
 International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 195

A Survey on Floating Point Adders
Deepak Mishra [1], Vipul Agrawal [2]

Department of Electronics and Communication Engineering [1] & [2]

 Trinity Institute of Technology & Research, Bhopal

India

ABSTRACT
Addition is the most complex operation in a floating-point unit and can cause major delay while requiring a significant area.

Over the years, the VLSI community has developed many floating-point adder algorithms aimed primarily at reducing the

overall latency. An efficient design of the floating-point adder offers major area and performance improvements for FPGAs.

This paper studies the implementation of standard; leading-one predictor (LOP); and far and close data path (2-path) floating-

point addition algorithms in FPGAs. Each algorithm has complex sub-operations which contribute significantly to the overall

latency of the design. Each of the sub-operations is researched for different implementations According to the results, the

standard algorithm is the best implementation with respect to area, but has a large overall latency of 27.059 ns while occupying

541 slices. The LOP algorithm reduces latency by 6.5% at the cost of a 38% increase in area compared to the standard

algorithm. The 2-path implementation shows a 19% reduction in latency with an added expense of 88% in area compared to the

standard algorithm. The five-stage standard pipeline implementation shows a 6.4% improvement in clock speed compared to

the Xilinx IP with a 23% smaller area requirement. The five-stage pipelined LOP implementation shows a 22% improvement in

clock speed compared to the Xilinx IP at a cost of 15% more area.

 Keywords:- Floating Point Adder, FPGA, Delay, Area Overhead

I. INTRODUCTION

By the early 1980s, custom integrated circuits (ICS) were

often designed to replace the large amounts of glue logic in

electronic device and thus reduce manufacturing cost and

system complexity. However, because custom ICS are

expensive to develop, they are viable only for very high-

volume products. To address this limitation, xilinx produced

the field-programmable gate array (FPGA) technology in

1984 as an alternative to custom ICS. An FPGA is a silicon

chip with unconnected logic blocks. These logic blocks can

be defined and redefined by the user at any time. FPGAs are

increasingly being used for applications which require high

numerical stability and accuracy. Given their shorter time to

market and low cost, FPGAs are becoming a more attractive

solution for low-volume applications compared to application

specific ICS (asICS). Modern FPGAs provide on-chip

prefabricated arithmetic units. For example, carry-look ahead

adders are common. While this development confirms that

the need for arithmetic units is real, it also demonstrates the

limitation of having fixed resources. Often one needs a

different type of arithmetic circuit or perhaps more arithmetic

circuits than are provided. In other words, efficient

implementations of various arithmetic functions using

reconfigurable arrays are always important.

The use of FPGAs in compute-intensive applications has

been growing dramatically. Examples of such applications

include digital signal processing (dsp), molecular analysis,

and image processing. The majority of such applications use

fixed-point arithmetic because of its smaller size requirement.

However, the dramatic increase in application size has

allowed FPGAs to be considered for several scientific

applications that require floating-point arithmetic. The

advantage of floating-point arithmetic over fixed-point

arithmetic is the range of numbers that can be represented

with the same number of bits. The results in [1] showed that

FPGAs are capable of achieving up to a sixfold improvement

in terms of the performance-per-unit power metric over

general-purpose processors. The results in [2] also showed

that an FPGA-based face detector which takes 1.7 ms to

process one frame is 38 times faster than a personal computer.

Floating-point addition and subtraction are the most common

floating-point operations. Both use a floating-point adder.

According to real application data in [3], signal processing

algorithms require, on average, 40% multiplication and 60%

addition operations. Therefore, floating-point addition is a

fundamental component of math coprocessors, dsp processors,

embedded arithmetic processors, and data processing units.

Floating-point addition is the most complex operation in a

floating-point unit and consists of many variable latency- and

area dependent sub-operations. In floating-point addition

implementations, latency is the primary performance

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 196

bottleneck. Much work has been done to improve the overall

latency of floating-point adders. Various algorithms and

design approaches have been developed by the vlsi

community [4]–[7] in the last two decades. For the most part,

digital design companies around the globe have focused on

FPGA design instead of asICS because of their effective time

to market, adaptability, and, most importantly, low cost. The

floating-point unit is one of the most important custom

applications needed in most hardware designs, as it adds

accuracy, robustness to quantization errors, and ease of use.

There are many commercial products for floating-point

addition [8]–[10] that can be used in custom designs in

FPGAs but cannot be modified for specific design qualities

like throughput, latency, and area. Much work has also been

done to design custom floating-point adders in FPGAs. Most

of this work aims to increase the throughput by means of

deep pipelining [1], [11]–[15].

