
International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 127

Code Clone Detection and Analysis Using Software Metrics and

Neural Network-A Literature Review
Balwinder Kumar [1], Dr. Satwinder Singh [2]

Department of Computer Science Engineering and Information Technology [1] & [2]

Baba Banda Singh Bahadur Engineering College

Fatehgarh Sahib and Punjab Technical University Jalandhar

Punjab - India

ABSTRACT
Code clones are the duplicated code which degrade the software quality and hence increase the maintenance cost. Detection of

clones in a large software system is very tedious tasks but it is necessary to improve the design, structure and quality of the

software products. Object oriented metrics like DIT, NOC, WMC, LCOM, Cyclomatic complexity and various types of

methods and variables are the good indicator of code clone. Artificial neural network has immense detection and prediction

capability. In this paper, various types of metric based clone detection approach and techniques are discussed. From the

discussion it is concluded that clone detection using software metrics and artificial neural network is the best technique of code

clone detection, analysis and clone prediction.

Keywords:- code fragment, code clone, clone detection approach, object oriented metrics, neural network, precision, recall etc.

I. INTRODUCTION

Code clones are similar segment of the source code which

may be inserted either by mistake or knowingly. Reusing

code fragments by copying and pasting with or without

minor adaptation is a common activity in software

development. But the presence of these code clones may

decrease the design structure and software quality like

readability, changeability and maintainability and hence

increase the maintenance cost [23]. So the detection of

code clones is necessary in the software products. There are

various techniques are proposed over the last decade for the

identification and prediction of code clones.

CODE CLONE DETECTION TECHNIQUES AND

APPROACHES -

There are mainly four types of code clone detection

techniques [22]. Table 1 gives the classification of code

clone and its techniques.

1) Textual approach: Textual approaches are the text-

based approach which uses little or no transformation

on the source code before the actual comparison, and

in most cases raw source code is used directly in the

clone detection process. For example –SSD, NICAD

etc.

2) Lexical approach: Lexical approaches are the token-

based approach which begin by transforming the

source code into a sequence of tokens and then

scanned for duplicated sub sequences of tokens and the

corresponding original code is returned as clones.

Examples: Dup, CCFinder , CPMiner etc.

3) Syntactic approaches: Syntactic approaches use a

parser to convert source programs into parse trees or

abstract syntax trees (AST) which can then be

processed using either tree matching or structural

metrics to find clones. Examples: CloneDr, Deckard,

CloneDigger etc.

4) Semantic approaches: Semantics approach uses static

program analysis to provide more precise information

than simply syntactic similarity. In some approaches,

the program is represented as a program dependency

graph (PDG). The nodes of this graph represent

expressions and statements, while the edges represent

control and data dependencies. Examples: Duplix,

GPLAG etc.

5) Metric-based approach: Metric based approaches

gather a number of metrics for code fragments and

then compare metrics vectors rather than code or ASTs

directly. One popular technique involves fingerprinting

functions, metrics calculated for syntactic like a class,

function, method or statement that provides values that

can be compared to find clones of these syntactic units.

In most cases, the source code is first parsed to an AST

or CFG (control flow graph) representation to calculate

the metrics. Metrics are calculated from names, layout,

expressions and control flow of functions.[4] A clone

is defined as a pair of whole function bodies with

similar metrics values. Metrics-based approaches have

also been applied to find duplicate web pages and

clones in web documents.

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 128

6) Hybrid approaches: In addition to the above discussed,

there are some clone detection techniques for Lisp-like

languages. It provides a hybrid approach that combines

syntactic techniques (using metrics) and semantic

techniques (using call graphs) in combination with

specialized comparison functions. Yogita Sharma et.

al [23] used text based and metric based technique to

identify the clones in c or c++ source code.

TABLE I

 CLASSIFICATION OF CODE CLONE AND TECHNIQUES [22]

 Text

based

Token

based

AST

based

PDG

based

Category
Textual

approach

Lexical

approach

Syntactic

approach

Semantic

approach

Clone Type Type-1 Type-1,2
Type-

1,2,3

Type-

1,2,3

Complexity O(n) O(n) O(n) O(n3)

Meaning of

n

Lines of

code

No. Of

token

Nodes of

AST

Node of

PDG

II. RELATED RESEARCH

The literature review of code clone detection and analysis

begins with a basic concept of clone detection terminology.

