
International Journal of Computer Science Trends and Technology (IJCST) ς Volume 2 Issue 4, Nov-Dec 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 132

RESEARCH ARTICLE OPEN ACCESS

Context-Sensitive Suggestion Inlining Designed For Java
A. Ramalakshmi

Ph.D. Scholar

Dept. of Computer Science

Manonmanium Sundaranar University, Tirunelveli

Tamil Nadu - India

ABSTRACT

Method inlining is one of the most important optimizations in method-based just-in-time (JIT) compilers. It widens the

compilation scope and therefore allows optimizing multiple methods as a whole, which increases the performance.

However, if method inlining is used too frequently, the compilation time increases and too much machine code is

generated. This has negative effects on the performance. Trace-based JIT compilers only compile frequently executed

paths, so-called traces, instead of whole methods. This may result in faster compilation, less generated machine code,

and better optimized machine code. In the previous work, we implemented a trace recording infrastructure and a trace-

based compiler for JavaTM, by modifying the Java HotSpot VM. Based on this work, we evaluate the effect of trace

inlining on the performance and the amount of generated machine code. Trace inlining has several major advantages

when compared to method inlining. First, trace inlining is more selective than method inlining, because only frequently

executed paths are inlined. Second, the recorded traces may capture information about virtual calls, which simplify

inlining. A third advantage is that trace information is context sensitive so that different method parts can be inlined

depending on the specific call site. These advantages allow more aggressive inlining while the amount of generated

machine code is still reasonable. We evaluate several inlining heuristics on the benchmark suites DaCapo 9.12 Bach,

SPECjbb2005, and SPECjvm2008 and show that our trace-based compiler achieves an up to 51% higher peak

performance than the method-based Java HotSpot client compiler. Furthermore, we show that the large compilation

scope of our trace-based compiler has a positive effect on other compiler optimizations such as constant folding or null

check elimination.

Keywords:- JIT, CFG,

I. INTRODUCTION

Method-based just-in-time (JIT) compilation translates

whole methods to optimized machine code, while

trace-based compilation uses frequently executed

paths, so-called traces, as the compilation unit [1]. This

can increase the peak performance, while reducing the

amount of generated machine code. Fig. 1 shows the

control flow graphs (CFGs) of three methods as well as

three possible traces through them. The start of a trace

is called a trace anchor, which is block 1 for all

Possible traces through three methods: (a) control flow

graphs and (b) possible traces. traces in the example. It

highly depends on the specific trace recording

implementation which blocks are chosen as trace

anchors. In a virtual machine (VM), traces can be

recorded by instrumenting bytecode execution. Those

traces are then compiled to optimized machine code. If

a method part that was not compiled has to be

executed, it is common to fall back to the interpreter.

Most existing trace recording implementations allow

traces to cross method boundaries [1,2,10,12,18]. This

may result in large traces that must be compiled

together. In the previous work [14,15], we

implemented a trace-based JIT compiler based on

Oracle's JavaTM HotSpot client compiler [19]. Our

earlier conference paper [15] focused on trace inlining

and contributed the following: We described how to

perform trace inlining and discuss its advantages

compared to method inlining. We presented multiple

trace inlining heuristics implemented for our trace-

based JIT compiler. We evaluated the impact of our

trace inlining heuristics on compilation time, peak

performance, and amount of generated machine code

for the DaCapo 9.12 Bach [3] benchmark suite. This

paper is an extended version of our earlier conference

paper [15], and contributes the following new aspects:

We present our trace recording and our trace inlining

approaches in more detail. We describe how compiler

intrinsics for native methods can profit from the larger

compilation scope that is achieved by our trace

inlining. We additionally evaluate our inlining

heuristics on the benchmark suites SPECjbb2005 [23]

and SPECjvm2008 [24]. Furthermore, we also compare

the peak performance of our best trace inlining

heuristic to the Java HotSpot server compiler.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) ς Volume 2 Issue 4, Nov-Dec 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 133

Fig 1

We evaluate which high-level compiler optimizations

do benefit from trace inlining due to the widened

compilation scope. The remaining paper is organized

as follows: Section 2 gives a short overview of our

trace-based Java HotSpot VM. In Section 3 we

illustrate our trace recording system, and in Section 4

we explain how we perform trace inlining. Section 5

presents different trace inlining heuristics. Section 6

discusses the benchmark results. In Section 7 we

discuss related work, and Section 8 concludes the

paper. Overview In the previous work, we

implemented a trace recording infrastructure and a

trace-based JIT compiler for Java [14,15]. Fig. 2 shows

the structure of our VM. Execution starts with the class

loader that loads, parses, and verifies the class files.

