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ABSTRACT 
Addition is the most complex operation in a floating-point unit and can cause major delay while requiring a significant area. 

Over the years, the VLSI community has developed many floating-point adder algorithms aimed primarily at reducing the 

overall latency. An efficient design of the floating-point adder offers major area and performance improvements for FPGAs. 

This paper studies the implementation of standard; leading-one predictor (LOP); and far and close data path (2-path) floating-

point addition algorithms in FPGAs. Each algorithm has complex sub-operations which contribute significantly to the overall 

latency of the design. Each of the sub-operations is researched for different implementations According to the results, the 

standard algorithm is the best implementation with respect to area, but has a large overall latency of 27.059 ns while occupying 

541 slices. The LOP algorithm reduces latency by 6.5% at the cost of a 38% increase in area compared to the standard 

algorithm. The 2-path implementation shows a 19% reduction in latency with an added expense of 88% in area compared to the 

standard algorithm. The five-stage standard pipeline implementation shows a 6.4% improvement in clock speed compared to 

the Xilinx IP with a 23% smaller area requirement. The five-stage pipelined LOP implementation shows a 22% improvement in 

clock speed compared to the Xilinx IP at a cost of 15% more area.   
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I. INTRODUCTION 

By the early 1980s, custom integrated circuits (ICS) were 

often designed to replace the large amounts of glue logic in 

electronic device and thus reduce manufacturing cost and 

system complexity. However, because custom ICS are 

expensive to develop, they are viable only for very high-

volume products. To address this limitation, xilinx produced 

the field-programmable gate array (FPGA) technology in 

1984 as an alternative to custom ICS. An FPGA is a silicon 

chip with unconnected logic blocks. These logic blocks can 

be defined and redefined by the user at any time. FPGAs are 

increasingly being used for applications which require high 

numerical stability and accuracy. Given their shorter time to 

market and low cost, FPGAs are becoming a more attractive 

solution for low-volume applications compared to application 

specific ICS (asICS). Modern FPGAs provide on-chip 

prefabricated arithmetic units. For example, carry-look ahead 

adders are common. While this development confirms that 

the need for arithmetic units is real, it also demonstrates the 

limitation of having fixed resources. Often one needs a 

different type of arithmetic circuit or perhaps more arithmetic 

circuits than are provided. In other words, efficient 

implementations of various arithmetic functions using 

reconfigurable arrays are always important.  

The use of FPGAs in compute-intensive applications has 

been growing dramatically. Examples of such applications  

 

 

include digital signal processing (dsp), molecular analysis, 

and image processing. The majority of such applications use 

fixed-point arithmetic because of its smaller size requirement. 

However, the dramatic increase in application size has 

allowed FPGAs to be considered for several scientific 

applications that require floating-point arithmetic. The 

advantage of floating-point arithmetic over fixed-point 

arithmetic is the range of numbers that can be represented 

with the same number of bits. The results in [1] showed that 

FPGAs are capable of achieving up to a sixfold improvement 

in terms of the performance-per-unit power metric over 

general-purpose processors. The results in [2] also showed 

that an FPGA-based face detector which takes 1.7 ms to 

process one frame is 38 times faster than a personal computer. 

Floating-point addition and subtraction are the most common 

floating-point operations. Both use a floating-point adder. 

According to real application data in [3], signal processing 

algorithms require, on average, 40% multiplication and 60% 

addition operations. Therefore, floating-point addition is a 

fundamental component of math coprocessors, dsp processors, 

embedded arithmetic processors, and data processing units. 

Floating-point addition is the most complex operation in a 

floating-point unit and consists of many variable latency- and 

area dependent sub-operations. In floating-point addition 

implementations, latency is the primary performance 
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bottleneck. Much work has been done to improve the overall 

latency of floating-point adders. Various algorithms and 

design approaches have been developed by the vlsi 

community [4]–[7] in the last two decades. For the most part, 

digital design companies around the globe have focused on 

FPGA design instead of asICS because of their effective time 

to market, adaptability, and, most importantly, low cost. The 

floating-point unit is one of the most important custom 

applications needed in most hardware designs, as it adds 

accuracy, robustness to quantization errors, and ease of use. 

There are many commercial products for floating-point 

addition [8]–[10] that can be used in custom designs in 

FPGAs but cannot be modified for specific design qualities 

like throughput, latency, and area. Much work has also been 

done to design custom floating-point adders in FPGAs. Most 

of this work aims to increase the throughput by means of 

deep pipelining [1], [11]–[15]. 