II. STANDARD FLOATING POINT

ADDER ALGORITHM

The standard architecture is the prototype algorithm for

floating-point addition in any kind of hardware and software

design [17]. Micro-architecture of the floating-point adder is

shown in Fig. 1. The first step, not shown in Fig. 1, is to

check whether the inputs are deformalized, infinity, or zero.

These numbers are defined by special formats and standards,

and VHDL comparators are used to identify them. The results

are used to identify exceptions and are common to all

algorithms. Next, the exponents are subtracted from one

another to compute the absolute difference and identify the

larger exponent. The mantissa of the number with the smaller

exponent is right-shifted by the exponent difference and

extended by 3 bits, to be used later for rounding; then the two

mantissas are added using a two-complement adder. The next

step is to detect the leading number of zeros before the first

1 in the result; this step is done by the module known as the

leading-one detector (LOD). Using this value, the result is

left-shifted by means of a left-shifter. When the result is

negative and the operation is subtraction, the result is right-

shifted by 1. The last 5 bits are used to detect whether

rounding is needed, and another adder is used to add a 1,

yielding the resulting mantissa. The resulting exponent is

computed by subtracting the leading-zeros amount from the

larger exponent and adding a 1 when there is a right shift.

The standard floating-point adder consists of five variable-

size integer adders and one right-shifter which can extend the

result by 3 bits, named the guard (g), round (r), and sticky (s)

bits. For post normalization, we need an LOD and a left-

shifter. All these modules add significant delay to the overall

latency of the adder.

A. Adder

In order to compute the exponent difference, twos-

complement addition, rounding, and exponent-result variable-

width integer adders are needed. These requirements prompt

a major increase in the overall latency of the floating-point

adder. Over the years, a tremendous amount of work in VLSI

has been done to make the integer adder as fast as possible

[18]. A 16-bit carry-lookahead adder, a carry-save adder, and

a ripple-carry adder have been designed and synthesized for

the Vertex-II Pro FPGA by [24]. Combinational delay and

slice information are compared with the Xilinx built-in adder

function. Table 1 shows the synthesis results obtained using

the Xilinx ISE [24]. Combinational delay is independent of

the clock and thus is defined as the total propagation and

routing delays of all the gates included in the critical path of

the circuit. Each configurable logic block (CLB) consists of

four slices in the Vertex-II Pro architecture, and the CLB is

used as the basic unit for measuring area in Xilinx FPGAs.

Both these design parameters are reported by the Xilinx ISE

after the circuit is synthesized, routed, and placed onto an

FPGA device. [24]

B. Right-shifter

In order to pre-normalize o pre-normalize the mantissa of the

number with the smaller exponent, a right-shifter is used to

right-shift the mantissa by the absolute-exponent difference.

This is done so that the two numbers will have the same

exponent and normal integer addition can be carried out. The

right-shifter is one of the most important modules to consider

when designing for latency, as it adds significant delay. In

order not to lose the precision of the number, three extra bits

are added. The sticky bit is obtained by ORing all the bits

shifted out. Three custom shifters are designed for this

purpose. For a single-precision floating point adder, the 24-

bit mantissa acts as input, and the result is 27 bits. A typical

barrel shifter was implemented with a 2:1 multiplexer as its

fundamental module and was used to shift the number on five

different levels. The sticky bit is the OR of all the bits

discarded during the alignment shift.

I.

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 197

Figure 1: Architecture of Standard floating point adder

[24]

Other designs for the right-shifter, named the aligned shifter

and the behavioral shifter, were also implemented. In each

case, the bits shifted out are ORed separately. Table 2 shows

the synthesis results obtained with the Xilinx ISE. [24]

The behavioural implementation is best in terms of latency,

but leads to a huge increase in the area requirement because

the Xilinx synthesizer is not able to optimize the “case”

statements, thus yielding a cumbersome design. The barrel

and align shifters require the same area, but the barrel

implementation provides a smaller combinational delay and
therefore was chosen for our design. The structural and more

defined implementation of a barrel-type shifter uses a 2:1

multiplexer as its basic unit, which is easily synthesizable by
the function generators present in the slices. The aligned
shifter relies on the synthesizer to implement the

behaviourally coded large multiplexers and thus offers more

propagation delay due to added routing.

