
International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 240

Comparative Analysis on Reliability Estimation Techniques of

Component Based Software System
Gopal Prasad Jaiswal [1], Ram Nivas Giri [2], Dipesh Sharma [3]

Research Scholar [1], Assistant Professor [2], HOD [3]

Department of Computer Science and Engineering

RITEE, Raipur

 Chhattisgarh - India

ABSTRACT

Software reliability means the probability of the uninterrupted operation of a software system for a specified period of

time in a specified environment. Regularly software applications are swelling more complex and with more intensity

on reuse. Then, Component Based Software (CBS) applications have appeared because CBS is an approach to

software development that relies on software reuse. It turns up from the failure of object oriented development to

backing equipped reusability. Single object classes are more extensive and unmistakable. Components are more

abstract than object classes and can be considered to be stand- alone service providers. The focus of this paper is to

give an analysis of Component Based Systems dependability estimation. In this paper, we will inspect diverse systems

with respect to their degree, model, structures, system and support. This comparative analysis gives instinct into

deciding the bearing of future CBS reliability research.

Keywords:- Reliability, Failure, Component Based Systems, Open Source Software, Reliability Model, Rule Based

Model, Path Based Model, Additive Model, Operational Profile, Component Dependency Graph, Component, Failure

Behavior, Flexibility, Understandability, Portability, Maintainability.

I. INTRODUCTION

Today's industry systems progressively depend on

software which is constantly very complex. Software

complexity increases also with the risk factor of the

environment where the exclusive system is deployed.

From these reasons the necessities for software reliability

can't be overlook when outlining such framework [1].

Software reliability idea is one of industry's fundamental

techniques for expecting the likelihood of software

programming field failures. Software programming

application reliability is defined as follows [1] [2]:

• “Reliability is a probability. This implies that

failure happens arbitrarily, it can be a individual or

repeating occasion. The frequency for failures fluctuates

in spell of time as per the picked probability function”.

• “The probability of a given framework works

its assignment fairly for an altered time of time under the

desired working conditions”.

• “The probability of given program will

safeguard perfection operation in a predefined domain for

an altered spell of time”.

Failure Probability is the probability that the software

will fail on the back-to-back input selected. Software

reliability is mostly measured per few unit of time,

whereas probability of failure is broadly time autonomous.

Software reliability varies vary from software

“faultlessness”. A project is faithful with its model, while

reliability is related to the elementary request that is made

upon the framework and the capacity to create a

substantial reaction to those requests. A faultlessness

program may be considered as unreliable, conversely a

program that is not completely faultlessness may be

considered as solid if the blunders are immaterial or client

can just escape the errors.

Presently Component Based Software Engineering

(CBSE) is being famous among both researchers and

practitioners now that it’s a lot of advantages over object

oriented approach. CBSE has been an explicit result of

advances in software component reuse. Outlining

programming parts for future reuse has been a vital area

in software engineering. Computing environments are

evolving to distributed systems where Object-oriented

development had not given wide reuse. Component-based

software structure is a high level abstraction of system

architecture. It has productive components: parts which

give usefulness, connectors which portray

intercommunication and setup which speaks to the

topology of associations in the middle of segments. This

abstraction gives a ton of force in the software product

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 241

life cycle like greater abstraction office, better

adaptability for development and consideration, more

reusability as relate to object oriented model. CBSE

increase quality, productivity, profit and reusability and

reduce care overheads and time to market [3] [4].

A mathematical fuzzy model based on necessity and

possibility is proposed to predict the reliability of

component-based software systems (CBSS). This

paradigm doesn’t require component failure data because

it is based on uncertainty [5]. Software reliability

estimation model based on Generic Algorithm (GA) and

a Support Vector Machine (SVM). Software Reliability

estimation factor for the SVM are determined by the GA.

This model is less dependent on failure data than are

other models [6]. An adaptive approach for testing path

reliability estimation for complex CBSS. These use

sequence, branch, and loop structures [7]. A rule-based

approach based on fuzzy logic for estimating CBSS

reliability. In this approach, four critical factors were

recognized for estimating the reliability of a CBSS. They

are utilized to plan a FIS for the estimation [8]. Another

productive way to deal with access the reliability of a

software project, considering the part reliabilities,

relationship and application structural planning is

arranged. That is transforms a Multivariate Burnoulli

distribution (MVB) into a joint distribution of the

component outcomes [9]. Software reliability estimation

technique utilizing modified adaptive testing (MAT) for

reliability of CBS. It can upgrade the software reliability

estimation testing by controlling experiment test case

selection process by providing more descriptive and exact

results [10]. A versatile structure of incorporating path

testing into reliability evaluation for component software

systems. Three assessed strategies based on similar

program namely, sequence, structures, loop structures and

branch are conceded to figure the path reliability.