A. Code Fragment (CF)

A code fragment (CF) is any sequence of code lines with or

without comments. It can be of any granularity level for

example function definition, begin-end block, or sequence

of statements. A CF is identified by its file name and begin-

end line numbers in the original code base and is denoted

as a triple (CF.FileName, CF.BeginLine, CF.EndLine).

B. Code Clone
A code fragment CF2 is a clone of another code fragment

CF1 if they are similar or identical by some given

definition of similarity, that means, f(CF1) = f(CF2) where

f is the similarity function. Two fragments that are similar

to each other form a clone pair (CF1:CF2), and when many

fragments are similar, they form a clone class or clone

group.

C. Clone Types

Code fragments are of two main types either based on

textual similarity or functional similarity. The first type of

clone is often the result of copying a code and paste code

fragment into another location. In the following the types

of clones based on both the textual (Types 1 to 3) [11] and

functional (Type 4) similarities are described:

Type-1: Identical code fragments except for variations in

whitespace, layout and comments.

Type-2: Syntactically identical fragments except for

variations in identifiers, literals, types, whitespace, layout

and comments.

Type-3: Copied fragments with further modifications such

as changed, added or removed statements, in addition to

variations in identifiers, literals, types, whitespace, layout

and comments.

Type-4: Two or more code fragments that perform the

same computation but are implemented by different

syntactic variants.

D. Precision and Recall

These are the two terms used when discussing the

characteristics of the candidate code clones returned by a

clone detector. Precision refers to the quality of the

candidates returned by the detection method: high precision

indicates the candidate code clones are mostly correctly

identified as code clones and low precision indicates the

candidate code clones contain many candidates that are not

actual code clones. Recall refers to the overall percentage

of artifacts that exist in the source code that have been

detected by the clone detector: high recall indicates most of

the code clones in the source code have been found, low

recall indicates most of the code clones in the source code

have not been found.[2]. When comparing code clone

detection techniques, precision and recall are often

referenced as measures of the accuracy and completeness

of the candidate code clones.

The detection of code clones is a two phase process which

consists of a transformation and a comparison phase. In the

first phase, the source text is transformed into an internal

format which allows the use of a more efficient comparison

algorithm. During the succeeding comparison phase the

actual matches are detected. Due to its central role, it is

reasonable to classify detection techniques according to

their internal format.

Roy and Cordy [1] did comparison of different techniques

of clone detection such as textual approach, lexical

approach, semantic approach and metric based approach

and also comparing and evaluating clone detection tools

such as Duploc, simian and NICAD. They proposed that

NICAD tool is the best among all others. Moreover they

explain four category of clone viz-Type-1, Type-2, Type-3

and Type-4.

Roy and Cordy [2] also survey the state of the art in clone

detection research. Firstly they describe the clone terms

commonly used in the literature along with their

corresponding mappings to the commonly used clone types.

Secondly they give the review of existing clone detection

approaches and techniques.

Gayathri et.al [3], detect the different types of clones using

different algorithm like textual analysis, metric based

distance algorithm and mapping algorithm. The detected

clones are-extract clone, renamed clone, gapped cloned and

semantic clone. They used clone detection and metrics to

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 129

evaluate quality. Then they discuss several approaches

used in clone detection. Metric based clone detection

approach uses the metric based distance algorithm. Then

they compared different types of approach using different

algorithm and calculate their metrics, speed, cost and

quality.

J. Mayrand et.al [4] present metric based technique to

detect functional clones automatically from source code of

any language. They developed a “DATRIX” tool

framework which is a source code analyser [4] which

converts the source code into some Intermediate

Representation Language. Out of which only control flow

metrics and data flow metrics were selected because they

provide internal characteristics information about functions.

For automatic detection, this proposed approach

experimented on 2-Telecommunication monitoring system

in which for finding function clones, 4 points of

comparison is performed which are- name of function,

layout of function, expression in function and control flow.

Pavitdeep et.al [5], developed a tool “Software Quality

assurance tool” in dot net framework using C# as

programming language. This tool generates the software

code metrics for C# projects using the AST technique. This

tool works at method and class level metrics. This tool also

detects the clones of Type-1 and Type-2.

They also compared different types of tools [5] with each

other and explaining their merits and demerits of each tool.

The tool of software quality assurance predicts and

calculated the metrics of modern languages like c# using

the technique of abstract syntax tree (AST).

