
International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 3, May-June 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 89

Arithmetic Coding for Lossless Data Compression – A Review
Ezhilarasu P [1], Krishnaraj N [2], Dhiyanesh B [3]

Associate Professor [1], Assistant Professor [3]

Department of Computer Science and Engineering

Hindusthan College of Engineering and Technology

Coimbatore

Head of the Department [2]
Department of Information Technology

Sree Sastha Institute of Engineering and Technology

Chennai

Tamil Nadu – India

ABSTRACT

In this paper, Arithmetic Coding data compression technique reviewed. Initially, arithmetic encoding performed for the

taken input. Then decoding for the obtained result done. It regenerates the original uncompressed input data. Its

compression ratio, space savings, and average bits also calculated.

Keywords:- Arithmetic Coding, Compression, Encoding, Decoding.

I. INTRODUCTION

Data compression defined as the representation of data

in such a way that, the storage area needed for target data

is less than that of the size of the input data. The

decompression technique regenerates the source data.

After decompression, if there is some loss of data, then

the compression called as lossy compression. If none of

the data missed, then the compression named as lossless

compression. The Arithmetic coding comes under lossless

compression. Each compression technique looks for two

important aspects. Those are complexity in terms of space

along with time.

Arithmetic coding generates variable length codes. It

bypasses traditional methods of replacing input characters

by specific code, like code words. It uses the combination

of both integers and floating-point numbers. The integers

used initially to represent two limits. Those are high limit

one and low limit zero. Then in the subsequent steps these

limits change into floating-point numbers. The floating-

point numbers used to represent the input. The output of

an arithmetic encoding is the collection of bits derived

from the floating-point number. The binary converted into

fractional number, then regenerates the input in arithmetic

decoding.

II. RELATED WORK

Shannon [1948] showed that it was possible to generate

better compression code for the probability model. He

produced minimum average bits per symbol for the given

input [1]. Fano [1949] also provided optimal code by

working on data compression [2]. Huffman, the student of

Fano also worked on producing optimal code better than

that of Shannon-Fano coding. The Shannon-Fano coding

is a top-down approach. Huffman [1952] used the bottom-

up approach to producing better optimal code than the

work of his master [3]. The significant advantage of

arithmetic coding is its flexibility and optimality. In most

cases, Huffman coding produces very nearly optimal code

[4, 5, 6, and 7]. The main limitation of arithmetic coding

is its slowness. Huffman coding and Lempel-Ziv coding

are faster [8, 9] than arithmetic coding. The

approximation technique used to increase the speed of the

coding [10, 11, 12, and 13].

III. ARITHMETIC ENCODING

In the field of data compression, arithmetic coding is

entropy encoding. The floating-point number calculated by

the characters probability. In each step of arithmetic

coding, the value of the lower limit increases or remains

the same. Whereas, for the upper bound, the value

decreases or remains the same. So lower limit value

always greater than or equal to previous lower limit value.

The top limit value, always less than or equal to the

previous upper bound value.

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/
http://en.wikipedia.org/wiki/Data_compression

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 3, May-June 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 90

A. ALGORITHM

1. Get the input.

2. Read the information, character by character.

3. Identify unique characters and its occurrences.

4. Find the probability of each character.

5. Initialize the high limit = one, low limit = zero.

6. Find the low limit and high limit probability for each

unique character.

7. Read the character from the left to right.

8. Find low limit by using the equation 1,

Low limit = previous low limit

 + (Previous high limit – previous low limit)

 * Low limit probability of the taken character

(1)

If the low limit probability of the chosen character is

zero, then low limit = previous low limit.

9. Find high limit by using the equation 2,

High limit = previous high limit -

(Previous high limit – previous low limit)

* (1-high limit probability of the taken character)

(2)

If a high limit probability of the chosen character is one,

then high limit = previous high limit.

10. Apply step seven, eight, and nine recursively to the

remaining characters.

11. Find the average of low limit and high limit.

12. Convert the output fractional number into binary.

B. EXAMPLE

If in a message (M), whose length is ten we have four,

unique characters (m1, m2, m3, m4) with occurrences are

4, 2, 3, and 1. The probability (P) of each unique character

given as (p1, p2, p3, p4) given in the equation 3.

Unique character probability (P) =

Character (Symbol) occurrences /Message length

(3)

The probability of the unique characters (m1, m2, m3,

m4) calculated by (p1, p2, p3, p4) using the equation 3. It

is given in the coding table as provided in the table I.

TABLE I. CODING TABLE

CHARACTE

R

m1 m2 m3 m4

OCCURREN

CE

4 2 3 1

PROBABILI

TY

0.4 0.2 0.3 0.1

The table used to derive low limit probability and high limit probability for each unique character as shown in Table

II.