The class loader provides run-time data structures such

as the constant pool and method objects to other parts

of the VM. After class loading, a bytecode

preprocessing step is performed that detects loops and

creates tracing-specific data structures. For trace

recording, the Java HotSpot VM template interpreter

[13] is duplicated and instrumented. This results in a

normal and a trace recording interpreter. The normal

interpreter executes bytecodes with nearly the same

speed as the interpreter of the unmodified VM and is

used for the initial executions. Whenever the normal

interpreter encounters a trace anchor, it increments the

invocation counter of that trace anchor. When the

counter overflows, the trace anchor is marked as hot

and execution switches to the trace recording

interpreter. The current implementation supports two

different kinds of traces: loop traces anchored at loop

headers, and method traces anchored at method entries.

Oracle's Java HotSpot VM ships with two different JIT

compilers that share most parts of the VM

infrastructure. The client compiler is designed for

startup performance and implements basic

optimizations to achieve a decent peak performance

[19]. Upon compilation, the compiler generates the

high-level intermediate representation (HIR), which is

in static single assignment (SSA) form [7] and

represents the control flow graph. During and after

building the HIR, optimizations such as constant

folding, null check elimination, and method inlining

are applied. The optimized HIR is translated to the

low-level intermediate representation (LIR), which is

close to machine code but still mainly platform

independent. The LIR is then used for linear scan

register allocation [27] and code generation. The server

compiler performs significantly more optimizations

than the client compiler and produces highly efficient

code to reach the best possible peak performance [21].

It is designed for long-running server applications

where the initial JIT

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) ς Volume 2 Issue 4, Nov-Dec 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 134

Compilation constitutes only a small overhead

in comparison to the total execution time. The server

compiler uses the following compilation phases:

parsing, machine-independent optimization, instruction

selection, global code motion and scheduling, graph

coloring register allocation, peephole optimization, and

code generation. Some additional optimizations that

the server compiler performs are loop-invariant code

motion, loop unrolling, and escape analysis. Our trace-

based JIT compiler is based on the HotSpot client

compiler. While our techniques are general enough to

be applicable to the server compiler as well, the

complex structure of the server compiler is less

approachable for the changes that are required for

trace-based compilation, especially in the context of a

research project. Therefore, we decided to use the

client compiler as our base. When traces have been

recorded often enough, our compiler at first merges the

recorded traces into a trace graph. This data structure is

a hybrid between a control flow graph and a trace tree

[10], so that merge points may exist but paths may still

be duplicated if advantageous. On this level, we

perform general and tracing-specific optimizations

such as constant folding, aggressive trace inlining, and

explicit control flow duplication. The generated

machine code is then directly invoked by the

interpreters or by other compiled traces. If a

precondition for an aggressive optimization is violated

during execution, our system deoptimizes [17] to the

trace recording interpreter. Deoptimization at first

saves all values that are live in the current compiled

frame and then replaces that compiled frame with one

or more interpreter frames. The exact number of

created interpreter frames, depends on the inlining

depth of the currently executed instruction.

Then, the interpreter frames are filled with the

previously saved values and execution continues in the

trace recording interpreter. When the trace recording

interpreter takes over, it can record a partial trace that

directly starts at the point of deoptimization instead of

at the trace anchor. To detect too frequent

deoptimization of compiled code, a counter is

incremented every time a deoptimization occurs. After

reaching a threshold, the compiled machine code is

invalidated and another compilation is triggered that

uses the originally recorded traces and all partial traces.

This allows increasing method coverage or disabling

specific aggressive optimizations, which in turn

reduces the deoptimization frequency. Trace recording

Our trace recording approach restricts traces to span at

most one method [14]. When a trace anchor has been

executed frequently enough, execution switches from

the normal to the trace recording interpreter. For trace

recording, every thread holds a tracing stack that

contains the traces that are currently being recorded.

Information about instructions that modify the control

flow is stored in the topmost trace of the tracing stack,

and the tracing stack is modified as necessary. When a

method invocation is reached during trace recording,

the invocation is recorded in the caller trace.

For virtual method invocations, we also record

the receiver class. Upon entering the callee, a new

method trace is pushed on the tracing stack and

recording continues there. When the callee returns, we

pop the corresponding trace from the tracing stack and

store it in a trace repository. Then, we link the caller

and the callee trace by storing a pointer to the callee's

trace in the caller's trace and continue recording for the

caller. The linking preserves context-sensitive call

information over method boundaries and results in a

data structure that is similar to a dynamic call graph.

 When a previously stored trace is recorded

again, only a counter is incremented in the already

stored trace instead of storing the trace another time.

We consider traces to be different if they took different

paths or if they invoked different callee traces. So,

trace linking allows us to record exact call information

for every executed path through the whole application.

To reduce the number of recorded traces to a

reasonable amount, we do not link loop traces and

recursive method traces to their parent trace. After

trace recording was performed a certain number of

times for a trace anchor, we assume that all important

traces for this anchor have been recorded and compile

those traces to optimized machine code. Fig. 3 shows a

trace recording example where trace recording is

triggered for the method addData().