Therefore, the borrowed path reliabilities can be adapted

to the estimates of software reliability [11]. Conceptual

model for reusability of the software is studied during

improvement. The aspect of reusability of different

versions are assessed and compared. The study helps to

understand the evolution of software as per reusability.

The change in size (ex. - aggregate number of lines of

code, aggregate number of capacities, module and

classes), flexibility, adaptability, reliability, complexity

and understandability and so on are studied over in

different releases to calculate their effect on reusability of

the software program [12]. An adaptive neuro-fuzzy

inference system (ANFIS) that is based on these two

basic elements of soft computing and we compare its

performance with that of a plain FIS (fuzzy inference

system) for different data sets [13].

Rest of the paper is sorted out as follows Section 2

gives the problems mix with software reliability. Section

3 describes the reliability models for CBS. Section 4

gives the methodology for CBS reliability. In Section 5,

result analysis of different approaches has been calculated.

Paper is concluded with a summary and the description

for future work in Section 6.

II. PROBLEMS DEFINATION WITH

SOFTWARE RELIABILITY

The major difference in between software and other

engineering affect is that software is pure design and

maintaining. Software blunder means design error which

is arising from human faults as well as machine error at

the time of software development. Hardware systems do

fail with respect to design and manufacturing faults.

CBSS reliability is deeply relies on the

intercommunication in between all the components. If

number of intercommunication increases than

dependencies also increases. Higher dependency increase

the complexity of software application, Hence reliability

calculation will be tedious work. Formally dependency is

represented by an adjacency matrix. However, this

representation can check only for the presence of

dependencies in between components and does not

consider the type of intercommunication.

Intercommunication types have a significant contribution

to the complexity of any CBS, hence many software

reliability factors, issues and metrics proposed by

researchers for CBS. Sharma et.al. [14] Component’s

have restricted intercommunication, data definition,

protocols, flow chart paradigm [15]. We try to discover

some factors for different types of dependency and

intercommunication that requires special terminology.

The factors that can be affected the dependence

complexity of software system. That is [16].

• Data Dependence

• Control Dependence

• Interface Dependence

• Real Time Dependence

After this some other factors that is affected software

reliability. They are: [13], [17]

(I) Reusability - Reusability (R) is a factor for

estimating component reliability because components that

have been used in many applications called more reliable.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 242

Hence the reliability of a component is directly

proportional to its reusability.

Component Reliability ∝ Reusability

(II) Operational Profile - Operational profile (OP) is a

complete set of operations with their probabilities of

occurrence. The OP for any component describes the no.

of inputs supplied to the component.

(III) Component Dependency - Various components or

segments are interconnected to one or more component to

form a larger application. These interconnected

components are dependent on each other to execute their

methods, because the output of one or more segments

may use as an input for another component known as

component dependency (CD). This dependency plays an

important role for estimating the reliability of the whole

program application. If segments are deeply dependent on

one or more component, then reliability of the CBSS will

be low.

(IV) Application Complexity - The application

complexity (AC) of any CBSS application can be defined

in terms of the number of components in that application

and their interdependency. High complex and low

reliable application means that more interdependent

component. Hence, the application complexity (AC) of an

application is inversely proportional to its reliability:

Application Complexity ∝ (1 / reliability)

(V) Flexibility – Software that can be easily changed

as per different user and system requirements called

flexibility.

(VI) Understandability - Understandability that means

user can effectively understand whole application and

working phenomena. After that users execute any task

more effectively and efficiently. User leads to more

efficiency because they can use functionality and all

characteristics that achieve targeted goals faster, with

little steps and errors.

(VII) Portability - Software application is considered

portable if they have effortlessly ported to another

environment without no exertion and adapt it to the new

environment inside reasonable time limits.

(VIII) Maintainability – Computer program that can be

easy to retain in its original form and to be restored to

that form in case of a system failure called

Maintainability.

