
International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 1, Jan-Feb 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 90

Web Based Custom Validation Using Framework in Java
Ankur Saxena
Amity University

Sector – 125, Noida

Uttar Prdesh – India

Asaxena1(at)amity(dot)edu

ABSTRACT

In this type of research, we have discussed custom validation of java Struts2 for security purposes. Custom

validation is user defined validation of Struts2. These techniques are light-weight, efficient, and no false

positive.it is a part of J2ee simplify the foundation of the enterprise level application program, also because the

designers and the programmers to distribute the function in each discreteness of the server end when using J2ee

to establish the application programs. Today, traditional desktop applications, such as document viewers,

presentation tools and chat applications are commonly available as online JavaScript applications for

validations. Previous research on web vulnerabilities has primarily concentrated on flaws in the server-side

components of web applications. We implement our technique in Struts2 framework. The main results of this

paper are a flexible struts2 framework for custom validation.

Keywords:- Java, J2ee,Web, Validation,Struts2,Interceptor,MVC.

I. INTRODUCTION

J2ee (Java 2 Platform, Enterprise Edition) is

Sun's preferred Java platform for multi-tier

enterprise applications. It simplifies enterprise

applications by basing them on standardized,

modular components, by providing a complete set

of services to those components, and by handling

many details of application behaviour

automatically, without complex programming [1].

J2ee uses a multi-tier distributed application model.

There are three tiers in the typical J2EE application

model: Web presentation tier, business logic tier

and data tier [2].

Web is the very complex issues these days.

Since the desire of the companies and organizations

are increasing so the complexity and the

performance of the Web programming matters.

Complexity with the different types of

communication devices is increasing [3]. A typical

Web application has two parts: a server-sides

component and a client-side component. The

server-side component processes the user’s request

and generates an HTML response that is sent back

to the browser. The client-side code of the web

application, typically written in JavaScript, is sent

with the HTML response from the server. The

client-side component executes in the web browser

and is responsible for processing input data and

dynamically updating the view of web page on the

client [4].

The framework is designed to streamline the full

development cycle, from building, to deploying, to

maintaining applications .it can be considered as a

set of functions helping the developers in creating

the applications [5].

 Standard input validation mechanisms should

make sure that all input is validated for length,

type, syntax, and business rules before accepting

the data to be displayed, stored or used [6]. This

task can be repetitive and tedious for a

programmer, and this is the primary motive for

implementing frameworks for input validation

(Commons Validator [7], Struts 2 [8], Hibernate

Validator [9] and Heimdall [10]). Such frameworks

make it easier to maintain and execute the testing

code by decoupling the application logic from the

validation logic.

 For object-oriented languages like Java, the

challenge is to validate specific properties of an

object representing the input, without writing

validation code in the object itself. Historically,

XML configuration files have been used to achieve

this separation of concerns, by explicitly storing the

names of the properties to be tested and that of the

tests to be performed. At runtime, reflection [11] or

Servlet filters (listener or interceptors) [8] would

then used to actually run the tests on the target

methods.

 Validation process as it is seen by the user. Only

a few lines of code need to be inserted into the

application in order to use the framework. Namely,

a new Validator object has to be created, and its

validation method validate () has to be invoked on

an annotated object o to validate it. A Validation

Summary object is returned, containing the results

of the validation tests for the object [12].

1.1 Struts 2: Struts2 provides supports to POJO

based actions, Validation Support, AJAX Support,

Integration support to Hibernate and spring

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 1, Jan-Feb 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 91

frameworks, support to various result types such as

Velocity, JSP etc [13].

A Struts2 provides many features that were not in

struts1. The important features of struts2

framework are given below:

1. An Action class implements an Action interface.

Struts2 provides a base Action Support class that

implements commonly used interfaces and an

Action interface is not necessary. Any POJO object

along with an execute signature can be used as a

Struts2 Action object.

2. Struts2 Actions are not coupled to a container

type. Most often the servlet contexts are

represented as simple Maps and allowing Actions

to be tested in isolation. Struts2 Actions can still

access the original request and response, when

required. However other architectural elements

reduce or eliminate the need to access the
HttpServetRequest or HttpServletResponse

directly.

3. Struts2 uses Action properties as input properties

and eliminating the need for a second input object.

All Input properties may be rich object types which

may have their own properties. The Action

properties can be accessed from the web page via

the taglib. Struts2 also supports the Action Form

pattern, as well as POJO form objects and POJO

Actions. Rich object types, including business

objects, can be used as input/output objects. The

Model Driven feature simplifies taglib references

to POJO input objects

4. Struts2 Actions can be tested by instantiating the

Action, setting properties, and invoking methods.