 (1) When the trace anchor at the method entry

of addData() is marked as hot, execution switches to

the trace recording interpreter and a method trace is

pushed on the tracing stack. The method is executed

from the beginning up to the invocation of the virtual

method getValue(). When doing the virtual call, the

invocation and the receiver class are stored in the caller

trace.

 (2) Upon entering the method getValue(), a

new method trace is pushed on the tracing stack and

trace recording continues there.

(3) When getValue() returns, the

corresponding trace is popped from the tracing stack

and stored in the trace repository. Then, the traces are

linked by storing a pointer to the trace of getValue() in

the trace of addData(). Execution and trace recording

continues for addData() and reaches the loop header.

(4) For recording the loop, a new loop trace is

pushed on the tracing stack.

(5) After the first loop iteration, when

execution is back at the loop header, the loop trace is

popped from the tracing stack and stored. For the next

loop iteration, a new loop trace is pushed on the tracin

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) ς Volume 2 Issue 4, Nov-Dec 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 135

stack. The second loop iteration executes the same path

as the first iteration, so the system recognizes that the

same trace was already recorded and does not store it

again but only increments the counter within the

previously recorded trace.

(6) The third loop iteration takes a different

path so that the method Math.abs() is invoked for

which a new method trace is pushed on the tracing

stack.

 (7) When Math.abs() returns, the

corresponding trace is stored and linked to its caller

trace.

 (8) Then, execution reaches the loop header

and the loop exits. So, the loop trace is popped from

the tracing stack and stored.

(9) After the loop, the virtual method

setValue() is invoked. So, the invocation and the

receiver class are stored in the caller trace, and a new

method trace is pushed on the tracing stack upon

entering setValue().

(10) When setValue () returns, the

corresponding trace is popped from the tracing stack,

stored, and linked to its caller trace.

 (11) Eventually, the method addData()

returns so that also this trace is popped from the tracing

stack and stored. After that, the tracing stack is empty

and execution switches back to the normal interpreter.

In the example above, it was assumed that no

traces had been compiled for the invoked methods and

the loop. If traces for the method getValue() had

already been compiled earlier, the invocation of

getValue() would execute the compiled machine code

instead of interpreting the method. So, the trace

recording interpreter can neither push a new method

trace on the tracing stack, nor can it record any control

flow in the invoked method. In that case, our trace

recording approach does not preserve exact control

flow information over method boundaries. It would be

possible to not invoke compiled code and instead force

this code to be executed in the trace recording

interpreter if a trace is currently being recorded.

However,

Fig. 3. Tracing stack while trace recording: (a) source code; (b) tracing stack; and (c) traces recorded in the

trace repository.

This would drastically reduce the startup

performance because the application would be

interpreted for a significantly longer time. For best-

possible trace recording performance, all frequently

executed operations (such as recording information for

specific instructions) are directly implemented in the

assembler templates of the trace recording interpreter.

More complex operations, such as storing the recorded

traces, are implemented in the C-based runtime of the

interpreter. Our trace recording infrastructure also

supports efficient multi-threading so that every Java

thread can switch between the normal and the trace

recording interpreters independently. Each thread uses

a thread-local buffer for trace recording to achieve the

best-possible trace recording performance. During

trace recording, multiple threads may operate on the

data structure that holds the recorded traces. We

observed that for most trace anchors, only a small

number of traces is recorded so that storing a new trace

is required rarely, while in most cases only the

execution count of an already recorded trace is

incremented. Therefore, we store the recorded traces in

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) ς Volume 2 Issue 4, Nov-Dec 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 136

a data structure that avoids locks and atomic

instructions when data is read. When it seems that a

new trace was found, we lock our data structure for

other writing threads and recheck under the lock if this

trace is really new before adding it to the recorded

traces. So, for the most frequent case, we can avoid

synchronization and atomic machine instructions,

which significantly increases the trace recording

performance for multi-threaded applications.

Trace inlining Method inlining replaces calls

with copies of the actually called code. The inlining

heuristics can be categorized into static and dynamic

approaches. The Java HotSpot client compiler uses a

simple, static method inlining heuristic, where the

method size is compared to a fixed limit. Virtual

methods are inlined using static class hierarchy

analysis (CHA) [8]. This analysis determines if a

method is not overridden by any loaded subclass, in

which case it can be inlined optimistically. If a subclass

is loaded later on that overrides an optimistically

inlined method, the generated machine code is

invalidated. Dynamic inlining heuristics use profiling

information to decide if a call is worth inlining. Our

trace-based JIT compiler supports both static and

dynamic inlining heuristics by making use of the

recorded trace information. Similar to method inlining,

trace inlining also replaces calls with copies of the

actually called code. This increases the compilation

scope and may result in a higher performance.