C. Leading-one detector

For post-normalization, the leading number of zeros must be

detected in the result of the adder. This amount is then used

to left-shift the result and normalized to obtain the mantissa

before rounding. There are a number of ways to design a

complex circuit such as an LOD. A combinational approach

is complex because each bit of the result is dependent on all

the inputs. This approach leads to large fan-in dependencies,

and the resulting design is slow and complicated. Another

approach is to use Boolean minimization and Karnaugh maps,

but the design is again cumbersome and unorganized. The

circuit can also be easily described behaviorally using VHDL,

and the rest can be left to Xilinx ISE or any synthesis tool.

An LOD can also be designed by identifying common

modules; this approach imposes a hierarchy on the design. In

comparison to other options, such a design has low fan-in and

fan-out, which leads to an area- and delay-efficient design as

first presented by Oklobdzija [19]. Behavioral and

Oklobdzija-type LODs were implemented, and Table 3

shows the synthesis results obtained with the Xilinx ISE.

Oklobdzija implementation has a better latency-to-area ratio

and is chosen over the behavioural model because of its

performance and simple hierarchy. The implementation of

the behavioural LOD is done entirely by the Xilinx

synthesizer, which results in a cumbersome design and adds

routing delays. On the other hand, the basic module for

implementation described by Oklobdzija is a 2:1 multiplexer,

which is implemented by the built-in function generators of

the slices in the CLBs of the Vertex-II Pro FPGA. Each

connection is defined. Thus minimum routing delay is

expected, which results in better propagation delay and area

usage compared to the behavioral implementation.

D. Left-shifter

Using the results from the LOD, we left-shift the result from

the adder to normalize it. This means that the first bit is now

1. The shifter can be implemented using “sll” in VHDL, or it

can be described behaviorally using case statements. Table 4

presents the synthesis results obtained from the Xilinx ISE

implemented for the Vertex-II Pro FPGA device. The

behavioral model had a slightly smaller combinational delay

and smaller area and is therefore used in our implementation.

For a single-precision floating-point adder, the maximum

required amount of left shift is 27. Therefore hardware for the

behavioral left-shifter is designed to accommodate only the

maximum shift amount. As we have no control over the

hardware implementation in the VHDL shifter, it implements

hardware for shift amounts greater than 27, thus yielding

bigger area requirements and delay compared to the

behavioral shifter. When the carry out from the adder is 1 and

the operation is addition, the result is right-shifted by one

position.

E. Time and area analysis

Using the above modules, we synthesized a standard floating-

point adder for the Vertex-II Pro FPGA. As the design was

implemented for only one pipeline stage, the minimum clock

period reported by the synthesis tool after placing and routing

was 27.059 ns, and the levels of logic reported were 46. This

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 198

means that the maximum achievable clock speed for this

implementation is 36.95 MHz the number of slices reported

by the synthesis tool was 541. All this information is used as

a base to analyze improvements in the floating-point adder.

[24]

F. Pipelining

Pipelining is used in order to decrease clock period, run

operations at a higher clock rate, and boost speedup by

increasing the throughput. Pipelining is achieved by

distributing hardware into smaller operations, such that the

overall operation takes more clock cycles to complete but

permits new inputs to be added with every clock cycle to

increase the throughput. Pipelining of floating-point adders

has been discussed in a number of previous research papers

[13]–[14]. Minimum, maximum, and optimum numbers of

pipeline stages for a 32-bit floating-point adder have been

given, based on frequency per area (MHz/slice). According to

these studies, the optimum number of pipeline stages for a

single-precision adder implementation is 16. In order to

achieve this number, all hardware modules must be sub

pipelined within them. In order to analyse the effects of

pipelining on floating-point adder implementations in FPGAs,

we compare our implementation results with those for the

Xilinx IP core by Digital Core Design [8].

Fig. 2 shows the micro-architecture of a five-stage pipelined

implementation of the standard floating-point adder

algorithm. The number of pipeline levels chosen is based

purely on comparison with the Xilinx IP core and is based

entirely on design needs. Five is a good choice because more

stages would require sub-pipelining of the modules. The

placement of the registers is indicated by the dotted lines in

Fig. 2. The main reason for pipelining is to decrease the clock

period, thus increasing the overall clock speed at which the

application can be run. Adding pipeline stages exploits the D

flip-flops in the slices already being used for other logic, and

thus does not increase the area. Pipelining also helps increase

throughput since a result is produced every clock cycle after

the first five clock cycles. In the first stage of the

implementation, the two operands are compared to identify

demoralization and infinity. Then the two exponents are

subtracted to obtain the exponent difference and identify

whether the operands need to be swapped using the exponent

difference sign. In the second stage, the right-shifter is used

to pre-normalize the smaller mantissa. In the third stage,

addition is done along with the leading-one detection. In the

fourth stage, a left-shifter is used to post-normalize the result.