Dependency Injection support also makes testing

simpler.

5. Struts2 can use JSTL, but it also supports a more

powerful and flexible expression language called

"Object Graph Notation Language" (OGNL).

6. Struts2 uses OGNL for type conversion and

converters to convert Basic and common object

types and primitives as well.

7. Struts2 allows manual validation that is done by

using the validate method and the XWork

Validation. This Validation Framework allows

chaining of validations into sub-properties using

the validations defined for the properties class type

and the validation context

8. Struts2 uses a Value Stack technology to make

the values accessible to the taglibs without

coupling the view to the object to which it is

rendering. The Value Stack strategy enables us to

reuse views across a range of types, having same

property name but different property types[14].

1.2 Struts 2 Custom Validation: We can define

our own custom validation or validation logic in

java struts 2 by implementing the Validateable

interface in the action class.

The workflow interceptor is used to get information

of the error messages defined in the action class.

The workflow interceptor checks if there is any

validation errors or not. It doesn't perform any

validation.

 It is applied when action class implements the

Validateable interface. The input is the default

parameter for this interceptor that determines the

result to be invoked for the action or field error. It

is found in the default Stack so we don't need to

define it explicitly.

There is only one parameter defined for workflow

interceptor.

inputResultName: this method specifies the result

name to be returned if field error or action error is

found

Validateabale

interface:The Validateable interface must be

implemented to perform validation logic in the

action class. It contains only one

method validate() that must be overridden in the

action class to define the validation logic. Signature

of the validate method is:

public void validate();

Validation Aware interface: The Validation

Aware interface can accept the action class level

error messages. The field level messages are kept

in Map and Action class level messages are kept in

collection. It should be implemented by the action

class to add any error message.

Methods of Validation Aware interface

The methods of Validation Aware interface are as follows:

Method Description

void addFieldError(String fieldName,String errorMessage) This Method adds the error message for the

specified field.

void addActionError(String errorMessage) This Method adds an Action-level error

message for this action.

void addActionMessage(String message) This Method adds an Action-level message for

this action.

void setFieldErrors(Map<String,List<String>> map) This Method sets a collection of error messages

for fields.

void setActionErrors(Collection<String> errorMessages) This Method sets a collection of error messages

for this action.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 1, Jan-Feb 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 92

void setActionMessages(Collection<String> messages) This Method sets a collection of messages for

this action.

boolean hasErrors() This Method checks if there are any field or

action errors.

boolean hasFieldErrors() This Method checks if there are any field

errors.

boolean hasActionErrors() This Method checks if there are any Action-

level error messages.

boolean hasActionMessages() This Method checks if there are any Action-

level messages.

Map<String,List<String>> getFieldErrors() This Method returns all the field level error

messages.

Collection<String> getActionErrors() This Method returns all the Action-level error

messages.

Collection<String> getActionMessages() This Method returns all the Action-level

messages.

Table 1.1 Methods of Validations.

II. RELATED WORK

In this section, we introduce the running

example used throughout the paper, and show how

annotations can be used to define tests on single

properties of an object. We will use the web form

for international money transfers from a

hypothetical Internet bank (see Figure 1). IBAN

(International Bank Account Number) is the

standard for identifying bank accounts

internationally (not in USA). Some countries have

not adopted this standard, and for money transfer to

these countries, a special clearing code is needed in

combination with the normal account number of

the beneficiary. BIC (Bank Identifier Code), also

known as SWIFT. It is needed to identify the

beneficiary’s bank uniquely.

Figure 1

 We assume that the object representing the

form is created in Java, and that each field in the

web form is represented by a property of this

object. Fields where the user does not enter a value,

are in this example represented by the null value. A

partial implementation of this Java object is shown

in Figure 2. Here every annotation represents a test

to be run on the return value of the method it is

applied to. In our framework, annotations

representing tests are called validation-annotations.

This categorization is further split into property-

annotations, which represent property-tests, and

cross-annotations, which represent cross-tests. All

the annotations in Figure 2 are property-

annotations, i.e., they involve checking a single

specific property.

We use property-tests to check whether basic

formatting rules are respected. For example, the

annotation @IntRange(min=0,max=10000)

represents a test that checks whether the value of

amountEuro is non-negative and not greater than

10000. The property-annotation

@IntRange(min=0,max=99) represents a test to

check whether amountCents is between 0 and 99.

The propertyannotation @ValidateBIC represents a

property-test for BIC codes, and @Required means

that the field cannot be left empty.