TABLE II. CODING TABLE WITH LOW AND HIGH LIMIT PROBABILITY

S.N

O

UNIQUE

CHARACT

ER

LOW LIMIT

PROBABILI

TY

HIGH LIMIT

PROBABILI

TY

1. m1 0 0.4

2. m2 0.4 0.6

3. m3 0.6 0.9

4. m4 0.9 1

The table used to derive the fractional number for the

given input message (M).

If the message is “arasu” with each character

probability given as in the table III.

C. IMPLEMENTATION

1. Get the input (“arasu”).

2. Read the input character by character (‘a’,’r’,’a’,’s’,’u’).

3. Identify unique character and its occurrences (‘a-1’,’r-

1’,’a-2’,’s-1’,’u-1’).

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 3, May-June 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 91

4. Find the probability of each unique character, as shown

in the table III.

TABLE III. UNIQUE CHARACTER PROBABILITY

S.

NO

CHARACT

ER

PROBABILI

TY

1 ‘a’ 0.4

2 ‘r’ 0.2

3 ‘s’ 0.2

4 ‘u’ 0.2

5. Initialize the high limit = one, low limit = zero.

6. Find the low limit and high limit probability for each

unique character, as shown in the table IV.

TABLE IV. CODING TABLE WITH LOW AND HIGH LIMIT

PROBABILITY

S.

NO

UNIQUE

CHARACTE

R

LOW LIMIT

PROBABILIT

Y

HIGH LIMIT

PROBABILIT

Y

1. a 0 0.4

2. r 0.4 0.6

3. s 0.6 0.8

4. u 0.8 1

7. Read the character from the left to right (‘a’).

8. Find low limit by using the equation 1,

Low limit = previous low limit +

 (Previous high limit – previous low limit)

* Low limit probability of the taken character

Here the low limit probability of the character ‘a’ is

zero. Hence, Low limit = zero.

9. Find high limit by using the equation 2,

High limit = previous high limit -

 (Previous high limit – previous low limit)

* (1-high limit probability of the taken character)

 = 1 – (1 – 0) * (1 – 0.4)

 = 1 – 1 * 0.6

 = 1 – 0.6

 = 0.4

10. Apply step seven, eight, and nine recursively to the

remaining characters.

7. Read the character from the left to right (‘r’).

8. Find low limit by using the equation 1,

Low limit = previous low limit +

 (Previous high limit – previous low limit)

* Low limit probability of the taken character

 = 0 + (0.4- 0) * 0.4

 = 0 + 0.4 * 0.4

 = 0 + 0.16

 = 0.16

9. Find high limit by using the equation 2,

High limit = previous high limit -

 (Previous high limit – previous low limit)

* (1-high limit probability of the taken character)

 = 0.4 – (0.4 – 0) * (1 – 0.6)

 = 0.4 – 0.4 * 0.4

 = 0.4 – 0.16

 = 0.24

10. Apply step seven, eight, and nine recursively to the

remaining characters.

7. Read the character from the left to right (‘a’).

8. Find low limit by using the equation 1,

Low limit = previous low limit +

 (Previous high limit – previous low limit)

* low limit probability of the taken character

Here the low limit probability of the character ‘a’ is 0.

Hence, Low limit = 0.16.

9. Find high limit by using the equation 2,

High limit = previous high limit -

 (Previous high limit – previous low limit)

* (1-high limit probability of the taken character)

 = 0.24 – (0.24 – 0.16) * (1 – 0.4)

 = 0.24 – 0.08 * 0.6

 = 0.24 – 0.048

 = 0.192

10. Apply step seven, eight, and nine recursively to the

remaining characters.

7. Read the character from the left to right (‘s’).

8. Find low limit by using the equation 1,

Low limit = previous low limit +

 (Previous high limit – previous low limit)

* Low limit probability of the taken character

 = 0.16 + (0.192 – 0.16) * 0.6

 = 0.16 + 0.032 * 0.6

 = 0.16 + 0.0192

 = 0.1792

9. Find high limit by using the equation 2,

High limit = previous high limit -

 (Previous high limit – previous low limit)

* (1-high limit probability of the taken character)

 = 0.192 – (0.192 – 0.16) * (1-0.8)

 = 0.192 – 0.032 * 0.2

 = 0.192 – 0.0064

 = 0.1856

10. Apply step seven, eight, and nine recursively to the

remaining characters.

