
International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 1, Jan-Feb 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 135

Data Generation for Analytics in HADOOP

Anjali Devi, Aarif Birajdar, Madhuri Pol, Shobha Halle,

Safiya Shaikh, Savita Halle
Department of Computer Science and Engineering

Vidya Vikas Pratishthan Institute of Engineering & Technology

V.V.P.I.E.T- Solapur

Maharashtra – India

ABSTRACT
Apache Hadoop is an source software for storage and large-scale processing of data-sets on clusters. Hadoop is an

Apache top-level project being built and used by a global community of contributors and user. The Apache Hadoop

framework is composed of the following modules: n

 Hadoop Common – contains libraries and utilities needed by other Hadoop modules.

 Hadoop Distributed File System (HDFS) – a distributed file-system that stores data on commodity machines,

providing very high aggregate bandwidth across the cluster.

 Hadoop Map Reduce – a programming model for large scale data processing.

Apache Hive is a data warehouse infrastructure built on top of Hadoop for providing data understanding, queries, and

represent. Apache Hive supports analysis of large datasets stored in Hadoop'sHDFS and compatible file systems such

as Amazon S3filesystem. It provides an SQL-like language called HiveQL while maintaining full support for

map/reduce. To ignite queries, it provides sequences, including bitmap indexes.

Using these components, we are going to process big data in minimum time as compared to traditional ways. After

generating purified big data out of the raw big data, we are going to create some hive table for exposing data for

various business purposes.

Keywords:- Hadoop, Big Data, MapReduce, HQL.

I. INTRODUCTION

Apache Hadoop is a framework for running applications

on large cluster. The Hadoop framework transparently

provides applications both reliability and data difference.

Hadoop implements a calculation paradigm named Map

Reduce, where the application is split into different small

segments of work, one of which may execute or re-execute

on different node in the cluster. Later, it allocates a

distributed file system (HDFS) that stores data on the

calculates nodes, providing very high accurate bandwidth

across the segments. Both Map Reduce and the Hadoop

Divide File System are designed so that node failures are

automatically handled by the framework.

A. Mapreduce

Map

As the Map operation is parallelized the input file set is

first split to several pieces called file division. If a several

file is so huge that it will affect seek time it will be split to

several parts. The parts does not known anything about the

entrance file's internal logical representation, for example

line-dependent text files are split on arbitrary size

boundaries. Then a new merge task is created per File

division.

Reduce

When a reduce task starts, its input is scattered in many

files across all the nodes where merge tasks run. If run in

divide mode these need to be first copied to the local file

system in a copy phase.

 II. PROBLEM STATEMENT

This network topology is designed and work well for

hadoop cluster running on physical server area. However,

for hadoop running on imaginary platform, we have

advance hypervisor layer, and its properties include:

a. The communication price between VMs within the same

hypervisor is lower than across hypervisor (physical host)

which will have higher reliable output, lower latency, and

not generating physical environment traffic.

 VMs on the same physical box are mostly affected by the

same hardware failure. Due to above characteristics in

performance and reliable, this layer is not adaptive for

hadoop. So we have to develop to induce an additional

layer in hadoop network topology to reflect the

characteristics on virtualized platform.

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/
http://en.wikipedia.org/wiki/Data-set
http://en.wikipedia.org/wiki/Computer_cluster
http://en.wikipedia.org/wiki/List_of_Apache_Software_Foundation_projects
http://en.wikipedia.org/wiki/Data_warehouse
http://en.wikipedia.org/wiki/Hadoop
http://en.wikipedia.org/wiki/HDFS
http://en.wikipedia.org/wiki/Amazon_S3
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/Bitmap_index
http://hadoop.apache.org/
http://wiki.apache.org/hadoop/DFS
http://wiki.apache.org/hadoop/MapReduce

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3Issue 1, Jan-Fab 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 136

 III. OBJECTIVE AND SCOPE

Hadoop is a popular implementation of the MapReduce

framework for running data on clusters of available servers.

Although Hadoop automatically keep in level job

execution with concurrent map and reduce task. It Propose

a design improvement in shuffling mechanism of reduced

task, which could significantly improve the performance of

map-reduce jobs in hadoop segments. I level the delay

time in job completion to the coupling of the shuffle phase

and minimizes tasks, which provides the potential level

between multiple waves of map and minimizes un tapped,

fails to locate data dividation skew among min tasks, and

available task scheduling inefficient. In this work, we

propose to divide shuffle from reduce tasks and convert it

into a platform service provided by Hadoop.

The future scope of this information is to focuses on the

performance improvement of shuffle service, which

proactively push map output to respective nodes via a

novel shuffle on write operation and flexible schedule

tasks considering workload balance this seminar reviews

performance considerations and describes relevant

benchmarks with a Hadoop analytics cluster.