Advantages of trace inlining

II. TRACE INLINING HAS SEVERAL

ADVANTAGES OVER METHOD

INLINING

Trace inlining does only inline frequently

executed traces instead of whole methods. Method-

based compilers try to use profiling information to

avoid compilation of infrequently executed method

parts [9,25,26]. This achieves a similar effect to trace

inlining but is a complementary approach. The

recorded traces contain context-sensitive information

about which method parts are used by which caller.

This information is preserved over method boundaries

and can be used to avoid inlining of method parts that

were executed frequently in total but are not required

for the current caller. Traces also store information

about the receivers of virtual calls and due to our trace

linking, this information is also context sensitive. So, it

might turn out that a certain call site invokes only

methods of a specific receiver type. This information

can be used for aggressive inlining of virtual methods.

Method-based compilers also use profiling information

for aggressive inlining of virtual calls, but in most

compilers this information is not context sensitive.

Implementation We start trace inlining by computing

the maximum trace size that should be inlined at the

current call site. This mainly depends on the call site's

relevance (see Section 5.1) for program execution.

Then, we use a heuristic to decide if it is worth to

inline the invoked traces at the current call site. To a

large degree, this depends on the size of the traces

because inlining large traces causes code bloat. Inlining

method traces is similar to method inlining except that

the traces usually do not cover all bytecodes of the

callee. So, we build a trace graph from the traces that

should be inlined and replace the method invocation

with the contents of that trace graph. Then, return

instructions that are located within the inlined

bytecodes are replaced with direct jumps to the next

instruction after the call and exception-throwing

instructions are wired to exception handlers located in

the caller trace. Fig. 4(a) shows the control flow graphs

of two methods. Two traces through those methods are

shown in Fig. 4(b). After performing trace recording

frequently enough, the recorded traces are getting

compiled. The resulting trace graph after trace inlining

(but without explicit control flow duplication) is shown

in Fig. 4(c).

This trace graph is then compiled to

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) ς Volume 2 Issue 4, Nov-Dec 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 137

 Fig. 4. Inlining method traces: (a) control flow graphs; (b) recorded traces; and (c) trace graph after trace inlining

.

Fig. 5. Inlining loop traces: (a) method trace

graph; (b) loop trace graph; and (c) after loop inlining.

optimized machine code. If one of the removed blocks

must be executed later on, the compiled code

deoptimizes to the interpreter. Another interesting

aspect is that we also remove the edge from block 1 to

block 3 although the trace graph does contain block 3.

This is advantageous because it avoids control flow

merges, which otherwise could constrain compiler

optimizations. So, removing edges that are not

executed results in better optimized machine code. In

most cases, we inline only those traces that were

invoked by the current caller. However, if the callee

traces were compiled before trace recording was started

for the caller, the caller does not know which of the

compiled traces it needs. In those cases, we

conservatively consider all callee traces as inlining

candidates, except those for which we can prove that

they cannot be invoked by the current caller because of

the specific parameters that the caller passes to the

callee. The used technique behind that is similar to

dead code elimination in a method-based compiler but

allows eliminating whole traces instead of basic blocks.

To further reduce the number of inlined traces, we do

also filter out infrequently executed traces (see Section

4.5). For virtual method invocations, we combine the

recorded trace information with the Java HotSpot client

compiler's CHA to determine the exact receiver class

for the current call site. If the CHA identifies a single

target method, the invoked method traces are inlined in

a similar way to how the Java HotSpot client compiler

inlines methods. If the CHA finds multiple possible

target methods, we try to use the recorded receiver

classes for inlining the method traces aggressively. For

this, we add a run-time check that compares the actual

receiver type with the expected type and deoptimizes to

the interpreter if the types do not match. By combining

CHA and context-sensitive trace information, we can

inline virtual calls more frequently than most method-

based compilers while emitting run-time checks only

where necessary. In addition to inlining method traces,

we also support inlining loop traces. Fig. 5(a) shows a

trace graph that was built for method traces that

invoked loop traces. The loop traces were not inlined

yet, so the loop is represented as a black box that is still

unknown to the compiler. In the next step, a separate

trace graph is built from the loop traces as shown in

Fig. 5(b). The actual inlining then replaces the black

box in the caller trace graph with the loop trace graph

and links all loop exits to their correct successor blocks

using jump instructions. In this example, block b is

linked to block e and block c is linked to block d,

resulting in the trace graph shown in Fig. 5(c). When

inlining loop traces, we consider all traces that were

recorded for a specific loop as inlining candidates. This

is necessary because loop traces are never explicitly

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) ς Volume 2 Issue 4, Nov-Dec 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 138

linked to their caller trace, so no context-specific call

information is available. However, we use the

information about the parameters and locals that flow

into the loop to eliminate those traces for which we can

prove that they cannot be invoked by the current caller.