In the last stage, the exponent out is calculated, and rounding

is done. The results are then compared to set overflow or

underflow flags. Table 5 compares results for the five-stage

standard-algorithm pipelined implementation with data

provided for the Xilinx IP core.

Figure 2: Pipelined architecture of floating point adder

The clock speed of the five-stage pipelined standard floating-

point adder implementation is 6.4% better than that reported

for the Xilinx IP, and the area requirement reported for our

implementation is 23% better than that reported for the Xilinx

IP. As a result of better slice packing, the area occupied by

the five-stage pipelined version of the standard adder

implementation is approximately 27% (147 slices) smaller

than the area of its non-pipelined version (541 slices). [24]

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 199

Figure 3: Architecture of LOP algorithm

III. LOP ALGORITHM

In Section II, the different subcomponents used to design a

floating point adder were analysed for different architectural

approaches to target the best possible implementation of a

standard floating-point adder for a Vertex-II Pro FPGA. Over

the years, floating-point algorithms have been researched to

obtain better overall latency. One of the improvements is the

LOP algorithm. Fig. 3 shows the micro-architecture of this

algorithm. In this implementation, an LOP is used instead of

an LOD. The main function of the module is to predict the

leading number of zeros in the addition result, working in

parallel with the twos-complement adder. This concept was

first introduced by Flynn [20] in 1991. Over the years there

have been a number of improvements in its design and

application [6]–[7], [21]–[22]. An LOP has three major

modules: the pre-encoder, an LOD, and an error-detection

tree. The error detection is an important step which detects

prediction errors in certain cases. In the VLSI design, the

main objective has been to reduce the latency prompted by

error detection. The most feasible design, given in [6], detects

the error concurrently with the leading-one detection. The

design requires a larger area because of added pre-encoding,

but offers the best latency because of parallelism and

concurrency. The design was implemented on a Vertex-II Pro

FPGA, and the results obtained are given in Table 6. In the

standard algorithm, an LOD and adder working in parallel

have a combinational delay of 15.213 ns, while the LOP

offers a delay of 13.6 ns. The addition is done in parallel, but,

as seen in Table 6, at the cost of a larger area. Pre-encoding

consists of equations based on AND, OR, and NOT gates. It

uses the sum-of-product chains in the slices and requires 60%

(146 slices) of the overall area of the LOP in FPGAs. [24]

Figure 4: Pipelined Floating point adder

A. Timing and area analysis

Using all the same modules described in Section II, we

implemented the LOP algorithm with one cycle latency. The

results are summarized and compared with the standard

implementation in Table 7. The main improvement seen in

the LOP design is a reduction of 23% in the levels of logic at

an added expense of 38% more area. The minimum clock

period shows only a small improvement. Having addition in

parallel with the leading-one detector helps reduce the levels

of logic, but adds significant routing delay between the look-

up tables (LUTs), as most of the added logic is in the form of

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 200

logic gates. This is the main reason for the lack of significant

improvement in latency. In a VLSI design, the levels of logic

affect the latency, and thus the LOP algorithm is a good

option. However, for an FPGA design, the added area cost of

38% for an improvement of just 6.5% in latency suggests that

this is not a feasible design option.

B. Pipelining

The LOP algorithm was also pipelined into five stages. Fig. 4

shows the micro-architecture of the five-stage pipelined

implementation of the LOP floating-point adder algorithm.

The dotted lines represent the registers used to separate five

stages between logic. In the first stage of the implementation,

the two operands are compared to identify denormalization

and infinity. Then the two exponents are subtracted to obtain

the exponent difference and determine whether the operands

need to be swapped using the exponent difference sign. In the

second stage, the right-shifter is used to pre-normalize the

smaller mantissa. In the third stage, the addition is done along

with leading-one prediction. In the fourth stage, a left-shifter

is used to post-normalize the result. In the last stage, the

exponent out is calculated, and rounding is done. The results

are then compared to set overflow or underflow flags. Table 8

shows the comparison between a five-stage pipelined

implementation of the LOP algorithm and data provided for

the Xilinx IP core.