IV. METHODOLOGY

MapReduce is a programming model designed for treating

big volumes of data in parallel by isolating the work into a

set of several tasks. MapReduce task are written in a

unique style inclined by functional programming concepts,

specifically idioms for processing lists of information. This

section explains the behaviour of this programming model

and how it can be used to write programs which run in the

Hadoop environment. Reduce tasks are created and

assigned a task ID by Hadoop during the initialization of a

job.

The task ID is then used to recognize the associated

partition in each map out file. For example, shuffler

fetches the partition that matches the reduce ID from all

merge tasks. When there are minimum parts available,

minimiu tasks are scheduled in the increasing order of their

query IDs. Although such a design simplify task

management, it may cause to long job completion time and

low cluster in time output. Due to the strict sequence order,

it is hard to prioritize min tasks that are predicted to run

longer than others.

A MapReducejob is a unit of work that the client wants to

be performed: it consists of the input raw data, the

MapReduce program, and configuration data. Hadoop runs

the job by distributing it into tasks, of which there are two

different several types: map tasks and reduce tasks.

There are two types of nodes that control the job execution

process: a jobtrackerand a number of tasktrackers. The

jobtracker supports all the jobs run on the system by

scheduling tasks to run on task shedule. Tasktrackers run

tasks and send status reports to the jobtracker, which keeps

a status record of the entire status of each job. If a task

stops, the jobtracker can restart it on a different tasktracker.

As part of a reduce task, shuffle cannot start until the

matching reduce is scheduled. Besides the inadequacy of

job output, the coupling of shuffler and remover also

leaves the possible parallelism between idle jobs. In a

production environment, a MapReduce cluster is shared by

many users and multiple jobs. Each job only gets a share

of the execution slots and often requires several execution

frequencies, each of which contains one round of map or

reduce tasks. Because of the coupling, data shuffling in

future reduce waves cannot be overlapped with map waves.

De-coupling shuffle from reduce offers a number of pay

areas. It enables skew-aware placement of shuffler

information, elastic scheduling of reduce tasks, and all

overlapping the shuffle part with map tasks.

V. DESIGN PROCESS

System Architecture
System architecture is the conceptual model that defines

the structure behavior,and more views of

system .Architecture description is formal description and

represention of system ,organized in away that support

reasoning about the structure of the system which

comprises system components

 Fig 1 Architecturess

The AWT provides two levels of APIs:

A general interface between Java and the native

computer, in use for windowing, events, and layout parts.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3Issue 1, Jan-Fab 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 137

This API is at the core of Java GUI language and is also

used by Swing and Java lang 2D. It has:

The connection between the neighbour

windowing system and the Java application.

Mixing AWT and Swing components

Prior to Java 6 Update 12, mixing Swing components and

basic AWT shortcuts often resulted in undesired side

effects, with AWT widgets appearing on up of the Swing

widgets regardless of their visible z-order. This problem

was because the rendering way of the two widget toolkits

was very different, despite Swing borrowing heavy weight

top containers from AWT.

Starting in Java 6 Update 12, it is possible to mix Swing

and AWT widgets without having z-order problems

VI. OBSERVATION

We analyze the effectiveness of this design in dropping

whole job completion time with more broad benchmarks.

We will use the job completion time in typical Hadoop

implementation as the standard and compare the

standardized performance of shuffling and Hadoop-a. The

results will visible that for shuffler-heavy benchmarks such

as self-join, terasort, and ranked-inverted-hash, shuffle out

done the Hadoop by substantial output. The proposed

shuffle design will also beat Hadoop-A by approx. 20.7%,

22.9%, and 20.% in these benchmarks. The result with k-

means benchmark does not show substantial job execution

time reduction between new shuffle and original Hadoop.

This is because k-means only has 5 reduce tasks. With

only one slot of min tasks, Hadoop was able to overlap the

shuffler part with map tasks and had analogous

performance as new shuffler operation. However, due to

the extra slow delay of remote disk access, Hadoop-A had

lengthier reduces, thus lengthier total completion time.

Benchmarks like inverted-hash, term vector, and word

measure also fit in the shuffle-hard group, but the shuffle

volumes are lesser than other shuffle-hard benchmarks.

These benchmarks has fewer shuffle delay than other

shuffle-heavy benchmarks just because there was fewer

data to be copied during the shuffle phase. Therefore, the

performance enhancement due to new shuffler was less.