Furthermore, we also eliminate traces that were not

executed frequently enough. A more difficult case is

that the inlined loop can have a loop exit for which no

successor exists in the caller trace graph. For example,

in Fig. 5(a), block d could be missing because it was

never recorded. However, both loop exits could still be

present in the recorded loop traces as shown in Fig.

5(b). One way how this can happen is when the loop

traces are compiled before trace recording is started for

the method trace. Previously [15], we addressed this

issue by explicitly adding deoptimization points for all

loop exits that could not be linked to a successor, so

that execution deoptimized to the interpreter when such

a loop exit was taken. Now, we simply eliminate loop

traces that end in a loop exit that is unknown to the

current caller. This reduces the number of inlining

candidates and results in less generated machine code.

Context sensitivity Our trace recording infrastructure

restricts traces to span at most one method so that the

trace-based compiler heavily relies on aggressive trace

inlining [15]. The trace recording mechanism preserves

context-sensitive information over method boundaries

so that each caller knows which parts of the callee it

should inline. This helps the compiler to avoid inlining

of method parts that were executed frequently in total,

but are irrelevant for the current caller. It reduces the

generated amount of machine code, and decreases the

number of merge points, which increases peak

performance. Also method-based compilers use

profiling information to remove never executed code.

However, their profiling information typically lacks the

context-sensitivity so that they cannot decide which

method parts are required for each specific caller.

Context-sensitive profiling information could in

principle also be recorded for a method-based compiler

but we believe that trace recording and trace-based

compilation simplify it. Fig. 6 shows the method

indexOf() of the JDK class ArrayList. The first part of

the method handles the rare case of searching null,

while the second part searches the list for non-null

objects. Most callers will only require the second part

of the method. However, if there is at least one caller in

the application that executes the first part of the

method, the profiling information in a method-based

compiler would indicate that the first part has been

executed. So, whenever the methodbased compiler

inlines the method indexOf(), it does also inline this

rarely executed method part. Due to our context

sensitive trace information, our trace-based compiler

can avoid that if the caller does not need that specific

method part. Because trace inlining is more selective in

what it does inline, our trace-based compiler can use a

more aggressive inlining policy, i.e., it can inline traces

through methods that would be too large to be inlined

as a whole. This increases the compilation scope

without necessarily inlining a higher number of Java

bytecodes than a method-based compiler. Especially,

for complex applications, this results in better

optimized machine code and has a significant positive

effect on peak performance. Fig. 7(a) shows the class

LineBuilder that wraps an Appendable object and

provides the method appendLine(). If multiple

LineBuilder objects are used to wrap instances of

different classes, such as PrintStream, StringBuilder,

StringBuffer, and BufferedWriter, then the invocations

of append() on lines 9 and 10 will be polymorphic calls

that cannot be inlined easily, as shown in Fig. 7(b). If

the dispatch in appendLine() depends on its call site,

e.g., because different LineBuilder objects are used at

different call sites, the inlining in Fig. 7(c) would be

preferable. Our context-sensitive trace information also

stores the

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) ς Volume 2 Issue 4, Nov-Dec 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 139

Fig. 6. Method Array List.indexOf().

Fig. 7. Context-sensitive type information:

(a) code pattern;

(b) possible method invocations;

 (c) preferred inlining. receiver types of virtual calls.

So, our trace-based compiler can do the

preferable inlining indicated in Fig. 7(c) by using this

context-sensitive information for aggressive inlining of

virtual calls. If a compiler does not record the profiling

information in a context-sensitive way, but just

accumulates all encountered types (i.e., PrintStream,

StringBuilder, StringBuffer, and BufferedWriter at

buffer.append()) it will not have enough information to

inline such virtual calls. In the previous version of our

trace-based compiler, we only used the type

information when the recorded traces indicated that the

invoked method always belonged to the same type of

receiver. Such inlined traces are guarded by a type

guard that compares the actual receiver type to the

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) ς Volume 2 Issue 4, Nov-Dec 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 140

expected receiver type and deoptimizes to the

interpreter if the types do not match. For this paper,

we extended trace inlining in the following

ways:

If a call site always invokes the same method

but does it on different receiver types, it was previously

not possible to inline the method. However, this occurs

frequently, for example, if an abstract base class

implements a method that is not overridden by

subclasses. We enabled this kind of inlining by

guarding it with a so-called method guard that accesses

the virtual method table of the actual receiver and

compares the invoked method with the expected

method. If the methods do not match, we deoptimize to

the interpreter. If a call site always invokes the same

method but does it via a receiver of an interface type,

we extend type guards to a switch-like structure so that

they can check for multiple receiver types. This is

cheaper than the interface lookup and allows us to

inline invocations of interface methods in many cases.

If the actual receiver type does not match any of the

expected types we deoptimize to the interpreter.