Sandeep Sharawat [6] uses the neural network technique

for the prediction of maintainability. The object oriented

metrics like DIT, NOC, SIZE, WMC, RFC, NOM, LOCM

etc are used for the computation of maintenance index

which is composite metric that incorporate a number of

traditional source code metrics into a single number that

indicate relative maintainability. Matlab is used for the

implementation of project. The training data are collected

from Li-henry dataset. Neural network created and various

training algorithm are applied on the tested data to find the

minimized error like trainlm, traingdm, trainscg, trainr,

trainrp etc. Trainlm is found to be the best algorithm for the

prediction of maintainability.

k.k Aggarwal et.al [7] uses ANN technique to predict the

maintenance effort of the classes. The inputs to the network

were all the domain metrics P1, P2 and P3 [7]. The network

was trained using the back propagation algorithm. Table II

[7] shows the best architecture and table IV [7] shows the

MARE, MRE, r and p-value results of ANN model

evaluated on validation. The correlation of the predicted

change and the observed change is represented by the

coefficient of correlation (r). The significant level of a

validation is indicated by a p-value. A commonly accepted

p value is 0.05. For validate data sets, the percentage error

smaller than 10 percent, 27 percent and 55 percent is shown

in Table V [7].

Sanjay dubey et.al [8], uses the MLP with software metrics

for the prediction of software maintainability which is an

imperative attribute of software quality. Maintenance effort

was chosen as dependent variable and object-oriented

metrics as the independent variables. Prediction of

maintainability is performed by Multi Layer Perceptron

neural network.

Thwin and Queh [9] present a neural network modelling

technique along with regression analysis called GRNN to

improve the quality of software products. In this paper,

ward neural network and General regression neural

network are used. First on predicting the number of defects

in a class and the second on predicting the number of lines

changed per class.

Kodhai.A and Kanmani.[11] present a novel code clone

detection approach using textual analysis and software

metrics. 12 software metrics at method level instead of 7

are used. It has also been implemented as a tool using Java.

The tool efficiently and accurately detects type-1, type-2,

type-3 and type-4 clones found in source codes at method

level in JAVA open source code projects. The main

limitation of this research is that it is language dependent

and detect clone in JAVA open source project only.

Rubala et.al[12] did research of code clone detection in

web based application. Web based applications used the

commerce functionality in web sites. Scripting languages

such as ASP, JSP, PHP etc are used in the development of

web sites in which code duplication practice usually

involved in making of several web pages. Hybrid approach

(textual and metric based) is used. The proposed method is

implemented as a tool in .NET. A set of 7 existing function

level metrics are used for the detection of all types of clone

functions in web application. The proposed tool gives its

evaluated result in precision and recall parameter which

then further compared with the other existing tool called

eMetrics. The result of comparison showed that the value

of precision and recall in term of percentage with the

proposed tool using .NET gives higher value with accuracy

than the eMetrics tool. The limitation of this research is

problem with working on larger and even more complex

system.

Dr. C.R.K Reddy et.al [13] also uses metrics and textual

based technique to find the code clones in a software

projects. They use a tool to implement the proposed work

in JAVA. The technique easily deals with type-1 and type-

2 clones.

Yogita Sharma et.al [23] present hybrid approach for

detection of code clones. In this research, object oriented

metrics and text based technique are used for the detection

of exact clones. An automated tool for exact code clone

detection was developed in VB.Net which calculates the

metrics of the C/C++ projects and also performs the

analysis of code clone detection that is which project

function or the class had the code clone by using textual

comparison. This approach has the limitation that it is only

limited for C/C++ projects or software.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 130

III. ADVANTAGES & DISADVANTAGES

OF CODE CLONE DETECTION

A. ADVANTAGES OF CODE CLONE DETECTION

Code clone duplication has many advantages in the

development of software project. Some of them are

discussed as-

1) Detects library candidates: Code fragment proves its

usability by coping and reusing multiple times in the

system that can be incorporated in a library and

announce its reuse potential officially [23].

2) Understanding program: It is possible to get an

overall idea of other files containing similar copies of

the fragment, if the functionality of a cloned fragment

is understood. For example, when we have a piece of

code managing memory we know that all files that

contain a copy must implement a data structure with

dynamically allocated space. [22][24].

3) Helps aspect mining research: Detecting code clone is

also necessary in aspect mining to detect cross-cutting

concerns. The code of cross-cutting concerns is

typically duplicated over the entire application that

could be identified with clone detection tools. [23][24].

4) Finds usage patterns: The functional usage patterns of

the cloned fragment can be discovered if all the cloned

fragments of the same source fragments are detected

[23][24].

