
International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 1, Jan-Feb 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 62

OQM Model: A Case Study of Software Quality
Mrs. Neha Agrawal

Banasthali University
Prof. (Dr.) Praveen Dhyani

Executive Director, Jaipur Campus
Banasthali University

ABSTRACT

Performance evaluation of software quality delves into identification of metrics required at
various categories in the value chain of software industry. Various performance models and
software quality concepts have been evaluated and critically appraised. Gaps in the literature
point to the need for a more realistic business empowered measurement system for software
quality. In the last few years the software industry has witnessed rapid growth and has
experienced several innovations.
Keywords:- QMM, DSS, KPI, EO, NGT

I. INTRODUCTION

There is a greater emphasis on measurements
for effective decision making. Empowered by
measurement, the modern decision maker is
able to free himself from prejudice and move
towards objectivity. Lack of visibility is a
well known constraint in software project
management. Software measurements bring
visibility into process of software
development, management, installation,
maintenance and use. Measurement
constitutes the foundation of a new culture.
The process of measurement establishes an
environment of observation and opens closed
minds.
Three phases of measurement co-exist. There
is a cognitive phase where measurement
begins with perception and all constituents of
mind are at play. There is a semantic phase
where semantic expressions are used to label
or refer to the observation which is known in
measurement science as a nominal scale.
There is a quantitative phase where numbers
are used to indicate value, to represent
quantities and to donate levels. Quantitative
phase permits construction of mathematical
equations and advanced analysis. These
phases are not to operate in isolation. There
exits an evitable plurality in measurement

methods. From this perspective, numbers are
extensions of an existing system of
observations, thinking and communication.
The Objective Question Metrics (OQM)
Model proposed in this work explores the
various refined business objectives. It
provides a multi-tiered approach to quality
managers and metrics analysts to pick and
choose a wide array of metrics as per their
needs and choices based on enterprise
objectives rather than goals which earlier
models prescribed. OQM Model of teir-1
focuses on first level enterprise objectives but
as companies start identifying newer
objectives but as companies start identifying
newer objectives based on their business
performance, multi-tier OQM Models may
emerge. OQM Model provides online data
collection mechanisms powered by multiple
enterprise wide tools. OQM DSS is based on
a metric engine of 47 metrics which are
filtered at two stages and thus enable the
management to leverage the metric
intelligence for their decision making based
on data and facts.

Unlike other engineering disciplines,
Software Engineering is not grounded in the
basic quantitative laws of Physics.
Measures such as voltage, mass, velocity or

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 1, Jan-Feb 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 63

temperature are uncommon in software
model. Instead we attempt to derive a set of
indirect measures that lead to metrics, that
provide indication of the quality of
representation of software as Software
metrics and measures are not absolute and
open to debate. Confusion prevails in
attaining distinction between measures,
metrics and measurement.
Software Productivity poses further more
challenge as one starts calculating
programmer productivity. Jacob (2005)
continues to argue that size of the code
alone does not contributed to software
productivity. A Perl Code can be written to
be small in size but difficult to read and thus
could consume more time of programmer.
He cites that if a bunch of programmers are
locked in different rooms with the same
specification and each programmer uses a
different language or paradigm it would be
difficult to compute productivity of the
programmer.
Measures provide quantitative indication of
extent, amount, dimension, capacity or size.
Measurement occurs as a result of
collection of data points or measures.
Software metrics as defined in IEEE
standard refers to quantitative measure of
degree to which system, component or
process possess a given attribute. Moving
from measurement to metrics is like moving
from observation to understanding. Several
rules have been prescribed to plan metrics
and metrics are best viewed as systems. One
cannot design metrics in isolation from
environment. The metric developed as the
part of study discusses about the metric
system built around the information

highway of organization. The objective of
the metric development has been primarily
to provide model based decision support. It
is seen through the literature survey and
survey of quality measurements that many
measures or metric have emerged by
focusing on project management goals and
software development goals. Craig (2002)
has discussed and brought out clearly the
distinction between goals and objectives.
Objectives on the other hand, are specific
and measurable. Think of the word “go”. It
has no end. Goal comes from “go" and
think of the word “object". Object can be
touched, it is actual and finite. Department
of Energy promulgated a set of Total
Quality Management guidelines that
indicate that performance metrics should
lead to quantitative assessment of gains in
Customer Satisfaction, Organizational
Performance and Work force excellence.
However in the present research work,
Nominal Group Technique (NGT) has been
adopted to find the best methodology to
collect views to propose a model for
Software Quality. Probing Questions for
Development of Enterprise Objectives (EO)