 

II. STANDARD FLOATING POINT 

ADDER ALGORITHM 

 
The standard architecture is the prototype algorithm for 

floating-point addition in any kind of hardware and software 

design [17]. Micro-architecture of the floating-point adder is 

shown in Fig. 1. The first step, not shown in Fig. 1, is to 

check whether the inputs are deformalized, infinity, or zero. 

These numbers are defined by special formats and standards, 

and VHDL comparators are used to identify them. The results 

are used to identify exceptions and are common to all 

algorithms. Next, the exponents are subtracted from one 

another to compute the absolute difference and identify the 

larger exponent. The mantissa of the number with the smaller 

exponent is right-shifted by the exponent difference and 

extended by 3 bits, to be used later for rounding; then the two 

mantissas are added using a two-complement adder. The next 

step is to detect the     leading number of zeros before the first 

1 in the result; this step is done by the module known as the 

leading-one detector (LOD). Using this value, the result is 

left-shifted by means of a left-shifter. When the result is 

negative and the operation is subtraction, the result is right-

shifted by 1. The last 5 bits are used to detect whether 

rounding is needed, and another adder is used to add a 1, 

yielding the resulting mantissa. The resulting exponent is 

computed by subtracting the leading-zeros amount from the 

larger exponent and adding a 1 when there is a right shift. 

The standard floating-point adder consists of five variable-

size integer adders and one right-shifter which can extend the 

result by 3 bits, named the guard (g), round (r), and sticky (s) 

bits. For post normalization, we need an LOD and a left-

shifter. All these modules add significant delay to the overall 

latency of the adder. 

 

A. Adder 

 
In order to compute the exponent difference, twos-

complement addition, rounding, and exponent-result variable-

width integer adders are needed. These requirements prompt 

a major increase in the overall latency of the floating-point 

adder. Over the years, a tremendous amount of work in VLSI 

has been done to make the integer adder as fast as possible 

[18]. A 16-bit carry-lookahead adder, a carry-save adder, and 

a ripple-carry adder have been designed and synthesized for 

the Vertex-II Pro FPGA by [24]. Combinational delay and 

slice information are compared with the Xilinx built-in adder 

function. Table 1 shows the synthesis results obtained using 

the Xilinx ISE [24]. Combinational delay is independent of 

the clock and thus is defined as the total propagation and 

routing delays of all the gates included in the critical path of 

the circuit. Each configurable logic block (CLB) consists of 

four slices in the Vertex-II Pro architecture, and the CLB is 

used as the basic unit for measuring area in Xilinx FPGAs. 

Both these design parameters are reported by the Xilinx ISE 

after the circuit is synthesized, routed, and placed onto an 

FPGA device. [24]  

 

B. Right-shifter 

 
In order to pre-normalize o pre-normalize the mantissa of the 

number with the smaller exponent, a right-shifter is used to 

right-shift the mantissa by the absolute-exponent difference. 

This is done so that the two numbers will have the same 

exponent and normal integer addition can be carried out. The 

right-shifter is one of the most important modules to consider 

when designing for latency, as it adds significant delay. In 

order not to lose the precision of the number, three extra bits 

are added. The sticky bit is obtained by ORing all the bits 

shifted out. Three custom shifters are designed for this 

purpose. For a single-precision floating point adder, the 24-

bit mantissa acts as input, and the result is 27 bits. A typical 

barrel shifter was implemented with a 2:1 multiplexer as its 

fundamental module and was used to shift the number on five 

different levels. The sticky bit is the OR of all the bits 

discarded during the alignment shift. 

I.  
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Figure 1: Architecture of Standard floating point adder 

[24] 

 

 

 
Other designs for the right-shifter, named the aligned shifter 

and the behavioral shifter, were also implemented. In each 

case, the bits shifted out are ORed separately. Table 2 shows 

the synthesis results obtained with the Xilinx ISE. [24]  

The behavioural implementation is best in terms of latency, 

but leads to a huge increase in the area requirement because 

the Xilinx synthesizer is not able to optimize the “case” 

statements, thus yielding a cumbersome design. The barrel 

and align shifters require the same area, but the barrel 

implementation provides a smaller combinational delay and 
therefore was chosen for our design. The structural and more 

defined implementation of a barrel-type shifter uses a 2:1 

multiplexer as its basic unit, which is easily synthesizable by 
the function generators present in the slices. The aligned 
shifter relies on the synthesizer to implement the 

behaviourally coded large multiplexers and thus offers more 

propagation delay due to added routing. 

