 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 146

Write time Very fast Slow slow

Read power

Low

Low

Medium

Write

power

Low

High

High

Leakage

power

High

Low

Low

Endurance
 4×

C. Loop Cache:

A loop cache is a tiny buffer that is used for

storing instructions of a small loop body .When a

small loop that can fit into the loop cache is detected

by monitoring short backward branches1 (called

trigger branches), instructions are loaded into the

loop cache and then the instructions for the next

iterations are fetched from the loop cache until the

processor exits the loop. Trigger branch detection

[12] is performed by a simple additional hardware

unit; neither the processor nor the target applications

need to be modified at all. In addition, a loop cache

itself typically does not have a tag array and valid

bits because it is used only for loops whose body

does not exceed its capacity (i.e., no conflict miss).

Instead, a counter is added to determine whether the

loop is completely loaded into the loop cache or not

(once a backward branch is detected, the counter is

used to count up the fetched instructions to see if all

the instructions in the loop are cached). It is known

that a loop cache has the ability to reduce dynamic

energy of an L1 instruction cache.

Fig 6. Proposed STT-RAM instruction cache architecture

1) Static energy reduction via Loop cache:

In order to reduce leakage energy[5] consumed in I-

cache we proposed to combine the loop cache with

CMOS circuits having sleep mode such as ABB-

MTCMOS and drowsy caches.

TABLE IV. Simulator configuration

 Even when instructions are supplied from

loop cache, static power is consumed by I-cache.

Therefore we propose to move I-cache into sleep

mode, where threshold voltage of all transistors is

increased and thus leakage current is reduced, during

the loop cache is active. Because I-cache is not

accessed during the active mode, almost no latency

penalty is expected .only when the loop cache

controller returns to the idle mode from active mode,

a penalty is required to activate the sleeping I-cache.

Because a tight loop stored in the loop cache [10] has

a lot of iteration, this penalty is expected to be

negligible.

2) Loop aware sleep controller

We propose a loop-aware sleep controller to

coordinate the loop cache and the power-gated L1

instruction cache. Fig.7 shows a state diagram of the

proposed controller.2 our policy is composed of three

states related to the

loop cache, which are standby (S), fill (F), and active

(A1 and A2). The active state is divided into two

substates according to whether the L1 instruction

cache is in sleep mode (A2) or not (A1).

Processor 1GHZ,in-order,two-issue

superscalar

Loop Cache(SRAM) 2KB,direct mapped,64b blocks

L1

I-cache

(SRAM or STT-

RAM)

16KB,4way,64 B blocks,1/1-

cycle(SRAM read/write) or

1/11-cycle(STT-RAM

read/write) latency

L1

D-Cache(SRAM)

16KB,4-way,64B blocks,1-

cycle latency

L2 Cache

512KB,8-way,64Bblocks,9-

cycle latency

Main memory 200-cycle latency

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 5, Sep-Oct 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 147

Fig 7. State diagram of the loop aware sleep controller

In the standby state, the loop cache is not

used at all and instructions are fetched from the L1

instruction cache. During this state, the controller

monitors trigger branches and changes its state to fill

when it detects a loop smaller than the loop cache

with the mechanism explained in Section III-A. In the

fill state, the L1 instruction cache still serves

instructions to the processor, but every fetched

instruction is also written to the loop cache. The

controller still monitors[12] trigger branches in this

state and changes its state to active when the trigger

branch is taken again, showing that the loop cache is

ready to be used. In the active state, the loop cache

serves instructions to the processor instead of the L1

instruction cache, and thus, the L1 instruction cache

can be turned off completely (A2). On loop cache

misses, the controller powers up the L1 instruction

cache to load the corresponding block from it (A1).

In that case, the controller powers up the L1

instruction cache to load the corresponding block

from it. After the iteration, it is turned off again to

reduce static energy consumption.

TABLE V. Characteristics of the instruction caches

Read

Energy

 Write

Energy

Static Power

Loop

Cache

7.49pJ

7.49pJ

2.43 mW

SRAM

L1

I-cache

20.1 pJ

20.1pJ

21.6 mW

STT-

RAM L1

I-cache

33.0 pJ

647pJ

10.4 mW

Among the three loop cache states, the

active state consumes the least power. In this state,

not only the static power consumption is greatly

reduced through powered-off instruction caches, but

the dynamic power consumption is also reduced by

small access energy of the loop cache compared with

the L1 instruction cache. On the contrary, the fill

state consumes slightly more dynamic power than the

standby state because of the write energy of the loop

cache. Its effect on the total power consumption is,

however, small in general because it lasts for only

one iteration per loop.

VII. EVALUATION OF THE

PROPOSED TECHNIQUE

Note that STT-RAM is an emerging

technology and thus the modeling results could be

different from those of other researches. Although

our STT-RAM caches are a bit ahead of the current

technology, we believe that the technology will

become available in the near future. STT-RAM was

already used as L1 caches with read latency less than

1ns in several previous researches.

Power gating of the STT-RAM caches is

modeled by referring to the results from the previous

research that applied power gating to peripheral

circuits of SRAM caches. This is because the only

source of static power in STT-RAM technology is

peripheral circuits, [12] which have a similar

structure to those of SRAM. Among the three sleep

modes defined in their research, the deepest sleep

mode (the biggest leakage power reduction and the

longest wake-up latency) is selected for our

experiments. This is because our technique does not

incur much performance degradation even with long

wake-up latency.