Legend: Brackets indicate Mapping of
Questions to Tier-1 OQM Metric Set

The choice of KPI of a person would vary
year to year based on Strategic Planning,
Corporate Strategies or Corporate Strategies
or Corporate/Enterprise Objectives Metric
Development through NGT Method from
Gamma Stakeholders

Goals Questions Metrics
G1: Improve Development
Process

Q11: How well does the
development process
describe the work being
performed?
Q12: What is the relative
effort for each activity in

M11: Average elapsed time
between defect identification and
correction.
M12: Number of person hours
(effort) to complete each activity.
M13: Elapsed time for each

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 1, Jan-Feb 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 64

the process?
Q13: What is the elapsed
time for each activity in the
process?
Q14: Where in the process
are defects being
introduced? Detected?
Corrected?
Q15: How many
requirements are added
during the process?

activity.
M14: Number of defects detected
in each activity.
M15: Number of deviations from
the software development process
M16: Number of requirements
added or changed during
development

G2: Improve Software
Estimation

Q21: What is the actual
versus estimated labor rate
for each activity?
Q22: How much have the
requirements changed since
the initial estimates were
made?
Q23: How complicated is
the software being
developed?
Q24: What is the actual
versus estimated schedule,
effort, and size for each
activity?
Q25: What is the actual
versus estimated staffing
level? Overtime worked?

M21: Initial estimate versus actual
effort (person hours) for each
activity.
M22: Initial estimate versus actual
project schedule for each activity.
M23: Initial estimate versus actual
size of the software (new and
reused).
M24: Initial estimate of staff
required versus actual staff levels
(for each activity)
M25: Total overtime hours
M26: Labor rate (PH/SLOC) for
each activity.
M27: Requirement changed for
each activity
M28: Software product
complexity.

G3: Improve Project
Tracking

Q31: What is the status of
each development activity
Q32: what is the status of
overall Project
Q33: What is the earned
value of each activity?
Q34: How do actual project
expenditure

M31: earned value of each activity
M32: SLOC Completed/Schedule
Variance
M33: Initial estimate of SLOC.
M34: Overall percent of work
complete
M35: Percentage of work
complete for each activity
M36: Percentage of budget spent
up to date.

G4: Minimize Development
Cost

Q41: What is the cost of
each activity?
Q42: What is the labor rate
of each activity?
Q43: What is the original
versus actual effort required
for each activity?

M41: Actual cost of each activity.
M42 Amount spent on fixing
defects
M43: Initial cost estimate of each
activity.
M44: Budget for each activity.
M45: Initial effort versus actual

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 1, Jan-Feb 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 65

Q44: How much of the
budget is spent on
development versus
managerial versus support
task?
Q45: How much of the
budget is spent to correct
defects?

effort for each activity
M46 Percentage of budget spent
on
development/management/support
tasks

G5: Improve Software
Quality

Q51: How many defects are
there in the product?
Q52: Is the software
maintainable?
Q53: Has the software been
verified? Is it correct?

M51: Average person hours to fix
a defect
M52 Mean time between failures
(if appropriate
M53: Number of defects detected
of each type.
M54: Number of defects/SLOC
M55: Percent of code inspected.

G6: Improve Software
Performance

Q61: What is the processor
utilization?
Q62: What is the memory
utilization?
Q63: How is the software
I/O performance? What are
the characteristics of the
software?

M61: Average CPU utilization
M62: Average memory utilization
M63: Mean time between failures
(if appropriate)
M64: Number of I/O transactions
per unit of time
(actual versus required).
M65: Number of lines of code
(SLOC)
M66: Software product
complexity

G7: Improve Software
Productivity

Q71: How much time is
being spent on rework?