 

 
 

C. Leading-one detector 

 

For post-normalization, the leading number of zeros must be 

detected in the result of the adder. This amount is then used 

to left-shift the result and normalized to obtain the mantissa 

before rounding. There are a number of ways to design a 

complex circuit such as an LOD. A combinational approach 

is complex because each bit of the result is dependent on all 

the inputs. This approach leads to large fan-in dependencies, 

and the resulting design is slow and complicated. Another 

approach is to use Boolean minimization and Karnaugh maps, 

but the design is again cumbersome and unorganized. The 

circuit can also be easily described behaviorally using VHDL, 

and the rest can be left to Xilinx ISE or any synthesis tool. 

An LOD can also be designed by identifying common 

modules; this approach imposes a hierarchy on the design. In 

comparison to other options, such a design has low fan-in and 

fan-out, which leads to an area- and delay-efficient design as 

first presented by Oklobdzija [19]. Behavioral and 

Oklobdzija-type LODs were implemented, and Table 3 

shows the synthesis results obtained with the Xilinx ISE. 

Oklobdzija implementation has a better latency-to-area ratio 

and is chosen over the behavioural model because of its 

performance and simple hierarchy. The implementation of 

the behavioural LOD is done entirely by the Xilinx 

synthesizer, which results in a cumbersome design and adds 

routing delays. On the other hand, the basic module for 

implementation described by Oklobdzija is a 2:1 multiplexer, 

which is implemented by the built-in function generators of 

the slices in the CLBs of the Vertex-II Pro FPGA. Each 

connection is defined. Thus minimum routing delay is 

expected, which results in better propagation delay and area 

usage compared to the behavioral implementation. 

 

D. Left-shifter 

Using the results from the LOD, we left-shift the result from 

the adder to normalize it. This means that the first bit is now 

1. The shifter can be implemented using “sll” in VHDL, or it 

can be described behaviorally using case statements. Table 4 

presents the synthesis results obtained from the Xilinx ISE 

implemented for the Vertex-II Pro FPGA device. The 

behavioral model had a slightly smaller combinational delay 

and smaller area and is therefore used in our implementation. 

For a single-precision floating-point adder, the maximum 

required amount of left shift is 27. Therefore hardware for the 

behavioral left-shifter is designed to accommodate only the 

maximum shift amount. As we have no control over the 

hardware implementation in the VHDL shifter, it implements 

hardware for shift amounts greater than 27, thus yielding 

bigger area requirements and delay compared to the 

behavioral shifter. When the carry out from the adder is 1 and 

the operation is addition, the result is right-shifted by one 

position. 

E. Time and area analysis 
 

Using the above modules, we synthesized a standard floating-

point adder for the Vertex-II Pro FPGA. As the design was 

implemented for only one pipeline stage, the minimum clock 

period reported by the synthesis tool after placing and routing 

was 27.059 ns, and the levels of logic reported were 46. This 
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means that the maximum achievable clock speed for this 

implementation is 36.95 MHz the number of slices reported 

by the synthesis tool was 541. All this information is used as 

a base to analyze improvements in the floating-point adder. 

[24] 

 

F. Pipelining 

Pipelining is used in order to decrease clock period, run 

operations at a higher clock rate, and boost speedup by 

increasing the throughput. Pipelining is achieved by 

distributing hardware into smaller operations, such that the 

overall operation takes more clock cycles to complete but 

permits new inputs to be added with every clock cycle to 

increase the throughput. Pipelining of floating-point adders 

has been discussed in a number of previous research papers 

[13]–[14]. Minimum, maximum, and optimum numbers of 

pipeline stages for a 32-bit floating-point adder have been 

given, based on frequency per area (MHz/slice). According to 

these studies, the optimum number of pipeline stages for a 

single-precision adder implementation is 16. In order to 

achieve this number, all hardware modules must be sub 

pipelined within them. In order to analyse the effects of 

pipelining on floating-point adder implementations in FPGAs, 

we compare our implementation results with those for the 

Xilinx IP core by Digital Core Design [8]. 