5) Detects malicious software: To detect malicious

software clone detection techniques can play a vital

role. By comparing one malicious software to another,

it is possible to find the evidence where parts of the

one software system match parts of another [23][24].

6) Helps Detecting plagiarism copyright content:
Finding similar code may also useful in detecting

plagiarism and copyright infringement [23][24].

7) Software evolution: Clone detection techniques are

successfully used in software evolution analysis by

looking at the dynamic nature of different clones in

different versions of a system [23][24].

8) Code compacting: Clone detection techniques can be

used for compact device by reducing the source code

size [23][24]

B. DRAWBACKS OF CODE CLONE

Apart from benefits of code clones, it has severe impact on

the quality, reusability and maintainability of a software

system. The following are the list of some drawbacks of

having cloned code in a system.

1) Increased probability of bug propagation: If a code

segment contains a bug and that segment is reused by

coping and pasting without or with minor adaptations,

the bug of the original segment may remain in all the

pasted segments in the system and therefore, the

probability of bug propagation may increase

significantly in the system [23][24].

2) Increased probability of introducing a new bug: In

many cases, only the structure of the duplicated

fragment is reused with the developer's responsibility

of adapting the code to the current need. This process

can be error prone and may introduce new bugs in the

system [23][24].

3) Increased probability of bad design: Cloning may also

introduce bad design, lack of good inheritance

structure or abstraction. Consequently, it becomes

difficult to reuse part of the implementation in future

projects. It also badly impacts on the maintainability of

the software [23][24].

4) Increased difficulty in system upgradation: Because

of duplicated code in the system, one needs additional

time and attention to understand the existing cloned

implementation and concerns to be adapted, and

therefore, it becomes difficult to add new

functionalities in the system, or even to change

existing ones [23][24].

5) Increased maintenance cost: If a cloned code segment

is found to be contained a bug, all of its similar

counterparts should be investigated for correcting the

bug in question as there is no guarantee that this bug

has been already eliminated from other similar parts at

the time of reusing or during maintenance[23][24].

6) Increased resource requirements: Code duplication

introduces higher growth rate of the system size. While

system size may not be a big problem for some

domains, others (e.g., telecommunication switch or

compact devices) may require costly hardware upgrade

with a software upgrade. Compilation times will

increase if more code has to be translated which has a

detrimental effect on the edit-compile-test cycle.

IV. CONCLUSION

All the advantages and disadvantages of various

approaches discussed but it clearly shows that no one

technique is able to find the clones correctly. All the

approaches discussed above gives 75-85% accuracy in

detection and analysis of code clones but no one approach

is able to find all clones 100% accurate. So it is concluded

that metric based technique using neural network give more

accurate results as compared to other techniques. It is much

faster and less complexity as compared to other techniques.

It can be applied to any types of application software. In

this survey paper we focused on code clone detection and

analysis methods which help us for understanding code

clones and the different techniques used. We conclude that

the metric based clone detection approach using neural

network is very effective approach as it discovered the

clones and also helps in identifying the clones of each types.

A neural network has the immense detection and prediction

capability and it can be applied to any types of

programming languages.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 131

ACKNOWLEDGMENT

First and foremost, I would like to express my eternal

gratitude to Almighty GOD, who has given me the power

and ability to complete this work. I would like to express

my heartfelt gratitude to my Guide Dr. Satwinder Singh for

his valuable advice and healthy criticism throughout my

research which helped me immensely to complete my work

successfully. Finally, I am grateful to my parents and my

wife, for their faith in me and allowing me to be as

ambitious as I wanted. It was under their watchful eye that

I gained so much drive and an ability to tackle challenges

ahead on me.

REFERENCES

[1] Roy CK, Cordy JR, Koschke R. “Comparison and

evaluation of clone detection techniques and tools: A

qualitative approach. Science of Computer

Programming “2009; 74:470–495.

[2] Roy CK, Cordy JR. A survey on software clone

detection research. TR 2007-541, Queen’s School of

Computing, 2007; 115

[3] D.Gayathri Devi, Dr. M. Punithavalli “Comparison

and Evaluation on Metrics based Approach for

Detecting Code Clone” in IJCSE, ISSN: 0976-5166

Vol. 2 No. 5 Oct-Nov 2011 page no- 750.