Q72: Are developers
spending too much time on
support and managerial
activities?
Q73: What is the average
productivity?
Q74: Is the productivity
consistent with the
experience of the team
members?
Q75: Are tools available to
use to answer these
questions about productivity

M71: Average number of person’s
hours spent on rework per
development staff member.
M72: SLOC/person hours for each
activity.
M73: Number of staff at each
experience level.
M74: Percent of budget available
for software development tools.
M75: Percent of budget available
for support staff.
M76: Proportion of person hours
spent on managerial or support
tasks for each activity.
M77: Ratio of development staff
per manager.

G8: Minimize Schedule
Overrun

Q81: What is the actual
schedule of the activity?
Q82: What is the actual

M81: Initial estimate v/s actual
estimate.
M82: Initial schedule v/s actual

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 1, Jan-Feb 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 66

level of effort and rework?
Q83: Is staffing level
adequate to meet schedules?

schedule
M83: Initial estimate v/s actual
staffing levels
M84: Staffing Variance

On further investigation, it has been found that there are 47 metrics coming out of this
framework initiative. The Metric and their explanation have been listed in Table 4
Metric listing and Explanation
SI no. Metric Description Explanation
1 M11 Average elapsed time between

defect identification and
correction.

Defect resolution time indicates the
time elapsed between identification of
defect and resolving them. This time
is critical Metric as defect aging needs
to be minimized.

SI no. Metric Description Explanation
2 M12 Number of person hours (effort)

to complete each activity
Number of Person hours indicates
effort to complete each activity. It
could be in man months, man-hours,
person-days or person-days. It is
computed by multiplying time with
number of persons.

3 M13 Elapsed time for each activity Effort distribution time indicates how
much of time is consumed for each
stage of software development-Effort
distribution time.

4 M14 Number of defects detected in
activity

Defects in each stage of life cycle.

5 M15 Number of deviations from the
software development process

Process Nonconformance as per
mandated Life cycle model like
Waterfall, RAD, Spiral and Iterative
Prototyping.

6 M16 Number of requirements added or
changed during development.

Variance in TCSER (Time, cost, Size,
Effort and Resources).

7 M21 Initial Estimate versus actual
effort (person hours)for each
activity

Effort Variance

8 M22 Initial Vs. Actual Project
Schedule for each activity

Schedule Variance

9 M23 Initial Estimate Vs. Actual Size
of Software (for each activity

Size Variance

10 M24 Initial Estimate of Staff required
versus actual staff levels.

Staffing Variance

11 M25 Total Overtime Hours Schedule Variance
12 M27 Requirements changed for each

activity
Scope Creep Index/requirement
Volatility

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 1, Jan-Feb 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 67

13 M28 Software Product Complexity Complexity Measure of Mc Cabe
14 M31 Earned Value of each activity Earned Value Management
15 M32 SLOC Completed Work throughput
16 M33 Initial estimate of SLOC Unit of Effort Estimate
17 M34 Overall percentage work done Work distribution

18 M35 Percentage of work complete for

each activity
Work accomplishment pattern

19 M36 Percentage of budget spent up to
date.

Budget Usage pattern

20 M41 Actual cost of each activity Cost of operation
21 M42 Amount spent fixing defects in

each activity
Defect Resolution Cost

22 M43 Initial Cost of Estimate of each
activity

Activity Based Costing

23 M44 Budget for each activity Budget Allocation
24. M45 Initial Effort Vs. actual effort for

each activity
Effort Variance

25 M46 Percentage of budget spent on
development/management/suppor
t tasks

Engineering Budget/Support
Budget/Operations cost

26 M51 Average Person hours to fix
defect

Defect Resolution Rate (Average)

27 M52 Mean Time between Failures Reliability Measure
28 M53 Number of defects detected in

each type
Defect Distribution (Serverity Levels)

29 M54 Number of defects/SLOC Defect Density Measure

30 M55 Percent of Code Inspected Code inspection coverage
31 M61 Average CPU Utilization Resource Utilization Measure

32 M62 Average Memory Utilization Resource Utilization Measure
33 M63 Mean time between failures Reliability Measure
34 M64 Number of I/O Transactions per

unit of time
I/O Distribution

35 M65 Number of Lines of Code
(SLOC)

Effort Indicator

36 M66 Software Product Complexity Complexity methods

37 M71 Average number of person hours
spend on rework per development
staff member

Rework percentage per developer

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 1, Jan-Feb 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 68