The pipelined LOP adder implementation [24] shows great

improvement in clock speed compared to both a pipelined

standard adder and the Xilinx IP core, but at the cost of added

area. The five-stage pipelined standard adder implementation

is a better choice in terms of area, occupying only 394 slices.

If throughput is the criterion for performance, we note that

the five-stage pipelined LOP adder implementation provides

22% better clock speed than the Xilinx IP and 19% better

clock speed than the five-stage pipelined standard adder

implementation and thus is clearly a better design choice. [24]

IV. FAR AND CLOSE DATA PATH

ALGORITHM

According to studies, 43% of floating-point instructions have

an exponent difference of either 0 or 1 [21]. A leading-one

detector or predictor is needed to count the leading number of

zeros only when the effective operation is subtraction and the

exponent difference is 0 or 1; for all other cases, no leading-

zero count is needed. Another opportunity for improvement is

based on a compound adder which, with the help of

additional logic, does addition and rounding in one step. The

main contributions regarding this algorithm are presented in

[7] and [21]–[23].

This algorithm is potentially larger than the previously

implemented algorithms, but yields significant improvement

in latency and thus is used in almost all current commercial

microprocessors, including AMD, Intel, and PowerPC [5].

The micro-architecture of a far and close data path algorithm

is shown in Fig. 5. Compared to the standard algorithm, one
shifter delay and the rounding delay have been removed in

critical paths of the data paths at the cost of almost double the

hardware and a compound adder implementation. Most of the

components were selected in Section II to implement the far

and close data path algorithm and were synthesized with the

Xilinx ISE. Table 9 shows a comparison between the

standard algorithm and the far and close data path algorithm

implementation on a Vertex-II Pro FPGA device.

The minimum clock period reported by the synthesis tool

after placing and routing was 21.821 ns, which is 19% better

than that of the standard floating-point adder implementation.

Thirty levels of logic were reported, representing a 34%

improvement. Both these improvements were realized

because one shifter and one adder were removed in the

critical paths. The maximum achievable clock speed for this

implementation is 45.82 MHz. The number of slices reported

by the synthesis tool was 1018, which is a significant increase

compared to the standard algorithm. The far and close data

path algorithm was not chosen for the five-stage pipelined

implementation because the optimum number of stages is

either three without sub-pipelining of the internal modules

[22] or, according to our experiment, six with the sub-staging

of the modules.

Figure 5: Far and close data path algorithm

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 201

V. CONCLUSION

This paper presented historical perspectives of computer

arithmetic and FPGAs. The use of FPGAs in computationally

intensive applications has been growing dramatically, and the

floating-point adder is the most complex arithmetic circuit in

such cases. We have given a detailed design tradeoff analysis

of floating-point adders with respect to basic subcomponents

of the standard adder algorithm along with implementation of

the overall architectural improvements in a Vertex-II Pro

FPGA.

The standard algorithm implementation was analyzed and

compared with LOP and far and close data path algorithm

implementations. The standard algorithm is area-efficient, but

has more levels of logic and greater overall latency.

An LOP algorithm adds parallelism to the design and thus

reduces levels of logic significantly, but because of added

hardware and significant routing delays it does not

significantly improve overall latency in FPGAs. It is not an

effective design for FPGAs because the added slices required

for an LOP use sum-of-product chains present in the CLBs of

the Vertex- II Pro FPGA device and add significant routing

and gate delay.

A far and close data path algorithm reduces overall latency

significantly by distributing the operations into two separate

paths, thus reducing critical paths and affecting latency

significantly, but at the cost of added hardware.

REFERENCES

[1] G. Govindu, L. Zhuo, S. Choi, and V. Prasanna,

“Analysis of high-performance floating-point

arithmetic on FPGAs,” in Proc. Int. Symp. Parallel

and Distributed Processing, Santa Fe, N.M., Apr.

2004, p. 149.

[2] Y. Lee and S. Ko, “FPGA implementation of a face

detector using neural networks,” in Proc. IEEE Can.

Conf. Elect. Comput. Eng., May 2006, pp. 1883–

1886.

[3] F. Pappalardo, G. Visalli, and M. Scarana, “An

application-oriented analysis of power/precision

tradeoff in fixed and floating-point arithmetic units

for VLSI processors,” in Proc. IASTED Conf.

Circuits, Signals, and Systems, Dec. 2004, pp. 416–

421.

[4] M. Farmland, On the Design of High Performance

Digital Arithmetic Units, Ph.D. dissertation,

Department of Electrical Engineering, Stanford

University, Stanford, Calif., Aug. 1981.