III. RELIABILITY MODEL FOR

COMPONENT BASED SYSTEMS

A software reliability models have emerged as people

try to understand the feathers of how and why software

untrustworthy, and try to estimate software reliability.

Quantities of models have been proposed, yet how to use

software reliability still dreary issue Software Reliability

Models can be raised in two routes, one of the essential

models in view of - [18]

(I) Failure History - With the assistance of failure

history, the current Software reliability Model (SWRMs)

can be ordered into four sections as:

• Time between Failure Models (TBF Models) -

The methodology under study is the time between

failures. It is expected that the time between (i-1)th and

ith failures is an arbitrary variable, after a dispersion

whose parameters rely on upon the quantity of faults

staying in the system amid this interval.

• Fault Count Models (FC Models) - The irregular

variable of hobby is the quantity of flaws (failures)

happening amid determined time period. Failure finds out

take after a known stochastic system. For the most part

Poisson determination with a period ward will be discrete

or ceaseless failure rate.

• Fault seeding Models (FS Models) - A Program

has obscure number of indigenous issues. To this, a

known number of faults are seeded. The project is tried

and watched number of seeded and indigenous issue is

numbered.

• Input domain based models (IDB Models) - An

arrangement of experiments is produced from the info

covering the operational profile (OP) of the program.

Typically the information or data space is apportioned

into a situated of comparable classes, each of which is

generally connected with a project path.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 243

Software Reliability Model

Failure History Data

Requirements

TBF FC FS IDB Analytical Empirical

 Static Model Dynamic Model

Error Domain Data Domain

 Model Model

Discrete Time Domain Continuous Time Domain

Random Fixed IDT Model IIE

Model

Time Time

Domain Domain

Fig. 1 Classification of software reliability model

(II) Data Requirements - On the premise of

information necessities the SWRMs can be grouped into

two fundamental groups-

• Empirical Models - An Empirical SWR model

creates relationship or an arrangement of relationship

between SWR measures and suitable programming

measurements, for example, program complexity utilizing

experimental results accessible from past information.

• Analytical Models - A diagnostic model requires

some type of information accumulated from software

failures. It is in view of fitting of a suitable dissemination

with required assumptions for reliability on an

arrangement of information assembled amid software

testing and forecast of SWR parameters from the fitted

conveyance.

IV. METHODOLOGIES

Researchers have proposed a number of methods for

estimating CBSS reliability. They are following-

(1) Path based software reliability estimation

This is an adaptive approach for testing path into

reliability estimation for complex component based

systems. For path reliability estimation three methods

have been proposed namely sequence, branch and loop

structures. The proposed path reliability can be used for

reliability estimation of overall application. [7]. Many

computer-aided software engineering (CASE) tools or

modeling languages [19], [20], [21], [22] have been

provided to construct a graphic representation for a

particular programming framework, for example, control

stream diagram, component dependency graph (CFG),

entity relationship diagram (ERD), and so on. With the

end goal of describing the failure behavior of modular

software systems, a path-based method is proposed to

estimate the software reliability. The general structure of

path reliability with crossing some specific nodes can be

characterized by utilizing a various leveled methodology

[19], [23], [24], [25]–[27].

Start

Construct a

graph from

software system

Compose or

decompose a

node in the

graph

Select a testing

path and test

each node

Adjust

transaction on

each node

Calculate the

path reliability

of testing path

Estimate path

reliability to

approximate

software

reliability

End

Continue

testing this

path or select

another path

Yes

No

Update

testing

path

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 244

Fig. 2 Flow chart for path based software reliability

estimation

(2) Architecture based software reliability

estimation

In this approach, five fundamental segments or

component composition mechanisms and their reliability

evaluation strategies are given. After this evaluation the

reliability for each composition, a methods and system is

given to estimate the complete application reliability.

Five segment composition mechanisms and their

reliability formalizations are recognized in this section.

They characterize (Ci , Ri , Ni) to speak the nodes in state

chart, where Ci is the name of the ith segment or

component, Ri is segment or component reliability, and

Ni is the execution time period [28]. There utilized

notations is-

Fig. 3 Composition mechanism notations

Fig. 4 Architecture-based reliability estimation

framework

(3) Rule based software reliability estimation

The algorithm for rule based software reliability

estimation consists of the following steps: [8]

1. Identify the factors that affect CBS reliability and

methods.

2. Summarize a database for the value of these factors.

3. Apply best clustering technique and design clusters

of these factors.