Another enhancement is the inlining of polymorphic

calls. Fig. 8(a) shows a method, where a virtual call

might invoke two different methods. Because these

methods are small, it pays off to inline them both. This

results in the control flow shown in Fig. 8(b) where

block 2ǋ dispatches to one of the inlined methods

depending on the type of the actual receiver. Here, we

also use switch-like semantics so that several types can

dispatch to the same inlined method. If the actual

receiver type does not match any of the expected types,

we deoptimize to the interpreter. The Java HotSpot

server compiler also inlines polymorphic calls but

limits the number of inlined methods to at most two, as

a higher number could easily result in code bloat. Our

trace-based compiler inlines method parts more

selectively due to the context-sensitivity of the

recorded traces. So, we can avoid inlining of method

parts that were executed frequently in total, but are not

required for the current caller. Furthermore, the

recorded type information is also context-sensitive,

which reduces the number of inlining candidates. So,

our trace-based compiler does not have to limit the

number of inlined methods but instead only limits the

total size of all inlined methods depending on the

execution frequency of the specific call site. For

applications with a high number of polymorphic calls,

this results in significantly better inlining and therefore

a higher performance, while avoiding issues with code

bloat.

Fig. 8. Polymorphic inlining: (a) polymorphic call and (b) polymorphic inlining. Native methods Java code can

call native methods using the Java Native Interface (JNI). This mechanism is mainly used to implement platform-

specific features that could not be expressed in Java otherwise. Some methods of the Java standard library, e.g.,

System.arraycopy(), are implemented in a platform-specific way directly in the JVM. As no Java code is executed for

such methods, trace recording is not possible for those methods. The Java HotSpot VM uses compiler intrinsics for the

most important platform-specific methods so that the JIT compiler can inline such methods. If our trace-based JIT

compiler compiles a trace graph that contains the invocation of a native method that is implemented as a compiler

intrinsic, we do exactly the same inlining as the method-based compiler. Still, our trace-based compiler has one

advantage: traces are smaller than methods so that our trace-based compiler can inline Java traces more aggressively

than a method-based compiler could inline Java methods. This results in a larger compilation scope so that the caller of

a native method has specific knowledge about the parameters that are passed to the native method.

The JIT compiler can use this information to optimize inlined compiler intrinsics more aggressively. Fig. 9(a)

shows pseudo-code for the implementation of the native method System.arraycopy(), which is used to copy primitive

type arrays. Depending on the compiler's information about the parameters that are passed to System. arraycopy(), it can

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) ς Volume 2 Issue 4, Nov-Dec 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 141

optimize the intrinsic. Fig. 9(b) shows an optimized version of the method where the compiler could optimally exploit

the parameter values. The necessary parameter information is for example available when the source and the destination

arrays are allocated in the same compilation scope in which System.arraycopy() is inlined. So, increasing the

compilation scope can help to increase the performance of inlined compiler intrinsics. Filtering out traces When a trace

is recorded, chances are good that the trace is important and will be executed frequently. Still, sometimes recorded

traces turn out to be rarely executed. By eliminating such traces, we can ensure that only important paths are compiled.

Fig. 10(a) shows the trace graph after merging all recorded traces. The graph edges are annotated with the execution

frequencies. For every block, we determine the most frequently executed outgoing edge and compare its frequency to

those of all other outgoing edges of the same block. Then, we remove all edges with a 100 lower execution frequency.

After processing all blocks, we remove no longer reachable blocks from the trace graph. Fig. 10(b) shows the resulting

graph after filtering. The recorded trace information conserves the program behavior that was observed during a specific

time frame. At a later point of execution, infrequently executed (and therefore eliminated) paths might become

important as the program behavior may change over time. This results in frequent deoptimization because not compiled

paths get to be executed. If too frequent deoptimization is detected, the compiled machine code is invalidated and

another compilation is triggered. This compilation avoids trace filtering for those cases that resulted in frequent

deoptimization.

Trace filtering has the following corner cases, where extra care must be taken: For most loops, the loop body is

executed significantly more frequently than the loop exits, see Fig. 5(c). So, the execution frequencies of the loop exits

have to be compared to the frequency of the loop entry instead of to the frequency of the backward branch. Otherwise,

the loop exit edges would be filtered out, so that deoptimization to the interpreter is required after executing a loop. This

would increase the deoptimization frequency and it would limit the possible compilation Fig. 9. Pseudo-code for

System.arraycopy() when copying primitive type arrays: (a) unoptimized and (b) optimized. cope.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) ς Volume 2 Issue 4, Nov-Dec 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 142

Fig. 10. Filtering out infrequently executed traces: (a) original trace graph and (b) trace graph after

filtering. Aggressive trace inlining may also inline infrequently executed traces. Those inlined traces may not

necessarily reflect the typical execution behavior yet so that trace filtering might eliminate important traces. This would

result in frequent deoptimization so that trace filtering should be avoided for insufficiently trace-recorded methods and

loops.