[4] Jean Mayrand, Claude Leblanc, Ettore M. Merlo

“ Experiment on the Automatic Detection of Function

Clones in a Software System Using Metrics” ICMS

1996 1063-6773

[5] Pavitdeep Singh, Prof. Satwinder Singh, Prof. Jatinder

Kaur “Tool for Generating Code Metrics for C# Source

Code using Abstract Syntax Tree Technique” ACM

Sigsoft, software engineering notes-vol-3 sep-2013

pages1-6

[6] Sandeep Sharawat : Software maintainability

prediction using Neural Network, Vol. 2, Issue 2,Mar-

Apr 2012, pp.750-755

[7] K.K Aggarwal, Yogesh Singh et.al : Application of

artificial neural network for predicting maintainability

using object oriented metrics, world academy of

science, engineering and technology, 22, 2006.

[8] Yajnaseni Dash, Sanjay Kumar Dubey, Ajay Rana,

“Maintainability Prediction of Object Oriented

Software System by Using Artificial Neural Network

Approach”, in IJSCE ISSN: 2231-2307, Volume-2,

Issue-2, May 2012.

[9] Mie Mie Thet Thwin, Tong-Seng Quah“ Application

of Neural Networks for Software quality Prediction

Using Object-Oriented Metrics” in ICSM, ISSN: 1063-

6773 Sep-2003.

[10] Filip Van Rysselberghe, Serge Demeyer. Evaluating

Clone Detection Techniques. In Proceedings of the

International Workshop on Evolution of Large Scale

Industrial Applications (ELISA’03), 12pp.,

Amsterdam, The Netherlands, Sept 2003.

[11] Kodhai. E, Perumal. A, and Kanmani. S,“Clone

Detection using Textual and Metric Analysis to figure

out all Types of Clones”, in IJCCIS, Vol2. No1. ISSN:

0976–1349 July-Dec 2010.

[12] Rubala Sivakumar, Kodhai. E,“Code Clones Detection

in Websites using Hybrid Approach”, in IJCA (0975 –

888) Volume 48–No.13, June 2012.

[13] Dr. C.R.K Reddy, Dr. A.goverdhan and G.Anil kumar,

“An efficient method-level code clone detection

scheme through textual analysis using metrics” IJCET,

ISSN: 6375, Vol-3, Issue-1, Jan-June 2012, pp 273-

288.

[14] R. Chidamber and C. F. Kemerer, “A metrics suite for

object oriented design.” IEEE Trans. Software Eng.,

vol. 20, no. 6, 1994, pp. 476–493.

[15] E. Burd, J. Bailey, Evaluating clone detection tools for

use during preventative maintenance, in: Proceedings

of the 2nd IEEE International Workshop on Source

Code Analysis and Manipulation, SCAM 2002, 2002,

pp. 36–43.

[16] R. Koschke, R. Falke, P. Frenzel, Clone detection

using abstract syntax suffix trees, in: Proceedings of

the 13th Working conference on Reverse Engineering,

WCRE 2006, 2006, pp. 253–262.

[17] B. Baker, A program for identifying duplicated code,

in: Proceedings of Computing Science and Statistics:

24th Symposium on the Interface, vol. 24, 1992, pp.

49–57.

[18] B. Baker, On finding duplication and near-duplication

in large software systems, in: Proceedings of the 2nd

Working Conference on Reverse Engineering, WCRE

1995, 1995, pp. 86–95.

[19] J. Krinke, Identifying similar code with program

dependence graphs, in: Proceedings of the 8th

Working Conference on Reverse Engineering, WCRE

2001, 2001, pp. 301–309.

[20] I. Baxter, A. Yahin, L. Moura, M. Anna, Clone

detection using abstract syntax trees, in: Proceedings

of the 14th International Conference on Software

Maintenance, ICSM 1998, 1998, pp. 368–377.

[21] Sugandha Saha, “Comparison of performance analysis

using different neural network and fuzzy logic model

for prediction of stock price”, M.E Thesis submitted at

NIT Rourkela Odisha , 2013.

[22] Mrs.Prajila Prem, “A Review on Code Clone Analysis

and Code Clone Detection”, IJEIT, Issue-12, vol-2,

2013.

[23] Yogita Sharma, Rajesh Bhatia, “Hybrid technique for

object oriented software clone detection’- a thesis

submitted in june-2011, Thapar University, Patiala.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 132

[24] Md. Arifur Rahman and Salah Uddin , “A Literature

Review of Code Clone Analysis to Improve Software

Maintenance Process”, Published in The Computing

Research Repository (CoRR) of arXiv.org arXiv 2012.

http://www.ijcstjournal.org/