 The annotations only specify what tests should

be run on each value. To actually run the tests, an

object must be passed to a validator. The validator

inspects the object through reflection, extracts the

annotations and the return

@ValidateBIC

@Required

public String getBIC()

{ return BIC; }

@IntRange(min=0,max=10000)

public Integer getAmountEuro()

{ return amountEuro; }

BICCODE

AB1232342

10000 10

IBAN

BIC

Account

Clearing-code

Amount €

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 1, Jan-Feb 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 93

@IntRange(min=0,max=99)

public Integer getAmountCents()

{ return amountCents; }

Figure 2: Example code using the property-

annotations to test input from the web form in

Figure 1.

@Validation

@Retention(RetentionPolicy.RUNTIME)

@Target({ElementType.ANNOTATION_TY

PE,

ElementType.METHOD})

public @interface IntRange {

int min();

int max();

public static class Tester

implements IPropertyTester<IntRange,

Integer> {

public boolean runTest(IntRange r,

Integer v) {

return(v >= r.min() && v <= r.max());

}}}

Figure 3: Example of property-annotation.

Values from the getter-methods, and invokes the

corresponding test [11]

III. IMPLEMENTATION

In this part of paper we will see how we can

validate using Struts 2with tomcat (open

source servlet container developed by the Apache

Software Foundation (ASF))[15]. Lets first create

the login page, we use Struts 2 UI tags to create the

login page.

The s:form tag contains all the form elements.

The action attribute contains the action name to

which the form should be submitted. This action

name should be same as the one specified in the

XML declarative architecture. The struts.xml files

do the configuration.

The textfield tag is used to create a text box. The

label attribute of the textfield tag contains the name

to be displayed on the page and the name attribute

contains the name of the property in the action

class to be mapped. The password tag is same as

the textfield tag except that the input value is

masked. The submit tag is used to create a submit

button, the value “register“represented the label of

the button.

Steps to perform custom validation

The steps are as follows:

1. create the form to get input from the user

2. Define the validation logic in action class

by extending the ActionSupport class and

overriding the validate method

3. Define result for the error message by the

name input in struts.xml file

Figure 4 Flow of Custom Validation

For this approach we are creating 4 pages:

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 1, Jan-Feb 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 94

1. index.jsp for input from the user.

2. RegisterAction.java for defining the

validation logic.

3. struts.xml for defining the result and

action.

4. welcome.jsp for the view component.

1) Create index.jsp for input:This jsp page

creates a form using struts UI tags. It receives

name, password and email id from the user.

index.jsp

<%@ taglib uri="/struts-tags" prefix="s" %>

<s:form action="register">

<s:textfield name="name"

label="Name"></s:textfield>

<s:password name="password"

label="Password"></s:password>

<s:submit value="register"></s:submit>

</s:form>

2) Create the action class:This action class inherits

the ActionSupport class and overrides the validate

method to define the validation logic.

RegisterAction.java

package com.ankur;

import com.opensymphony.xwork2.ActionSupport;

public class RegisterAction extends

ActionSupport{

private String name,password;

public void validate() {

if(name.length()<1)

addFieldError("name","Name can't be blank");

if(password.length()<6)

addFieldError("password","Password must be

greater than 5");

}

public void String setName(String name)

{

this.name=name;

}

 public void String setPassword(String password)

{

this.password=pasword;

}

public String getName()

{

return name;

}

 public String getPassword()

{

return password;

}

 public String execute(){

//perform business logic here

 return "success";

}

}

3) Define a input result in struts.xml:This xml file

defines an extra result by the name input, that will

be invoked if any error message is found in the

action class.

struts.xml

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE struts PUBLIC "-//Apache Software

Foundation//DTD Struts

 Configuration 2.1//EN"

"http://struts.apache.org/dtds/struts-2.1.dtd">

<struts>

<package name="default" extends="struts-

default">

<action name="register"

class="com.ankur.RegisterAction">

<result>welcomeUser.jsp</result>

<result name="input">index.jsp</result>

</action>

</package>

</struts>

4) Create view component:It is the simple jsp file

displaying the information of the user.

welcomeUser.jsp

<%@ taglib uri="/struts-tags" prefix="s" %>

Name:<s:property value="name"/>

Password:<s:property value="password"/>

Defining action level error message:The action

level error message works for the whole form. We

can define the action level error message

byaddActionError() method of ValidationAware

interface in validate() method.

package com.ankur;

import com.opensymphony.xwork2.ActionSupport;

public class RegisterAction extends

ActionSupport{

private String name,password,email;

public void validate() {

if(name.trim().length()<1 ||

password.trim().length()<1){

addActionError("Fields can't be blank");

}

}

public void String setName(String name)

{

this.name=name;

}

 public void String setPassword(String password)

{

this.password=pasword;

}

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 1, Jan-Feb 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 95

public void String setEmail(String email)