4. Design an inference engine for the rule base, with

respect to planned clusters.

5. Fuzzify the inputs.

6. Defuzzify the outputs.

7. Estimate the error percentage.

(C, R, N)

Component Sequential Parallel

Replicate Interrupt Iteration

Yes

No

System

architecture

Identify

composition

mechanism

Integrate into

global diagram

Calculate global

reliability

Homogeneous

mechanism?

Calculate

individual

reliability

Summarize Factors that affects CBSS

Reliability

Is the factor

relevant?
Out of

scope of

study

Relevant

Material

Select

relevant

Select methods for

estimating factors

Summarize

Database

Relevant technique?

Find out best

clustering

technique

Design

clusters of

factors

Fuzzification

Design

Inference

engine

Defuzzification Result

Yes No

No

Yes

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 245

Fig. 5 Flow chart for rule based software reliability

estimation

(4) Software reliability estimation based on Neuro-

Fuzzy model

They are black-box models. NNs and fuzzy logic are

reciprocal ideas. NNs have learning abilities: they can

gain from information and criticism. Fuzzy logic models

are rule-based models, where the rules usually have an if-

then form. Fuzzy models do not have learning capabilities,

so for learning, they must adopt techniques from other

methods [13] [29].

Fig. 6 Neural-Fuzzy system

V. RESULTS

In this paper, we have explained four methodologies.

Software reliability of CBSS with the basis of Path based

software reliability estimation 0.283, similarly

Architecture based software reliability estimation 0.984,

Rule based software reliability estimation 0.75 and

Software reliability estimation based on Neuro-Fuzzy

model 0.383.

VI. CONCLUTIONS AND FUTURE

SCOPE

In this paper, various available reliability estimation

methods for component based software applications are

investigated. We study some regions on the premise of

which we researched the accessible methodologies as

extension, model, procedure, system strategy and study.

Most of the proposed approaches are mathematical and

based upon the component. To calculate the overall

application reliability existing work take two important

considerations one is reliability of individual component

and another is Open Source Software (OSS) software

product lines of the system. However, soft computing

techniques have produced better results. For reliability

there is still a good scope to estimate it using adaptive

soft computing techniques.

REFERENCES

[1] Martin Jedlicka, Oliver Moravcik, Peter

Schreiber, “Survey to Software Reliability”

Pavlinska 16, 91724 Trnava, Slovakia.

[2] ANSI/IEEE, 1991 Standard Glossary of

Software Engineering Terminology, STD-729-

1991.

[3] Kirti Tyagi and Arun Sharma, 2012, “Reliability

of Component Based Systems – A Critical

Survey”, Issue 2, Volume 11, E-ISSN: 2224-

2872.

[4] NehaBudhija, Bhupinder Singh and Satinder Pal

Ahuja, 2013, “Detection of Reusable

Components in Object Oriented Programming

Using Quality Metrics”, Volume 3, Issue 1,

ISSN: 2277 128X.

[5] Dimov, Aleksandar, Sasikumar, Punnekkat,

2010. “Fuzzy reliability model for component-

based software systems”, 36th EUROMICRO

Conference on Software Engineering and

Advanced Applications, pp. 39–46.

[6] Lo, J., 2010. “Early software reliability

prediction based on support vector machines

with genetic algorithms”, Fifth IEEE Conference

on Industrial Electronics and Applications, pp.

2221–2226.

[7] M Hsu, C., Huang, C., 2011, “An adaptive

reliability analysis using path testing for

complex component based software systems”,

IEEE Trans. Reliab. 60 (1), 158–170.

[8] Tyagi, K., Sharma, A., 2012, “A rule-based

approach for estimating the reliability of

component-based systems”, Adv. Eng. Softw. 54,

24–29.

[9] Fiondella, Lance, Rajasekaran, Sanguthever,

Gokhale, Swapana, 2013. “Efficient software

reliability analysis with correlated component

failures”. IEEE Trans. Reliab. 62 (1), 244–255.

[10] Hai Hu, Chang-Hai Jiang, Kai-Yuan Cai, W.

Eric Wong, Aditya P. Mathur, 2013. “Enhancing

software reliability estimates using modified

adaptive testing”, Information and Software

Technology Journal Elsevier, pp. 288–300.