7. Read the character from the left to right (‘u’).

8. Find low limit by using the equation 1,

Low limit = previous low limit +

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 3, May-June 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 92

 (Previous high limit – previous low limit)

* Low limit probability of the taken character

 = 0.1792 + (0.1856 – 0.1792) * 0.8

 = 0.1792 + 0.0064 * 0.8

 = 0.1792 + 0.00512

 = 0.18432

9. Find high limit by using the equation 2,

High limit = previous high limit -

 (Previous high limit – previous low limit)

* (1-high limit probability of the taken character)

Here, the high limit probability of the chosen character

is 1. So high limit = previous high limit.

 High limit = 0.1856

10. Apply step seven, eight, and nine recursively to the

remaining characters. The remaining input characters are

nil.

11. Find the average of low limit and high limit.

 Average = (0.18432 + 0.1856) / 2

 = 0.18496

12. Convert the output fractional number into binary.

 0.18496 =

0.0010111101011001100010 (eliminate prefix 0.)

 = 0010111101011001100010

The whole encoding process, as in the Table V.

TABLE V. ARITHMETIC ENCODING

S.

NO

UNIQUE

CHARACT

ER

PROBABILI

TY

LOW LIMIT

PROBABILI

TY

HIGH

LIMIT

PROBABILI

TY

LO

W

LIM

IT

HI

GH

LI

MIT

1 ‘a’ 0.4 0 0.4 0 0.4

2 ‘r’ 0.2 0.4 0.6 0.16 0.24

3 ‘a’ 0.4 0 0.4 0.16 0.19

2

4 ‘s’ 0.2 0.6 0.8 0.179

2

0.18

56

5 ‘u’ 0.2 0.8 1 0.184

32

0.18

56

0010111101011001100010

The total number of bits needed = 22 bits.

The size of the input as uncompressed

 = 5 * 8

 = 40 bits

IV. ARITHMETIC DECODING

The arithmetic decoding regenerates the original input.

A. ALGORITHM

1. Convert the binary to fractional number.

2. Initialize high limit as one and low limit as zero.

3. Divide the range using the probability of each unique

character.

4. Check the range of the fractional number.

5. Write the corresponding character.

6. Find the average of the low limit and high limit. If the

average and fractional number both are same then stop the

process.

7. Apply step 3 – 6 recursively.

B. IMPLEMENTATION

1. Convert the binary to the fractional number

(0.18496).

2. Initialize high limit as one and low limit as zero.

3. Divide the range using probability of each unique

character (0 – 0.4 for ‘a’, 0.4 – 0.6 for ‘r’, 0.6 – 0.8 for ‘s’,

and 0.8 – 1 for ‘u’).

4. Check the range of the fractional number (0.18496 fits

the range 0 - 0.4).

5. Write the corresponding character (‘a’).

6. Find the average of the low limit and high limit. If the

average and fractional number both are same then stop the

process. Average = 0.4/2 = 0.2 not equal to 0.18496.

7. Apply step 3 – 6 recursively.

3. Divide the range using probability of each unique

character (0 – 0.16 for ‘a’ 0.16 – 0.24 for ‘r’, 0.24 – 0.32

for ‘s’, and 0.32 – 0.4 for ‘u’).

4. Check the range of the fractional number (0.18496 fits

the range 0.16 - 0.24).

5. Write the corresponding character (‘r’).

6. Find the average of the low limit and high limit. If the

average and fractional number both are same then stop the

process. Average = 0.4/2 = 0.2 not equal to 0.18496.

7. Apply step 3 – 6 recursively.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 3, May-June 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 93

3. Divide the range using probability of each unique

character (0.16 – 0.192 for ‘a’, 0.192 – 0.208 for ‘r’, 0.208

– 0.224 for ‘s’, and 0.224 – 0.24 for ‘u’).

4. Check the range of the fractional number (0.18496 fits

the range 0.16 - 0.192).

5. Write the corresponding character (‘a’).

6. Find the average of the low limit and high limit. If the

average and fractional number both are same then stop the

process. Average = 0.352/2 = 0.176 not equal to 0.18496.

7. Apply step 3 – 6 recursively.

3. Divide the range using probability of each unique

character (0.160 – 0.1728 for ‘a’, 0.1728 – 0.1792 for ‘r’,

0.1792 – 0.1856 for ‘s’, and 0.1856 – 0.192 for ‘u’).

4. Check the range of the fractional number (0.18496 fits

the range 0.1792 - 0.1856).

5. Write the corresponding character (‘s’).

6. Find the average of the low limit and high limit. If the

average and fractional number both are same then stop the

process. Average = 0.3648/2 = 0.1824 not equal to

0.18496.

7. Apply step 3 – 6 recursively.

3. Divide the range using probability of each unique

character (0.1792 – 0.18176 for ‘a’, 0.18176 – 0.18304 for

‘r’, 0.18304 – 0.18432 for ‘s’, and 0.18432 – 0.1856 for

‘u’).