38 M72 SLOC/Person hours for each
activity

Effort indicators (work Vs. time ()

39 M73 Number of staff at each
experience level

Experience Level Distribution

40 M74 Percent of Budget available for
Software development tools.

Budget Allocation for Tools

41 M75 Percent of Budget Available for
support staff

Support Staff Budget Allocation

42 M76 Proportion of person hours spent
on managerial or support tasks
for each activity

Effort Distribution (Support)

43 M77 Ratio of development staff per
manager.

Span of Control measure

44 M81 Initial Estimate vs. actual
Estimate

Estimation Effectiveness

45 M82 Initial Schedule vs. Actual
Schedule (effort and rework0

Schedule Overrun (effort and Rework)

46 M83 Initial Estimate Vs. Actual
Staffing Levels

Resource Overrun

47 M84 Resource Leveling for schedule
Variance minimization

Staffing Level Variance

II. SELECTION OF METRIC
This section discusses how to shortlist 47
metrics and relate the same to Enterprise
Objectives and Critical Success Factors for
three levels of Software Organizations
operating in the Value Chain. Organization
who wants to measure his/her Organizations
objectives. Secondly Enterprise Objectives
of the organization and Critical success
factors of Software Company need to be
considered before arriving at a final metric
set.
Decision making in selection of metrics for
the OQM Model is carried out at two stages.

 Stage 1 Filtering: Eight Goals
arrived from NGT technique by
polling primary and secondary
stakeholders have been pitted

against 6 Enterprise objectives to
validate the mapping strength and
relationship.

 Stage 2 Filtering: Stage 1 resulted in
5 goals and 27 metrics which is
against pitted against three levels of
software organizations (in Software
Value Chain of Indian IT Industry)

In stage 2 the primary focus is on Software
Value Chain and mapping of Critical
Success Factors (CSF s) of the Value Chain.
Multiple Criteria like 8 Goals, 6 Enterprise
Objectives and Software Value Chain has
been taken into consideration for taking a
decision on selecting the most significant
metric set which is closer to Corporate
Objectives. MCDM yields different results
when Enterprise Objectives changes based

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 1, Jan-Feb 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 69

on business outcomes and business
performance.
Filtering provides dynamicity in the OQM
model as multiple permutations and
combinations of metric set can be generated
out of 47 metric set based on
Organizational/Enterprise Objectives.
Procedure for Level-1 Screening

 Step 1: Eight Goals derived from
were placed in Rows

 Step 2: Weights were assigned
on a scale of (1-10) for each of
the cell based on the
assumptions and market trends
and independent of any Software
Organization categories

 Step 4: Row weights were
normalized by dividing
individual row weights by Mean
Column weights of Row
Weights column.

 Step 5: Top five values are
selected are G1, G3, G5, G7, and
G8

 Step 6 : As per Table each of
these goals provides 27
Intermediate Metrics

Procedure for Level -2 Screening
 Step 1: Intermediate Metric set of 27

metrics Step 2: resulting metrics
were mapped against three levels of
Software Organizations in the value
chain. Table 4.9 discusses the same.
In this Table the CSP of each level
and the metric is mapped by
assigning weights or significance to
see how far does the intermediate
metric address the CSP of the
Software Organization Level or
Category.

 Step 3: It is found that M11 which
corresponds to response time shows
high affinity relationship with
Level-1 Organizations, M51 which
corresponds to product defects
shown high affinity relationship to

Level-3 Software Organizations,
M74 and M75 which corresponds to
training and tools to ensure
employee satisfaction shows high
affinity invariably to all Levels of
Software Organizations and M81
which corresponds to schedule
variance shows high affinity
relationship to Level-2
organizations.

 Step 4: Hence M11, M51, M74,
M75, M81 together with EO2 and
EO3 enters the Tier-1 OQM Model
for Software Organizations. Step 4
of Section 4.5.1 discusses how the
normalized weights have been
arrived at.