TABLE VI. Summary of the experimental results

 Static Energy Dynamic

Energy

Total Enegy

 BASE-

STT

 -52%

 +73%

 +0.5%

LOOP-

SRAM

-11%

-48%

-14%

LOOP-

STT

-41%

-29%

-34%

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 5, Sep-Oct 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 148

LASIC

-62%

-30%

-49%

VIII. CONCLUSION

This paper has described various methods to

reduce cache leakage power by exploiting

generational characteristics of cache-line usage.

Compared with the SRAM baseline, the STT-RAM

baseline shows negligible performance degradation.

Considering that, using STTRAM for the L1 data

cache incurs severe performance overhead. This

implies that instruction caches are a promising target

for STT-RAM. As mentioned before, the reason why

long write latency does not take effect is that write

operations are performed very rarely in the

instruction cache. Our architecture also shows almost

identical performance to that of the STT-RAM

baseline. Theoretically, it is possible that our

architecture might incur performance overhead

compared with the LOOP-STT because, each time

the L1 instruction cache is accessed during its sleep

state (e.g., after loop cache deactivation or on

misses), the processor needs to wait for it to be

powered up. It is, however, limited to only 0.24% on

average according to the experimental results. This is

because our policy has a tendency to turn off the

instruction cache only when long sleep duration is

expected. Once the instruction cache is turned off, its

sleep lasts for approximately 200 cycles on average,

which is far longer than the break-even time. We also

measure the performance overhead under various

wakeup latencies from 4 to 30 cycles. According to

our results, the performance overhead is limited to

only 3% on average even with the longest wake-up

latency.

REFERENCES

[1]. X. Dong, X. Wu, G. Sun, Y. Xie, H. H. Li,

and Y. Chen, “Circuit and microarchitecture

evaluation of 3D stacking magnetic RAM

(MRAM) as a universal memory

replacement,” inProc. 45th Design Autom.

Conf., Jun. 2008, pp. 554–559.

[2]. X. Guo, E. Ipek, and T. Soyata, “Resistive

computation: Avoiding the power wall with

low-leakage, STT-MRAM based

computing,” inProc. 37th Int. Symp.

Comput. Archit., Jun. 2010, pp. 371–382.

[3]. W. Xu, H. Sun, X. Wang, Y. Chen, and T.

Zhang, “Design of lastlevel on-chip Cache

using spin-torque transfer RAM (STT

RAM),”IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 19, no. 3, pp. 483–

493, Mar. 2011.

[4]. K. Flautner, N. S. Kim, S. Martin, D.

Blaauw, and T. Mudge, “Drowsy

caches:Simple techniques for reducing

leakage power,” in Proc. 29th Ann. Int.

Symp.Comput. Archit., May 2002, pp. 148–

157.

[5]. S. Kaxiras, Z. Hu, and M. Martonosi,

“Cache decay: Exploiting generational

behavior to reduce cache leakage power,” in

Proc. 28th Ann. Int.Symp. Comput. Archit.,

May 2001, pp. 240–251.

[6]. A. Jog, A. K. Mishra, C. Xu, Y. Xie, V.

Narayanan, R. Iyer, and C. R. Das,“Cache

revive: Architecting volatile STT-RAM

caches for enhanced performance in

CMPs,” inProc. 49th Design Autom. Conf.

Jun. 2012, pp. 243–252.

[7]. X. Dong, C. Xu, Y. Xie, and N. P. Jouppi,

“NVSim: A circuit-level

performance, energy, and area model for

emerging nonvolatile memory,” IEEE

Trans. Comput. Aided Design Integr.

Circuits Syst., vol. 31, no. 7,pp. 994–1007,

Jul. 2012.

[8]. H. Sun, C. Liu, W. Xu, J. Zhao, N. Zheng,

and T. Zhang, “Using magnetic

RAM to build low-power and soft error-

resilient L1 cache,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 20, no. 1, pp.

19–28, Jan. 2012.

[9]. C. W. Smullen, V. Mohan, A. Nigam, S.

Gurumurthi, and M. R. Stan, “Relaxing non-

volatility for fast and energy-efficient STT-

RAM caches,” in Proc. Int. Symp. High

Perform. Comput. Archit., 2011, pp. 50–61.

[10]. H. Homayoun, A. Sasan, A. V.

Veidenbaum, H.-C. Yao, S. Golshan, and P.

Heydari, “MZZ-HVS: Multiple sleep modes

zig-zag horizontal and vertical sleep

transistor sharing to reduce leakage power in

on-chip SRAM peripheral circuits,”IEEE

Trans. Very Large Scale Integr. (VLSI)

Syst., vol. 19, no. 12, pp. 2303–2316, Dec.

2011.

[11]. H. Sato and T. Sato, “A static and dynamic

energy reduction technique For I-cache and

BTB in embedded processors,” in Proc. Asia

South Pacific Des. Autom. Conf., Jan. 2004,

pp. 831–834.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 5, Sep-Oct 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 149

[12]. Junwhan Ahn and Kiyoung

Choi,”LASIC:Loop-Aware Sleepy

Instruction Caches Based on STT-RAM

Technology” IEEE Trans.Very Large Scale

Integr.(VLSI) syst,vol 22,No.5., may 2014.

http://www.ijcstjournal.org/