Fig. 2 shows the micro-architecture of a five-stage pipelined 

implementation of the standard floating-point adder 

algorithm. The number of pipeline levels chosen is based 

purely on comparison with the Xilinx IP core and is based 

entirely on design needs. Five is a good choice because more 

stages would require sub-pipelining of the modules. The 

placement of the registers is indicated by the dotted lines in 

Fig. 2. The main reason for pipelining is to decrease the clock 

period, thus increasing the overall clock speed at which the 

application can be run. Adding pipeline stages exploits the D 

flip-flops in the slices already being used for other logic, and 

thus does not increase the area. Pipelining also helps increase 

throughput since a result is produced every clock cycle after 

the first five clock cycles. In the first stage of the 

implementation, the two operands are compared to identify 

demoralization and infinity. Then the two exponents are 

subtracted to obtain the exponent difference and identify 

whether the operands need to be swapped using the exponent 

difference sign. In the second stage, the right-shifter is used 

to pre-normalize the smaller mantissa. In the third stage, 

addition is done along with the leading-one detection. In the 

fourth stage, a left-shifter is used to post-normalize the result. 

In the last stage, the exponent out is calculated, and rounding 

is done. The results are then compared to set overflow or 

underflow flags. Table 5 compares results for the five-stage 

standard-algorithm pipelined implementation with data 

provided for the Xilinx IP core. 

 

 
Figure 2: Pipelined architecture of floating point   adder 

 

 
 

The clock speed of the five-stage pipelined standard floating-

point adder implementation is 6.4% better than that reported 

for the Xilinx IP, and the area requirement reported for our 

implementation is 23% better than that reported for the Xilinx 

IP. As a result of better slice packing, the area occupied by 

the five-stage pipelined version of the standard adder 

implementation is approximately 27% (147 slices) smaller 

than the area of its non-pipelined version (541 slices). [24] 
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Figure 3: Architecture of LOP algorithm 

 

 
 

III. LOP ALGORITHM 

In Section II, the different subcomponents used to design a 

floating point adder were analysed for different architectural 

approaches to target the best possible implementation of a 

standard floating-point adder for a Vertex-II Pro FPGA. Over 

the years, floating-point algorithms have been researched to 

obtain better overall latency. One of the improvements is the 

LOP algorithm. Fig. 3 shows the micro-architecture of this 

algorithm. In this implementation, an LOP is used instead of 

an LOD. The main function of the module is to predict the 

leading number of zeros in the addition result, working in 

parallel with the twos-complement adder. This concept was 

first introduced by Flynn [20] in 1991. Over the years there 

have been a number of improvements in its design and 

application [6]–[7], [21]–[22]. An LOP has three major 

modules: the pre-encoder, an LOD, and an error-detection 

tree. The error detection is an important step which detects 

prediction errors in certain cases. In the VLSI design, the 

main objective has been to reduce the latency prompted by 

error detection. The most feasible design, given in [6], detects 

the error concurrently with the leading-one detection. The 

design requires a larger area because of added pre-encoding, 

but offers the best latency because of parallelism and 

concurrency. The design was implemented on a Vertex-II Pro 

FPGA, and the results obtained are given in Table 6. In the 

standard algorithm, an LOD and adder working in parallel 

have a combinational delay of 15.213 ns, while the LOP 

offers a delay of 13.6 ns. The addition is done in parallel, but, 

as seen in Table 6, at the cost of a larger area. Pre-encoding 

consists of equations based on AND, OR, and NOT gates. It 

uses the sum-of-product chains in the slices and requires 60% 

(146 slices) of the overall area of the LOP in FPGAs. [24] 

 
 

Figure 4: Pipelined Floating point adder 

 

 

A. Timing and area analysis 

Using all the same modules described in Section II, we 

implemented the LOP algorithm with one cycle latency. The 

results are summarized and compared with the standard 

implementation in Table 7. The main improvement seen in 

the LOP design is a reduction of 23% in the levels of logic at 

an added expense of 38% more area. The minimum clock 

period shows only a small improvement. Having addition in 

parallel with the leading-one detector helps reduce the levels 

of logic, but adds significant routing delay between the look-

up tables (LUTs), as most of the added logic is in the form of 
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logic gates. This is the main reason for the lack of significant 

improvement in latency. In a VLSI design, the levels of logic 

affect the latency, and thus the LOP algorithm is a good 

option. However, for an FPGA design, the added area cost of 

38% for an improvement of just 6.5% in latency suggests that 

this is not a feasible design option. 

 

B. Pipelining 

 
The LOP algorithm was also pipelined into five stages. Fig. 4 

shows the micro-architecture of the five-stage pipelined 

implementation of the LOP floating-point adder algorithm. 