III. PERFORMANCE EVALUATING

USING OQM MODEL

MO11 Schedule Variance: This metric is a
result of significance attached to Level-1
Software Organizations which is based on
billing models like Time and Material,
Fixed Price or Fixed Time model. This
metric is a critical factor to achieve
Business Success and is a progress
indicator. This is a project Management
metric where for any projects executed By
Level-2 Software Organizations the model
warrants tracking of Start Variance and End
Variance. End Variance is (Var Days/Act
Day)* 100 and Start Variance is (Var
Days/Plan days)*100. Var Day = (Act
Days-Plan Days). Project Management
Body of Knowledge (PMBOK) defines
Schedule variance during the start and end
of the project. Start variance means when a
project manager starts a project, he or she
would like to know how much delay was
there in staring the project against plan start
date. Similarly End Variance indicates the
delay of the project i.e. the gap between the
actual end date and planned end date.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 1, Jan-Feb 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 70

MO12 and MO13 Product Field Defects and
Severity Field Defects: This metrics hold
importance for organizations in Level-3
making software products and are at very
high level in the software Value Chain.
Here the number of open defects product
wise and severity wise is captured and
attempts are made to control the defects to
achieve Product Quality.
MO14 Turnaround Time: This the resolution
time or the time elapsed between raising a
defect or complaint and closing the same. It
is found that in Level-1 Customer Care
organizations like BPO/Contact Center this
metric holds significance and is a CSP for
Level-1 organizations apart from metrics
like number of calls made by agent per
hour, number of contacts per hour or it
could be conversion rate of calls to checks
in case of debt collection process in a BPO.
MO15 and MO16: Employee Satisfaction
Index and Customer Satisfaction Index
CSI/ESI) this metric discusses the need for
a measure where all the internal and
external customers are happy and satisfied
and giving their best for the growth and
excellence of their organizations. This
metric holds high significance to all types of
software Organizations in the Value chain.

IV. CONCLUSION

The basis of preparing the Tier-1 OQM
Model and subsequently Tier-n too with
permutations among 47 metrics given a new
enterprise objective. The metric list would
vary in tier-2 when the software category is
different from the categories taken in OQM
Framework. Having defined the OQM
Framework, in the succeeding chapter the
applications of OQM Model to different
levels of Software Industry is mapped to see
what are the cores or critical success factors
in each of Software Industry and how OQM
could be leveraged to address the same. The
proposed OQM Model which resulted in 6

metrics in Tier-1 filtering when go applied
to the case companies proved to be a
empirical fit as it was found during the
validation process for Alpha technologies at
Level-3 resulted in two metrics on Product
field defect and Field defects severity wise.
Similarly while validating the model for
Gamma Technologies resulted in turn
Around Time as critical success factor.
Major validation of the model was carried
out by conducting NGT with the CEOs of
Alpha, Beta and Gamma Technologies.

Case study method details contextual
analysis of a limited number of researcher
and in general Social scientists has used the
Qualitative research method as it is used in
the development of OQM Model. In
Qualitative research wide use of experience,
real-life situations form the basis for
application of ideas.
For the development of OQM Model the
researcher had adopted the above steps of
Case based method. The research object
was Software Quality and an exploratory
research was conducted to see whether there
existed a model which can evaluate whether
there existed a Model which can evaluate an
organization for Business Performance and
Effectiveness. The candidate companies
selected were from Indian Software
Industry and three levels of organizations in
proposed software were from Indian
Software Industry and three levels of
organizations in proposed software value
chain has been taken. Data was collected for
Tier-1 OQM Model and evaluation and
analysis was done and the scheme for
collection of data for multi-tier was also
proposed. The companies were selected
based on convenience sampling. The
researcher selected the Gamma
technologies, Alpha and Beta Technologies
close to his place and study. This ensured
more interaction, observation and facilitated

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 1, Jan-Feb 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 71

more idea engineering and brainstorming
from the respondents during data
On the lines of manufacturing value chain
propounded by Poter (1980) attempt has
been made in the research work to map
software value chain with primary activities
and secondary activities. Engineering
Process like requirement Management,
Design, coding, Unit Testing and User
Acceptance testing as per SDLC Models
addresses primary activities. To ensure the
software is of good quality and delivered on
time, cost, plan and resources feeder
processes like quality Management
Processes, Project Management Process is
considered as engineering activities.

