
International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 172

Data Sharing in Cloud Storage Using Aggregate Key

Cryptosystem
Balaji M [1], Rajashekar S A [2]

Student, Assistant Professor

Department of Computer Science and Engineering

East West Institute of Technology

Bengaluru, Karnataka

ABSTRACT
Data sharing is an important functionality in cloud storage. In this article, we show how to securely, efficiently, and flexibly share

data with others in cloud storage. We describe new public-key cryptosystems which produce constant-size ciphertexts such that

efficient delegation of decryption rights for any set of ciphertexts are possible. The novelty is that one can aggregate any set of

secret keys and make them as compact as a single key, but encompassing the power of all the keys being aggregated. In other

words, the secret key holder can release a constant-size aggregate key for flexible choices of ciphertext set in cloud storage, but

the other encrypted files outside the set remain confidential. This compact aggregate key can be conveniently sent to others or be

stored in a smart card with very limited secure storage.

Keywords:- Cloud storage, data sharing, key-aggregate encryption, Identity-based encryption, patient-controlled encryption

I. INTRODUCTION

Cloud storage is nowadays very popular storage system.

Cloud storage is storing of data off-site to the physical storage

which is maintained by third party. Cloud storage is saving of

digital data in logical pool and physical storage spans multiple

servers which are manage by third party. Third party is

responsible for keeping data available and accessible and

physical environment should be protected and running at all

time. Instead of storing data to the hard drive or any other

local storage, we save data to remote storage which is

accessible from anywhere and anytime. It reduces efforts of

carrying physical storage to everywhere. By using cloud

storage we can access information from any computer through

internet which omitted limitation of accessing information

from same computer where it is stored.

While considering data privacy, we cannot rely on traditional

technique of authentication, because unexpected privilege

escalation will expose all data.

Solution is to encrypt data before uploading to the server with

user’s own key. Data sharing is again important functionality

of cloud storage, because user can share data from anywhere

and anytime to anyone. For example, organization may grant

permission to access part of sensitive data to their employees.

But challenging task is that how to share encrypted data.

Traditional way is user can download the encrypted data from

storage, decrypt that data and send it to share with others, but

it loses the importance of cloud storage.

Cryptography technique can be applied in a two major ways-

one is symmetric key encryption and other is asymmetric key

encryption. In symmetric key encryption, same keys are used

for encryption and decryption. By contrast, in asymmetric key

encryption different keys are used, public key for encryption

and private key for decryption. Using asymmetric key

encryption is more flexible for our approach. This can be

illustrated by following example.

 Fig 1 File sharing between Alice and Bob

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 173

Suppose Alice put all data on Box.com and she does not want

to expose her data to everyone. Due to data leakage

possibilities she does not trust on privacy mechanism provided

by Box.com, so she encrypt all data before uploading to the

server. If Bob ask her to share some data then Alice use share

function of Box.com. But problem now is that how to share

encrypted data. There are two severe ways:

 1. Alice encrypt data with single secret key and share that

secret key directly with the Bob.

 2. Alice can encrypt data with distinct keys and send Bob

corresponding keys to Bob via secure channel.

In first approach, unwanted data also get expose to the Bob,

which is inadequate. In second approach, no. of keys is as

many as no. of shared files, which may be hundred or

thousand as well as transferring these keys require secure

channel and storage space which can be expensive.

Therefore best solution to above problem is Alice encrypts

data with distinct public keys, but send single decryption key

of constant size to Bob. Since the decryption key should be

sent via secure channel and kept secret small size is always

enviable. To design an efficient public-key encryption scheme

which supports flexible delegation in the sense that any subset

of the ciphertexts (produced by the encryption scheme) is

decryptable by a constant-size decryption key (generated by

the owner of the master-secret key).[1].