[5] P.M. Seidel and G. Even, “Delay-optimization

implementation of IEEE floatingpoint addition,”

IEEE Trans. Comput., vol. 53, no. 2, Feb. 2004, pp.

97–113.

[6] J.D. Bruguera and T. Lang, “Leading-one prediction

with concurrent position correction,” IEEE Trans.

Comput., vol. 48, no. 10, 1999, pp. 1083–1097.

[7] S.F. Oberman, H. Al-Twaijry, and M.J. Flynn, “The

SNAP Project: Design of floating-point arithmetic

units,” in Proc. 13th IEEE Symp. Computer

Arithmetic, 1997, pp. 156–165.

[8] “DFPAU: Floating point arithmetic coprocessor,” San

Jose, Calif.: Digital Core Design, Dec. 14, 2007,

http://www.dcd.pl/acore.php?idcore=13.

[9] “Quixilica floating point FPGA cores,” Seoul, South

Korea: Quixilica, Dec. 2002,

http://www.eonic.co.kr/data/datasheet/transtech/FPG

A/qxdsp001 fp.pdf .

[10] “IEEE 754 compatible floating point cores for

Virtex-II FPGAs,” Eldersburg, Md.: Nallatech, 2002,

http://www.nallatech.com/mediaLibrary/images/eng

lish/2432.pdf.

[11] L. Louca, T.A. Cook, andW.H. Johnson,

“Implementation of IEEE single-precision floating

point addition and multiplication on FPGAs,” in

Proc. IEEE Symp. Field- Programmable Custom

Computing Machines, 1996, pp. 107–116.

[12] W.B. Ligon, S. McMillan, G. Monn, F. Stivers, and

K.D. Underwood, “A reevaluation of the practicality

of floating-point operations on FPGAs,” in IEEE

Symp. FPGAs for Custom Computing Machines,

Apr. 1998, pp. 206–215.

[13] E. Roesler and B.E. Nelson, “Novel optimizations

for hardware floating-point units in a modern FPGA

architecture,” in Proc. IEEE Int. Conf. Field-

Programmable Logic and Applications, Sept. 2002,

pp. 637–646.

[14] J. Liang, R. Tessier, and O. Mencer, “Floating point

unit generation and evaluation for FPGAs,” in Proc.

IEEE Symp. Field-Programmable Custom

Computing Machines, Apr. 2003, pp. 185–194.

[15] A. Malik and S. Ko, “Efficient implementation of

floating point adder using pipelined LOP in

FPGAs,” in Proc. IEEE Can. Conf. Elect. Comput.

Eng., May 2005, pp. 688–691.

[16] Xilinx, http://www.xilinx.com/.

[17] J. Hennessy and D.A. Patterson, Computer

Architecture: A Quantitative Approach, 2nd ed., San

Francisco, Calif.: Morgan Kaufmann Publishers,

1996.

[18] I. Koren, Computer Arithmetic Algorithms, Natick,

Mass.: A.K. Peters, 2002.

[19] V.G. Oklobdzija, “An algorithmic and novel design

of a leading zero detector circuit: Comparison with

logic synthesis,” IEEE Trans. VLSI Syst., vol. 2, no.

1, 1994, pp. 124–128.

[20] M. Flynn, “Leading one prediction: Implementation,

generalization, and application,” Computer Systems

Laboratory, Stanford University, Stanford, Calif.,

Tech. Rep. No. CSL-TR-91-463, Mar. 1991.

[21] M.J. Flynn and S.F. Oberman, Advanced Computer

Arithmetic Design, New York: John Wiley & Sons,

Inc. 2001.

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 202

[22] S.F. Oberman, “Design issues in high performance

floating-point arithmetic units,” Computer Systems

Laboratory, Stanford University, Stanford, Calif.,

Tech. Rep. No. CSL-TR-96-711, Dec. 1996.

[23] J.D. Bruguera and T. Lang, “Rounding in floating-

point addition using a compound adder,” University

of Santiago de Compostela, Santiago de Compostela,

Spain, Internal Report, July 2000.

[24] Ali Malik, Dongdong Chen, Younhee Choi, Moon

Ho Lee, and Seok-Bum Ko “Design tradeoff

analysis of floating-pointadders in FPGAs” Can. J.

Elect. Comput. Eng., Vol. 33, No. 3/4, Summer/Fall

2008.

http://www.ijcstjournal.org/