REFERENCES

[1] Abreu, FB., “Metrics for Object-Oriented

Environment,” Proceedings of the Third
International Conference on Software
Quality, Lake Tahoe, Nevada, 1993, pp. 67-
75.

[2] Agile Alliance At
http://agilealliancebeta.org/article/file
/904/file.pdf, 2001

[3] Akao, Y., “New Product Development and
Quality Assurance system of QFD
Standardization and Quality Control”, Japan
Standards Association, Vol 25(4) 1997, pp
9-14.

[4] Albrecht, A. J., “Measuring Application
Development Productivity,” Proceedings of
the Joint IBM/SHARE/GUIDE Application
Development Symposium”, 1987, pp. 83-99

[5] Development Effort Prediction: A Software
Science Validation”, IEEE Transactions of
Software. Engineering Vol. 9 (6), 1983, pp.
639-648.

[6] Arnold, R, S. “A Road Map Guide to
Software Reengineering Technology”,
Software Reengineering. IEEE Computer
Society, 1992, pp. 3-22.

[7] Azuma, M., “Software Quality Assurance”,
Vortrags manuscript zum Vortrag, Vol
12(6), Zurich, Germany, 1987.

[8] Bailey, C.T., and Dingee, W.L., “A
Software Study Using Halstead Metrics”,

Bell Laboratories Denver, CO. 80234,
1981.

[9] Baker, A.L., Beman, J.M., Gustafson, D.A.,
Melton, A., and Whitty, R.A., “Modeling
and Measuring the Software Development
Process”, Proceedings of the Twentieth
Annual International

[10] Baker, A.L., Bieman, J.M., Fenton, N.,
Gustafson, D.A., Melton, A. and Whitty,
R.A., “A Philosophy for Software
Measurement”, The Journal for Systems
and Software, Vol. (3), 1990, pp. 277-281

[11] Barns D. ,and Mechael, G., “Inheriting
Software Metrics”, Journal of Object
Oriented Programming, 1993, pp.27-34.

[12] Basili, V.R., Reiter, R., “Evaluating
Automatable Measures of Software
Development”, Proceedings of Workshop
on Quantitative Software Models, 1989, pp.
107-116.

[13] Basili, V., and Rombach D.H., “Integrating
Measurement into Software Environments”,
TR-1764; TAME-TR-1, 1987.

[14] Bazzana, G., Anderson, O., and Jokela, T.,
“ISO 9126 and ISO 9000: Friends or foes”?
Presented at Software Engineering
Standards Symposium, 1993.

[15] Belady, L.A., On Software Complexity i:
Workshop on Quantitative Software Models
for Reliability. IEEE No. TH0067-9, New
York, N.Y., pp 90-94, 1979.

[16] Beck, Ke., “Extreme Programming
Explained: Embrace Change”, Boston, MA:
Addison-Wesley, ISBN 0-321-27865-8”,
2001.

[17] Biehl, R.E., “Six Sigma for Software”,
IEEE Software, Vol. 21(2), pp 68-70, 2001

[18] Bieman, J.M., and Schultz, J. “An
Empirical Evaluation and Specification
Testing Criterion”, Software Engineering
Journal, Vol. 7(1), 1992, pp 43-51.

[19] Bieman, JM., “Deriving Measures of
software Reuse in Object Oriented
Systems”, Technical Report #CS91-112,
Colorado State University, Fort
Collins/Colorado, USA, 1991.

[20] Boddie, J. , “Do We Ever Really Scale
Down?”, IEEE Software, Vol. 17(5), pp.
79-81, 2000.

[21] Boehm, B. W., Brown, J. R., Kaspar, J. R.,
Lipow, M. L. & MacCleod, G., “
Characteristics of Software Quality”, New
York: Americal Elsevier, 1988.

http://www.ijcstjournal.org/
http://agilealliancebeta.org/article/file%20/904/file.pdf
http://agilealliancebeta.org/article/file%20/904/file.pdf