II. LITERATURY SURVEY

There exist several expressive ABE schemes where the

decryption algorithm only requires a constant number of

pairing computations. Recently, Green et al. proposed a

remedy to this problem by introducing the notion of ABE with

outsourced decryption, which largely eliminates the

decryption overhead for users. Based on the existing ABE

schemes, Green et al. also presented concrete ABE schemes

with outsourced decryption.

In these existing schemes, a user provides an untrusted

server, say a proxy operated by a cloud service provider, with

a transformation key TK that allows the latter to translate any

ABE ciphertext CT satisfied by that user’s attributes or access

policy into a simple ciphertext CT’, and it only incurs a small

overhead for the user to recover the plaintext from the

transformed ciphertext CT’. The security property of the ABE

scheme with outsourced decryption guarantees that an

adversary (including the malicious cloud server) be not able to

learn anything about the encrypted message; however, the

scheme provides no guarantee on the correctness of the

transformation done by the cloud server. In the cloud

computing setting, cloud service providers may have strong

financial incentives to return incorrect answers, if such

answers require less work and are unlikely to be detected by

users.

Considering data privacy, a traditional way to ensure it

is to rely on the server to enforce the access control after

authentication, which means any unexpected privilege

escalation will expose all data. In a shared-tenancy cloud

computing environment, things become even worse.

Regarding availability of files, there are a series of

cryptographic schemes which go as far as allowing a third-

party auditor to check the availability of files on behalf of the

data owner without leaking anything about the data, or without

compromising the data owners anonymity. Likewise, cloud

users probably will not hold the strong belief that the cloud

server is doing a good job in terms of confidentiality.

A cryptographic solution, with proven security relied on

number-theoretic assumptions is more desirable, whenever the

user is not perfectly happy with trusting the security of the

VM or the honesty of the technical staff.

A. SYMMETRIC-KEY ENCRYPTION WITH COMPACT

KEY

Benaloh et al. [2] presented an encryption scheme which

is originally proposed for concisely transmitting large number

of keys in broadcast scenario [3]. The construction is simple

and we briefly review its key derivation process here for a

concrete description of what are the desirable properties we

want to achieve. The derivation of the key for a set of classes

(which is a subset of all possible ciphertext classes) is as

follows. A composite modulus is chosen where p and q are

two large random primes. A master secret key is chosen at

random. Each class is associated with a distinct prime. All

these prime numbers can be put in the public system

parameter. A constant-size key for set can be generated. For

those who have been delegated the access rights for Sˈ can be

generated. However, it is designed for the symmetric-key

setting instead. The content provider needs to get the

corresponding secret keys to encrypt data, which is not

suitable for many applications. Because method is used to

generate a secret value rather than a pair of public/secret keys,

it is unclear how to apply this idea for public-key encryption

scheme. Finally, we note that there are schemes which try to

reduce the key size for achieving authentication in symmetric-

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 174

key encryption, e.g., [4]. However, sharing of decryption

power is not a concern in these schemes.

B. IBE WITH COMPACT KEY

Identity-based encryption (IBE) (e.g., [5], [6], [7]) is a public-

key encryption in which the public-key of a user can be set as

an identity-string of the user (e.g., an email address, mobile

number). There is a private key generator (PKG) in IBE which

holds a master-secret key and issues a secret key to each user

with respect to the user identity. The content provider can take

the public parameter and a user identity to encrypt a message.

The recipient can decrypt this ciphertext by his secret key.

Guo et al. [8], [9] tried to build IBE with key aggregation. In

their schemes, key aggregation is constrained in the sense that

all keys to be aggregated must come from different ―identity

divisions‖. While there are an exponential number of identities

and thus secret keys, only a polynomial number of them can

be aggregated.[1] This significantly increases the costs of

storing and transmitting ciphertexts, which is impractical in

many situations such as shared cloud storage. As Another way

to do this is to apply hash function to the string denoting the

class, and keep hashing repeatedly until a prime is obtained as

the output of the hash function.[1] we mentioned, our schemes

feature constant ciphertext size, and their security holds in the

standard model. In fuzzy IBE [10], one single compact secret

key can decrypt ciphertexts encrypted under many identities

which are close in a certain metric space, but not for an

arbitrary set of identities and therefore it does not match with

our idea of key aggregation.