{

this.email=email;

}

public String getName()

{

return name;

}

 public String getPassword()

{

return password;

}

 public String getEmail()

{

return email;

}

public String execute(){

return "success";

}

}

Now you need to use action error tag in index.jsp

file to display the action level error message.

index.jsp

<%@ taglib uri="/struts-tags" prefix="s" %>

<s:actionerror/>

<s:form action="register">

<s:textfield name="name"

label="Name"></s:textfield>

<s:password name="password"

label="Password"></s:password>

<s:textfield name="email" label="Email

Id"></s:textfield>

<s:submit value="register"></s:submit>

 </s:form

IV. FUTURE WORK

We have presented a new framework for

system design Custom validation .Custom

Validation of Struts2 are the best to attract the

software developers to work .Custom Validation of

Struts 2 are a powerful technology for validate

data, and it enables Application to access data from

any source in a platform-independent manner.

Struts framework is a best implementation of MVC

based architecture .Future work of this report is to

develop an enterprise application which is based on

Struts, Spring and Hibernate Custom Validation

and we plan to implement our solution on the .NET

framework and also in PHP, as well as incorporate

automated injection error logging

V. CONCLUSION

The main idea in the design of this

framework has been that it should be easy to create

libraries of custom validation, and that these tests

should be highly reusable.This paper has proposed

to solve the problem of the validation. Based on the

development architecture framework by Struts 2. It

can protect the business data effectively. Besides, it

is useful to the upper debug and testing. With the

development of the web, it is absolutely necessarily

for a large scale enterprise to be informational.

Custom validation of Struts 2 emphasize

particularly on the control of the web page

Validation in java. It will also open the new scope

and new business opportunities’ for the companies

and the programmers. It’s recommended to use this

technology for the Better performance.

REFERENCES

[1] A Saxena,A Chaurasia “Software Project

Architectural Approach using Java Struts”

International Journal of Research, Vol. 5,

Issue 2, 2014 .

[2]. Y Wang , C Guo,L Song."Architecture of E-

Commerce Systems Based on J2EE and

MVC Pattern"IEEE Computer Society

2009.

[3] R Garg ,Y Sood ,B Kottana, P Totlani "A

Framework Based Approach for the

Development of Web Based

Applications"World of Computer Science

and Information Technology Journal

(WCSIT)Vol. 1, No. 1, 1-4, Feb. 2011.

[4] P Saxena,S Hanna, P Poosankam, D Song.”

FLAX: Systematic Discovery of Client-side

Validation Vulnerabilities in Rich Web

Applications” In Proc. of the 17th Annual

Network and Distributed System Security

Symposium (NDSS), Feb 2010

[5] P Gupta,M.C. Govil ."MVC Design Pattern

for the multi framework distributed

applications using XML, spring and Struts

framework" International Journal on

Computer Science and Engineering Vol.

02, No. 04, 2010, 1047-1051.

 [6] (2009,May) OWASP Top Ten project.

[Online]. Available:

http://www.owasp.org/index.php/Category:

OWASP Top Ten Project

[7] (2009, May) Commons validator. Apache.

[Online]. Available:

http://commons.apache.org/validator/

[8] (2009, May) Struts. [Online]. Available:

http://struts.apache. Org

[9] (2009, September) Hibernate validator.

Hibernate. [Online]. Available:

https://www.hibernate.org/412.html

[10] L.-H. Netland, Y. Espelid, and K. A.

Mughal, “A reflectionbased framework for

content validation,” in ARES. IEEE

Computer Society, 2007, pp. 697–706.

http://www.ijcstjournal.org/
http://www.owasp.org/index.php/Category
http://commons.apache.org/validator/
http://struts.apache/
https://www.hibernate.org/412.html

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 1, Jan-Feb 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 96

[11] K. Arnold, J. Gosling, and D. Holmes, The

Java Programming Language, Fourth

Edition. Addison-Wesley, 2006.

[12] F Mancini, D Hovland, K A Mughal,” The

SHIP Validator: An Annotation-based

Content-Validation Framework for Java

Applications”, 2010 Fifth International

Conference on Internet and Web

Applications and Services, 2010 IEEE DOI

10.1109/ICIW.2010.26.

[13] D Brown,C M Davis, S Stanlick” Struts in

Action” DreamTech, Delhi,India 10,11.

[14] A Saxena” Struts based Approach for the

Development of Java Applications” Journal

of Software Engineering Tools &

Technology Trends Volume 1 issue 2.

[15] A Saxean,” Securing Confidential Data

using Java/J2EE” IJSTM, Vol. 2 Issue 3,

July 2011.

http://www.ijcstjournal.org/