4. Check the range of the fractional number (0.18496 fits

the range 0.18432 – 0.1856).

5. Write the corresponding character (‘u’).

6. Find the average of the low limit and high limit. If the

average and fractional number both are same then stop the

process. Average = 0.36992/2 = 0.18496 equal to 0.18496.

Hence, stop the process.

The entire decoding process, as in the table VI.

TABLE VI. ARITHMETIC DECODING

S.NO FRACTION

AL

NUMBER

RANGE OF UNIQUE CHARACTER OUTPUT

CHARACT

ER

AVERA

GE

‘a’ ‘r’ ‘s’ ‘a’

1 0.18496 0-

0.4

0.4-

0.6

0.6-

0.8

1 0.18496 0-

0.4

2 0.18496 0-

0.16

0.16-

0.24

0.24-

0.32

0.32-

0.4

‘r’ 0.2

3 0.18496 0.16-

0.192

0.192-

0.208

0.208-

0.224

0.224-

0.24

‘a’ 0.176

4 0.18496 0.16-

0.1728

0.1728-

0.1792

0.1792-

0.1856

0.1856-

0.1920

‘s’ 0.1824

5 0.18496 0.1792-

0.18176

0.18176-

0.18304

0.18304-

0.18432

0.18432-

0.1856

‘u’ 0.18496

V. RESULT AND DISCUSSION

The compression ratio, space savings and average bits

calculated for the examples are

Compression ratio = 40/22

= 20:11

=1.82:1

Space savings =1-(22/40)

= 1-(11/20)

= 1-0.55

= 0.45

= 45%

Average bits = 22/5

= 4.4 bits per character

VI. CONCLUSION

The arithmetic coding is an innovative compression

technique. It represents entire message by using the

floating-point number as compared to code words. The

obtained results depict that arithmetic coding gives better

compression ratio, space savings, and average bits per

character.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 3, May-June 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 94

REFERENCE

[1] C. E. Shannon, “A Mathematical Theory of

Communication”, Bell System Technical Journal,

Volume 27, pp. 398-403, 1948.

[2] R.M. Fano, “The transmission of information”,

Technical Report 65, Research Laboratory of

Electronics, M.I.T, Cambridge, Mass, 1949.

[3] D.A. Huffman, "A Method for the Construction of

Minimum-Redundancy Codes", Proceedings of the

I.R.E, pp. 1098–1102, 1952.

[4] A. C. Blumer & R. J. McEliece, “The Renyi

Redundancy of Generalized Huffman Codes," IEEE

Trans. Inform. Theory, IT-34, pp.1242-1249, 1988.

[5] R. M. Capocelli, R. Giancarlo & I. J. Taneja,

“Bounds on the Redundancy of Huffman Codes,"

IEEE Trans. Inform. Theory, IT-32, pp. 854-857,

1986.

[6] R. G. Gallager, “Variations on a Theme by

Huffman," IEEE Trans. Inform. Theory, IT-24, pp.

668-674,1978.

[7] S. Parker, “Conditions for the Optimality of the

Huffman Algorithm," SIAM J. Comput. 9, pp., 470-

489, 1980.

[8] J. Ziv & A. Lempel, “A Universal Algorithm for

Sequential Data Compression", IEEE Trans. Inform.

Theory, IT-23, pp.337-343, 1977.

[9] J. Ziv & A. Lempel, “Compression of Individual

Sequences via Variable-Rate Coding", IEEE Trans.

Inform. Theory, IT-24, pp. 530-536, 1978.

[10] Chevion, E. D. Karnin & E. Walach, “High

Efficiency, Multiplication Free Approximation of

Arithmetic Coding," in Proc. Data Compression

Conference, J.A. Storer & J. H. Reif, eds., Snowbird,

Utah, Apr. 8-11, pp. 43-52, 1991.

[11] G. G. Langdon, “Probabilistic and Q-Coder

Algorithms for Binary Source Adaptation," in Proc.

Data Compression Conference, J. A. Storer & J. H.

Reif, eds., Snowbird, Utah, Apr. 8-11, pp. 13-22,

1991.

[12] G. G. Langdon & J. Rissanen, “Compression of

Black-White Images with Arithmetic Coding," IEEE

Trans. Comm. COM-29, pp. 858-867, 1981.

[13] W. B. Pennebaker, J. L. Mitchell, G. G. Langdon &

R. B. Arps, “An Overview of the Basic Principles of

the Q-Coder Adaptive Binary Arithmetic Coder,"

IBM J.Res. Develop. 32, pp. 717-726, 1988.

http://www.ijcstjournal.org/