C. ATTRIBUTE-BASED ENCRYPTION

Attribute-based encryption (ABE) [11], [12] allows each

ciphertext to be associated with an attribute, and the master-

secret key holder can extract a secret key for a policy of these

attributes so that a ciphertext can be decrypted by this key if

its associated attribute conforms to the policy. For example,

with the secret key for the policy (1 ˅ 3 ˅ 6 ˅ 8), one can

decrypt ciphertext tagged with class 1, 3, 6 or 8. However, the

major concern in ABE is collusion-resistance but not the

compactness of secret keys. Indeed, the size of the key often

increases linearly with the number of attributes it

encompasses, or the ciphertext-size is not constant (e.g., [13]).

In a multi attribute-authorities numbers of attributes

are analyzed regarding the decryption key and the user must

get a particular key related to the attribute while decrypting a

message. The decryption keys are allocated independently to

users those who have attribute identity without interaction

between each other. Multi-authority attribute-based encryption

allows real time deployment of attribute based privileges as

different attributes are issued by different authorities.

III. PROPOSED SYSTEM

For sharing selected data on the server Alice first performs the

Setup. Later the public/master key pair (pk, mk) is generated

by executing the KeyGen. The msk master key is kept secret

and the public key pk and param are made public. Anyone can

encrypt the data m and this data is uploaded on server. With

the decrypting authority the other users can access those data.

If Alice is wants to share a set S. of her data with a friend Bob

then she can perform the aggregate key KS for Bob by

executing Extract (mk, S). As kS is a constant size key and the

key can be shared through secure e-mail. When the aggregate

key has got Bob can download the data and access it.

IV. IMPLEMENTATION

1 Setup Phase

The data owner executes the setup phase for an account on

server which is not trusted. The setup algorithm only takes

implicit security parameter.

2 KeyGen Phase

This phase is executed by data owner to generate the public or

the master key pair (pk, msk).

3 Encrypt Phase

This phase is executed by anyone who wants to send the

encrypted data. Encrypt (pk, m, i), the encryption algorithm

takes input as public parameters pk, a message m, and i

denoting ciphertext class. The algorithm encrypts message m

and produces a ciphertext C such that only a user that has a set

of attributes that satisfies the access structure is able to decrypt

the message. 

 Input= public key pk, an index i, and message m

 Output = ciphertext C.

4 Extract Phase

This is executed by the data owner for delegating the

decrypting power for a certain set of ciphertext classes to a

delegate.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 175

 Input = master-secret key mk and a set S of indices

corresponding to different classes

 Outputs = aggregate key for set S denoted by kS.

5 Decrypt Phase

This is executed by the candidate who has the decryption

authorities. Decrypt (kS, S, i, C), the decryption algorithm

takes input as public parameters pk, a ciphertext C, i denoting

ciphertext classes for a set S of attributes.

 Input = kS and the set S, where index i = ciphertext

class

 Outputs = m if i element of S

A. DATA SHARING

KAC in meant for the data sharing. The data owner can share

the data in desired amount with confidentiality. KAC is easy

and secure way to transfer the delegation authority. The aim of

KAC is illustrated in Figure 2.

 Fig 2 Use of KAC for data sharing

V. CONCLUSIONS

To protect data privacy is a central question of cloud storage.

With more mathematical tools, cryptographic schemes are

getting more versatile and often involve multiple keys for a

single application. Here, we consider how to “compress”

secret keys in public-key cryptosystems which support

delegation of secret keys for different ciphertext classes in

cloud storage. No matter which one among the power set of

classes, the delegatee can always get an aggregate key of

constant size. Our approach is more flexible than hierarchical

key assignment which can only save spaces if all key-holders

share a similar set of privileges.