Neural

Network

Fuzzy

Inference

Knowledge-Base

Learning Algorithm

Neural

outputs

Decision

Neural

inputs

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 246

[11] Chao-Jung Hsu and Chin-Yu Huang, 2011, "An

Adaptive Reliability Analysis Using Path

Testing for Complex Component-Based

Software Systems", IEEE TRANSACTIONS

ON RELIABILITY, VOL. 60, NO. 1.

[12] Fazal-e-Amin, Ahmad Kamil Mahmood and

Alan Oxley, 2012, "An Evolutionary Study of

Reusability in Open Source Software",

International Conference on Computer &

Information Science (ICCIS) 978-1-4673-1938-

6/12.

[13] Kirti Tyagi, Arun Sharma 2014, “An adaptive

neuro fuzzy model for estimating the reliability

of component-based software systems” Applied

Computing and Informatics (2014) 10, 38–51.

[14] Arun Sharma, P.S.Grover, and Rajesh Kumar,

2009,” Dependency Analysis for Component

Based Software Systems”, ACMSIGSOFT

Software Engineering Notes Vol. 34, No 4 pp 1-

6.

[15] Hapner et al., “Patterns of Conflict among

Software Components.” Volume 79, 2006, pp.

537-551.

[16] Ratneshwer and Anil Tripathi, 2011,

"Dependence Analysis of Component Based

Software through Assumptions", IJCSI, Vol. 8,

Issue 4, No 1.

[17] Fazal-e-Amin, Ahmad Kamil Mahmood, Alan

Oxley, 2012 "An Evolutionary Study of

Reusability in Open Source Software",

International Conference on Computer &

Information Science (ICCIS).

[18] Latha Shanmugam and Dr. Lilly Florence, 2012,

"An Overview of Software Reliability Models",

International Journal of Advanced Research in

Computer Science and Software Engineering,

Volume 2, Issue 10.

[19] S. S. Gokhale, 2007, “Architecture-based

software reliability analysis: Overview and

limitations,” IEEE Trans. Dependable and

Secure Computing, vol. 4, no. 1, pp. 32–40.

[20] K. Go seva-Popstojanova and K. S. Trivedi,

2001, “Architecture-based approach to reliability

assessment of software systems,” Performance

Evaluation, vol. 45, no. 2/3, pp. 179–204.

[21] G. J. Myers, 2004, “The Art of Software

Testing”, 2nd ed. New York: John Wiley and

Sons.

[22] P. C. Jorgensen, Software Testing: A Craftman’s

Approach, 3rd ed. : Auerbach Publications, 2008.

[23] S. S. Gokhale, W. E. Wong, J. R. Horgan, and K.

S. Trivedi, 2004, “An analytical approach to

architecture-based software performance and

reliability prediction,” Performance Evaluation,

vol. 58, no. 4, pp. 391–412.

[24] Z. Zheng and M. R. Lyu, 2010. “An adaptive

QoS-aware fault tolerance strategy for web

services,” Empirical Software Engineering, vol.

15, no. 4, pp. 323–345.

[25] J. H. Lo, S. Y. Kuo, M. R. Lyu, and C. Y. Huang,

2002, “Optimal resource allocation and

reliability analysis for component-based

software applications,” in Proceedings of the

26th International Computer Software and

Applications Conference (COMPSAC 2002),

Oxford, England, pp. 7–12.

[26] J. H. Lo, C. Y. Huang, S. Y. Kuo, and M. R. Lyu,

2003, “Sensitivity analysis of software reliability

for component-based software applications,” in

Proceedings of the 27th International Computer

Software and Applications Conference

(COMPSAC 2003), Dallas, TX, USA, pp. 500–

505.

[27] J. H. Lo, C. Y. Huang, I. Y. Chen, S. Y. Kuo,

and M. R. Lyu, 2005, “Reliability assessment

and sensitivity analysis of software reliability

growth modeling based on software module

structure,” Journal of Systems and Software, vol.

76, no. 1, pp. 3–13.

[28] Si Yuanjie, Xiaohu Yang, Xinyu Wang, Chao

Huang, Aleksander J. Kavs, 2011. “An

architecture-based reliability estimation

framework through component composition

mechanisms”, 2nd International Conference on

Computer, Engineering and Technology, pp.

165–170.

[29] Azar, Ahmad Taher, 2010, "Adaptive Neuro-

Fuzzy Systems", ISBN 978-953-7619-92-3, pp.

216.

http://www.ijcstjournal.org/