Trace inlining heuristics All inlining heuristics that are presented in the following section have in common that

they first compute the relevance of a call site and then use that relevance to compute the maximum inlining size. The

actual inlining decision is a simple comparison of the maximum inlining size with the actual size of the traces that

should be inlined. For our evaluation, we paired several inlining heuristics with different relevance computation

algorithms. Relevance of a call site The relevance of a call site is determined by the relevance of the trace graph block

in which the call site is located. We evaluated three different algorithms for computing the relevance and illustrate their

behavior on the two trace graph examples A and B shown in Fig. 11. Example A was built from four different traces

that hardly share any blocks. Example B also shows a trace graph built from four traces, but every block is shared with

at least one other trace. For computing the relevance of the trace graph blocks, we first determine how often each block

was executed by recorded traces. Fig. 11(a) shows the trace graphs where every block is annotated with its execution

frequency. Then, we compute the relevance of each block by dividing its execution frequency with a reference value.

Depending on the reference value, the relevance is scaled differently.

 So, we use one of the following algorithms to choose that reference value: Simple:

The simplest way of computing the relevance of a trace graph block is to divide its execution frequency by the

total execution frequency of all traces merged into the trace graph. The resulting value is in the range]0, 1] and

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) ς Volume 2 Issue 4, Nov-Dec 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 143

Fig. 11. Different relevance computation algorithms: (a) node execution counts; (b) simple; (c) most frequent

trace; and (d) path-based. assigns a high relevance to those blocks in which inlining has a positive effect during most

executions, as shown in Fig. 11(b)

Most frequent trace: Another way is to divide the block

execution frequency by the execution frequency of the

most frequently executed trace ever merged into the

trace graph. Because traces are merged, trace graph

blocks that are shared between multiple traces have a

higher execution count than they would have without

merging. So, this metric returns a high relevance for

call sites that are within such shared blocks, while

returning a value in the range]0, 1] for call sites that

are only contained in individual traces. In Fig. 11(c),

the colored blocks are shared and therefore get a higher

relevance. If many different traces were recorded and

many blocks are shared in the trace graph, then it can

happen that every block in the trace graph has a

relevance greater than 1, as shown in example B of Fig.

11(c). Path-based: Our third approach computes a

variant of the most frequently executed path through

the trace graph. We start at the root block of the trace

graph and determine the most frequently executed

successor block. Then, we mark this block as visited

and continue with this block recursively until we either

reach a block without successors or we are back at the

loop header. All blocks that are visited due to this

algorithm are colored in Fig. 11(d). Then, we use the

lowest execution frequency of all visited blocks to

compute the relevance of all other blocks in the trace

graph. This has the advantage that important call sites,

i.e., those on this path and on frequently executed

split/merge points, have a value in the range İ1;Ðİ,

while less important calls have a value in the range]0,

1[. Configurations We started with 15 different inlining

heuristics ranging from static heuristics to dynamic

ones. For each inlining heuristic, we performed a

systematic search to find good parameter settings.

During our evaluation, our dynamic inlining heuristics

outperformed all static ones so that we omit detailed

results for static inlining heuristics in this paper.

Furthermore, we describe only those variants of our

dynamic inlining heuristics that showed a good peak

performance or a small amount of generated machine

code

Minimum code:

This heuristic modifies an inlining size of 35

bytecodes based on the relevance of the call site. A

relevance below 1 reduces the inlining size, while a

relevance greater than 1 increases the inlining size. By

combining this heuristic with the path-based relevance

computation algorithm, it shows a fairly good peak

performance while generating small amounts of

machine code. We also tried combining this inlining

heuristic with the relevance computation algorithm

simple. However, this has a significant negative effect

on the peak performance while generating only slightly

less machine code. Therefore, we omit detailed results

for this second variant. Balanced: This heuristic

increases an inlining size of 40 bytecodes based on the

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) ς Volume 2 Issue 4, Nov-Dec 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 144

relevance of the call site. A relevance below 1 does not

affect the inlining size, while a relevance greater than 1

increases the inlining size. So, decreasing the

predefined size is explicitly not allowed, which makes

it more likely that important calls are inlined. We use

this heuristic with the path-based relevance

computation algorithm, which results in a balance

between peak performance and amount of generated

machine code.

Performance:

This inlining heuristic uses a large inlining size of 150

bytecodes and decreases that for call sites with a

relevance below 1. Increasing the inlining size beyond

the predefined value is explicitly not allowed. For

computing the relevance of the call sites, we again use

the path-based relevance computation algorithm. So,

this heuristic is optimized for peak performance while

generating still reasonably small amounts of machine

code.

Greedy:

Similar to the previous configuration, this

heuristic uses a very large inlining size of 250

bytecodes and decreases it for call sites with a

relevance below 1. To ensure that called traces are

inlined greedily, we combine this heuristic with the

most frequent trace relevance computation algorithm.

However, due to the predefined maximum value, even

this inlining heuristic avoids inlining of huge traces.