Proposed shuffle will reached approx. 21.3%, 15.7%, and

13.6% enhanced performance than Hadoop with these

benchmarks, respectively. For the benchmarks, Hadoop-a

still increased some performance improvement over stock

Hadoop as the reduction on shuffle delay balanced the

lengthy reduce phase. However, the performance

improvement will be minimal with approx. 6.5%, 7.6%,

and 5.5% improvement, respectively. For the shuffler-light

benchmarks, because the shuffler delay is in significant.

Both shuffle and Hadoop- A completes almost no

performance increase. The performance decrease due to

remote disk access in Hadoop-A is clearer in this scenario.

We also relate the shuffle delay between the new shuffler,

and Hadoop-a.. We used the shuffle delay of new shuffle

as the start point. The results same with the observation we

made in previous experiments. Improved Shuffler was able

to reduce the shuffler delay considerably if the job had big

volumes of shuffler data and multiple reduce slots. For

benchmarks that have the largest shuffler volume, the

decreases in shuffler delay were more than 10x compared

with Hadoop. For benchmarks with average shuffler

volume, the improvement on shuffler delay was from 3.5x

to 5.5x. We will display that shuffler efficiently hides

shuffler latency by covering map tasks and data shuffler.

In this subsection, we study how the stable partition

placement affects job performance. To separate the effect

of partition placement, we first ran benchmarks under

Hadoop and logged dispatching past of reduce tasks. Then,

we arranged new shuffler to place partitions on nodes in a

way that leads to the similar reduce execution sequence.

As such, job implementation enjoys coincided shuffler

provided by shuffler, but bears the same partitioning angle

in Hadoop. We match the performance with stable

partition placement and Hadoop. Work enhancement due

to balanced partition placement. The results will display

that new shuffler reaches 8-12% performance

improvement over Hadoop. We add the performance

increase to the prediction-based partition placement that

softens the partitioning angle. It stops idler tasks from

delaying job execution time. The partition placement in

new shuffler relies on perfect predictions of the specific

partition

VII. CONCLUSION
Hadoop provides a simplified implementation of the Map

Reduce framework, but its design poses occurs to attain

the best performance in job execution due to tightly

coupled shuffle and reduce, partitioning skew, and

inflexible scheduling. In this paper, we have proposed

improved shuffler operations, a novel user transparent

shuffle service that provides optimized data shuffling to

improve job status. It decouples shuffler from reduce tasks

and proactively pushes data to be shuffled to Hadoop node

via a novel shuffle-on write operation in map tasks., how

mapreduce works and how we can create tables on the top

of Hadoop .

REFERENCES

[1] https://cwiki.apache.org/confluence/display/Hive/Ho

me

[2] http://hadoop.apache.org/docs/r1.2.1/hdfs_design.htm

l

[3] .http://en.wikipedia.org/wiki/Apache_Hadoop

[4] Jinshuang Yan, Xiaoliang Yang, Rong Gu, Chunfeng

Yuan, and Yihua Huang: Performance Optimization

for Short MapReduce Job Execution in Hadoop

.ICCGC,2012,23-30

[5] J. Dean and S. Ghemawat. MapReduce: Simplified

data processing on large clusters. In OSDI, 2004.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3Issue 1, Jan-Fab 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 138

[6] Verma, a., cherkasova, l., and campbell, r. H. Aria:

automatic resource inference and allocation for

mapreduce environments. In Proc. of the ACM Int’l

Conference on Autonomic Computing (ICAC)

(2011), 45-90

[7] Hadoop HDFS over HTTP - Documentation Sets

2.0.4-alpha.” Apache SoftwareFoundation.Available

at http://hadoop.apache.org/docs/r2.0.4-

alpha/hadoop-hdfs-httpfs/index.html.Accessed on

June 5, 2013.

[8] Understanding Hadoop Clusters and the

Network.”Available at

http://bradhedlund.com.Accessed on June 1, 2013.

[9] Ananthanarayanan, g., agarwal, s., kandula, s.,

greenberg, a., stoica, i., harlan, d., and harris, e.

Scarlett: coping with skewed content popularity in

mapreduce clusters. In Proc. of the ACM European

Conference on Computer Systems (EuroSys)

(2011),20-37

[10] Chiang, r. C., and huang, h. H. Tracon: interference

ware scheduling for data-intensive applications in

virtualized environments. In Proc. of Int’l Conference

for High Performance Computing, Networking,

Storage and Analysis (SC) (2011), 34-78

[11] Dewitt, d., and gray, j. Parallel database systems: the

future of high performance database systems.

Communication of ACM 35, 6 (1992), 85–98.

AUTHORS

Anjali

devi

Aarif

Birajdar

Savita

Halle

Safiya

Shaikh

Madhuri

Pol

Shobha

Halle

http://www.ijcstjournal.org/