ACKNOWLEDGMENT

I would like to thank all the people who have helped in

completion of my dissertation work. To name a few my

project guide Asst. prof. Mr. Rajashekar, who motivated me to

present/ publish paper in international journal and conference,

my HOD Dr. Arun Biradar and my Principal of EWIT Dr. K.

Channakeshavalu for their constant support and guidance

REFERENCES

[1] Cheng-Kang Chu ,Chow, S.S.M, Wen-Guey

Tzeng, Jianying Zhou, and Robert H. Deng ,

―Key-Aggregate Cryptosystem for Scalable

Data Sharing in Cloud Storage‖, IEEE

Transactions on Parallel and Distributed

Systems. Volume: 25, Issue: 2. Year :2014.

[2] J. Benaloh, M. Chase, E. Horvitz, and K. Lauter,

―Patient Controlled Encryption: Ensuring

Privacy of Electronic Medical Records,‖ in

Proceedings of ACM Workshop on Cloud

Computing Security (CCSW ’09). ACM, 2009,

pp. 103–114. 886 www.ijergs.org

[3] J. Benaloh, ―Key Compression and Its

Application to Digital Fingerprinting,‖ Microsoft

Research, Tech. Rep., 2009.

[4] B. Alomair and R. Poovendran, ―Information

Theoretically Secure Encryption with Almost

Free Authentication,‖ J. UCS, vol. 15, no. 15, pp.

2937–2956, 2009.

[5] D. Boneh and M. K. Franklin, ―Identity-Based

Encryption from the Weil Pairing,‖ in

Proceedings of Advances in Cryptology –

CRYPTO ’01, ser. LNCS, vol. 2139. Springer,

2001, pp. 213–229.

[6] A. Sahai and B. Waters, ―Fuzzy Identity-Based

Encryption,‖ in Proceedings of Advances in

Cryptology - EUROCRYPT ’05, ser. LNCS, vol.

3494. Springer, 2005, pp. 457–473.

[7] S. S. M. Chow, Y. Dodis, Y. Rouselakis, and B.

Waters, ―Practical Leakage-Resilient Identity-

Based Encryption from Simple Assumptions,‖ in

ACM Conference on Computer and

Communications Security, 2010, pp. 152–161.

[8] F. Guo, Y. Mu, and Z. Chen, ―Identity-Based

Encryption: How to Decrypt Multiple

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 176

Ciphertexts Using a Single Decryption Key,‖ in

Proceedings of Pairing-Based Cryptography

(Pairing ’07), ser. LNCS, vol. 4575. Springer,

2007, pp. 392–406.

[9] F. Guo, Y. Mu, Z. Chen, and L. Xu, ―Multi-

Identity Single-Key Decryption without Random

Oracles,‖ in Proceedings of Information Security

and Cryptology (Inscrypt ’07), ser. LNCS, vol.

4990. Springer, 2007, pp. 384–398.

[10] S. S. M. Chow, Y. Dodis, Y. Rouselakis, and B.

Waters, ―Practical Leakage-Resilient Identity-

Based Encryption from Simple Assumptions,‖ in

ACM Conference on Computer and

Communications Security, 2010, pp. 152–161.

[11] V. Goyal, O. Pandey, A. Sahai, and B. Waters,

―Attribute-Based Encryption for Fine-Grained

Access Control of Encrypted data,‖ in

Proceedings of the 13th ACM Conference on

Computer and Communications Security (CCS

’06). ACM, 2006, pp. 89–98.

[12] M. Chase and S. S. M. Chow, ―Improving

Privacy and Security in Multi-Authority

Attribute-Based Encryption,‖ in ACM

Conference on Computer and Communications

Security, 2009, pp. 121–130.

[13] T. Okamoto and K. Takashima, ―Achieving

Short Ciphertexts or Short Secret-Keys for

Adaptively Secure General Inner-Product

Encryption,‖ in Cryptology and Network

Security (CANS ’11), 2011, pp. 138–159.

http://www.ijcstjournal.org/