This heuristic shows which of the benchmarks

described in Section 6 profit from very aggressive trace

inlining. We also experimented with even more

aggressive inlining heuristics but those did not further

improve the peak performance, while generating more

machine code. Similar to method-based compilers, all

our heuristics make sure that tiny methods such as

accessors are always inlined. This makes sense,

because invoking small traces may require more

machine code than the inlining. Another strategy, that

is used by the Java HotSpot server compiler, is to avoid

method inlining if the callee was already compiled

separately and the compilation resulted in a large

amount of generated machine code. This assumes that

a fairly large compilation scope has already enough

information for good compiler optimizations so that

increasing the compilation scope beyond a certain

point is not useful. We also use this technique for all

our trace inlining heuristics as it reduces the generated

machine code without affecting the performance

measurably. To reduce the probability of nested trace

inlining, we ensure that inlined traces inherit the

relevance from their parent call site. For this, we

multiply the relevance of every callee block with the

relevance of the caller's block.

However, we limit the maximum inherited

relevance to 1 as the relevance could otherwise

increase with the inlining level. Relevance inheriting

again reduces the amount of generated machine code

without affecting the performance measurably and is

also used by all our heuristics. Evaluation We

implemented our trace-based JIT compiler for the IA-

32 architecture of Oracle's Java HotSpot VM using the

early access version b12 of the upcoming JDK 8 [20].

For evaluating our inlining heuristics, we chose the

benchmark suites SPECjbb2005 [23], SPECjvm2008

[24], and DaCapo 9.12 Bach [3] as those cover a large

variety of benchmarks. The benchmarking system has

the following configuration: an Intel Core-i5 processor

with 4 cores running at 2.66 GHz, 4n256 kb L2 cache,

8 MB shared L3 cache, 8 GB main memory, and with

Windows 7 Professional as the operating system. The

results are shown relative to the results for the

unmodified, method-based Java HotSpot client

compiler, which is denoted by 100%. For the trace-

based JIT compiler, the amount of generated machine

code also includes data that is specific to trace-based

compilation such as additional deoptimization

information required for fall back to the interpreter.

Each benchmark suite was executed 10 times and we

report the average of those results along with the 95%

confidence interval. SPECjbb2005 The SPECjbb2005

benchmark simulates a client/server business

application where all operations are performed on an

inmemory database that is partitioned into so-called

warehouses. The benchmark is executed with different

numbers of warehouses, and each warehouse is

processed by one thread. We use a system with 4 cores

for benchmarking so that the official SPECjbb2005

throughput in business operations per second (bops) is

defined as the geometric mean of the performance for

the warehouses 4ï8. A heap size of 1200 MB is used

for all measurements. Fig. 12 shows the peak

performance, the generated machine code and the

compilation time for the SPECjbb2005 benchmark. All

our trace-based compiler variants outperform the client

compiler significantly in terms of peak performance.

More aggressive trace inlining results in a higher

performance but does also generate more machine code

and requires a longer compilation time because of the

larger size of the compilation units.

The peak performance of the SPECjbb2005

benchmark clearly profits up to the configuration

performance from the increased trace inlining

aggressiveness. Our configuration greedy increases the

performance only slightly, while generating

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) ς Volume 2 Issue 4, Nov-Dec 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 145

significantly more machine code. In terms of

compilation time and amount of generated machine

code, our configuration minimum code is especially

efficient, while reaching a decent peak performance.

Fig. 13 shows the SPECjbb2005 peak performance for

different numbers of warehouses and different inlining

heuristics. The maximum peak performance is reached

with 4 warehouses as every warehouse is processed by

one thread and our benchmarking system has 4 cores.

The figure shows that our tracing configurations

outperform the method-based client compiler

independently of the used number of warehouses.

Fig. 13. SPECjbb2005 peak performance for different numbers of warehouses.

SPECjvm2008 The SPECjvm2008 benchmark consists of 9 benchmark categories that measure peak performance. Next

to the individual benchmark results, we present the geometric mean of all results.

A heap size of 1024 MB is used for all measurements. Fig. 14 shows that all our tracing configurations

outperform the method-based HotSpot client compiler. Our tracing configurations show the highest speedups on the

benchmarks derby and serial. There, trace inlining achieves a larger compilation scope than the method inlining used by

the HotSpot client compiler. A very aggressive trace inlining policy such as our configuration greedy does increase the

peak performance especially for the benchmarks derby and sunflow. However this aggressive trace inlining also

increases the amount of generated machine code and the time required for JIT compilation as shown in Figs. 15 and 16.

The small and loop-intensive benchmarks crypto, mpegaudio, and scimark show almost no increased peak

performance because the method-based HotSpot client compiler can inline all calls in the performance critical loops as

well. Due to the small size of these benchmarks, our trace-based compiler can achieve only a similar-sized compilation

http://www.ijcstjournal.org/