The dotted lines represent the registers used to separate five 

stages between logic. In the first stage of the implementation, 

the two operands are compared to identify denormalization 

and infinity. Then the two exponents are subtracted to obtain 

the exponent difference and determine whether the operands 

need to be swapped using the exponent difference sign. In the 

second stage, the right-shifter is used to pre-normalize the 

smaller mantissa. In the third stage, the addition is done along 

with leading-one prediction. In the fourth stage, a left-shifter 

is used to post-normalize the result. In the last stage, the 

exponent out is calculated, and rounding is done. The results 

are then compared to set overflow or underflow flags. Table 8 

shows the comparison between a five-stage pipelined 

implementation of the LOP algorithm and data provided for 

the Xilinx IP core. 

The pipelined LOP adder implementation [24] shows great 

improvement in clock speed compared to both a pipelined 

standard adder and the Xilinx IP core, but at the cost of added 

area. The five-stage pipelined standard adder implementation 

is a better choice in terms of area, occupying only 394 slices. 

If throughput is the criterion for performance, we note that 

the five-stage pipelined LOP adder implementation provides 

22% better clock speed than the Xilinx IP and 19% better 

clock speed than the five-stage pipelined standard adder 

implementation and thus is clearly a better design choice. [24] 

 

IV. FAR AND CLOSE DATA PATH 

ALGORITHM 

According to studies, 43% of floating-point instructions have 

an exponent difference of either 0 or 1 [21]. A leading-one 

detector or predictor is needed to count the leading number of 

zeros only when the effective operation is subtraction and the 

exponent difference is 0 or 1; for all other cases, no leading-

zero count is needed. Another opportunity for improvement is 

based on a compound adder which, with the help of 

additional logic, does addition and rounding in one step. The 

main contributions regarding this algorithm are presented in 

[7] and [21]–[23].  

This algorithm is potentially larger than the previously 

implemented algorithms, but yields significant improvement 

in latency and thus is used in almost all current commercial 

microprocessors, including AMD, Intel, and PowerPC [5]. 

The micro-architecture of a far and close data path algorithm 

is shown in Fig. 5. Compared to the standard algorithm, one 
shifter delay and the rounding delay have been removed in 

critical paths of the data paths at the cost of almost double the 

hardware and a compound adder implementation. Most of the 

components were selected in Section II to implement the far 

and close data path algorithm and were synthesized with the 

Xilinx ISE. Table 9 shows a comparison between the 

standard algorithm and the far and close data path algorithm 

implementation on a Vertex-II Pro FPGA device. 

The minimum clock period reported by the synthesis tool 

after placing and routing was 21.821 ns, which is 19% better 

than that of the standard floating-point adder implementation. 

Thirty levels of logic were reported, representing a 34% 

improvement. Both these improvements were realized 

because one shifter and one adder were removed in the 

critical paths. The maximum achievable clock speed for this 

implementation is 45.82 MHz. The number of slices reported 

by the synthesis tool was 1018, which is a significant increase 

compared to the standard algorithm. The far and close data 

path algorithm was not chosen for the five-stage pipelined 

implementation because the optimum number of stages is 

either three without sub-pipelining of the internal modules 

[22] or, according to our experiment, six with the sub-staging 

of the modules. 

 

 
Figure 5: Far and close data path algorithm 
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V. CONCLUSION 

This paper presented historical perspectives of computer 

arithmetic and FPGAs. The use of FPGAs in computationally 

intensive applications has been growing dramatically, and the 

floating-point adder is the most complex arithmetic circuit in 

such cases. We have given a detailed design tradeoff analysis 

of floating-point adders with respect to basic subcomponents 

of the standard adder algorithm along with implementation of 

the overall architectural improvements in a Vertex-II Pro 

FPGA.  

The standard algorithm implementation was analyzed and 

compared with LOP and far and close data path algorithm 

implementations. The standard algorithm is area-efficient, but 

has more levels of logic and greater overall latency.  

An LOP algorithm adds parallelism to the design and thus 

reduces levels of logic significantly, but because of added 

hardware and significant routing delays it does not 

significantly improve overall latency in FPGAs. It is not an 

effective design for FPGAs because the added slices required 

for an LOP use sum-of-product chains present in the CLBs of 

the Vertex- II Pro FPGA device and add significant routing 

and gate delay.  

A far and close data path algorithm reduces overall latency 

significantly by distributing the operations into two separate 

paths, thus reducing critical paths and affecting latency 

significantly, but at the cost of added hardware. 
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