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ABSTRACT 

In this paper, Arithmetic Coding data compression technique reviewed. Initially, arithmetic encoding performed for the 

taken input. Then decoding for the obtained result done. It regenerates the original uncompressed input data. Its 

compression ratio, space savings, and average bits also calculated. 
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I.     INTRODUCTION 

Data compression defined as the representation of data 

in such a way that, the storage area needed for target data 

is less than that of the size of the input data. The 

decompression technique regenerates the source data. 

After decompression, if there is some loss of data, then 

the compression called as lossy compression. If none of 

the data missed, then the compression named as lossless 

compression. The Arithmetic coding comes under lossless 

compression. Each compression technique looks for two 

important aspects. Those are complexity in terms of space 

along with time.  

Arithmetic coding generates variable length codes. It 

bypasses traditional methods of replacing input characters 

by specific code, like code words. It uses the combination 

of both integers and floating-point numbers. The integers 

used initially to represent two limits. Those are high limit 

one and low limit zero. Then in the subsequent steps these 

limits change into floating-point numbers. The floating-

point numbers used to represent the input. The output of 

an arithmetic encoding is the collection of bits derived 

from the floating-point number. The binary converted into 

fractional number, then regenerates the input in arithmetic 

decoding. 

II.     RELATED WORK 

Shannon [1948] showed that it was possible to generate 

better compression code for the probability model. He  

 

 

 

produced minimum average bits per symbol for the given 

input [1]. Fano [1949] also provided optimal code by 

working on data compression [2]. Huffman, the student of 

Fano also worked on producing optimal code better than 

that of Shannon-Fano coding. The Shannon-Fano coding 

is a top-down approach. Huffman [1952] used the bottom-

up approach to producing better optimal code than the 

work of his master [3]. The significant advantage of 

arithmetic coding is its flexibility and optimality. In most 

cases, Huffman coding produces very nearly optimal code 

[4, 5, 6, and 7]. The main limitation of arithmetic coding 

is its slowness. Huffman coding and Lempel-Ziv coding 

are faster [8, 9] than arithmetic coding. The 

approximation technique used to increase the speed of the 

coding [10, 11, 12, and 13]. 

III. ARITHMETIC ENCODING 

In the field of data compression, arithmetic coding is 

entropy encoding. The floating-point number calculated by 

the characters probability. In each step of arithmetic 

coding, the value of the lower limit increases or remains 

the same. Whereas, for the upper bound, the value 

decreases or remains the same. So lower limit value 

always greater than or equal to previous lower limit value. 

The top limit value, always less than or equal to the 

previous upper bound value. 
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A. ALGORITHM 

1. Get the input. 

2. Read the information, character by character. 

3. Identify unique characters and its occurrences. 

4. Find the probability of each character. 

5. Initialize the high limit = one, low limit = zero. 

6. Find the low limit and high limit probability for each 

unique character. 

7. Read the character from the left to right. 

8. Find low limit by using the equation 1, 

Low limit = previous low limit  

                   + (Previous high limit – previous low limit)  

               * Low limit probability of the taken character                              

(1)                        

If the low limit probability of the chosen character is 

zero, then low limit = previous low limit. 

9. Find high limit by using the equation 2, 

High limit = previous high limit - 

(Previous high limit – previous low limit)     

* (1-high limit probability of the taken character)                       

(2)                        

If a high limit probability of the chosen character is one, 

then high limit = previous high limit. 

10. Apply step seven, eight, and nine recursively to the 

remaining characters. 

11. Find the average of low limit and high limit. 

12. Convert the output fractional number into binary. 

 

B.  EXAMPLE 

If in a message (M), whose length is ten we have four, 

unique characters (m1, m2, m3, m4) with occurrences are 

4, 2, 3, and 1. The probability (P) of each unique character 

given as (p1, p2, p3, p4) given in the equation 3. 

 

Unique character probability (P) =  

Character (Symbol) occurrences /Message length                    

(3)                                                               

 

The probability of the unique characters (m1, m2, m3, 

m4) calculated by (p1, p2, p3, p4) using the equation 3. It 

is given in the coding table as provided in the table I. 

 

TABLE I.  CODING TABLE 

CHARACTE

R 

m1 m2 m3 m4 

OCCURREN

CE 

4 2 3 1 

PROBABILI

TY 

0.4 0.2 0.3 0.1 

 

 

The table used to derive low limit probability and high limit probability for each unique character as shown in Table 

II. 

TABLE II.  CODING TABLE WITH LOW AND HIGH LIMIT PROBABILITY 

S.N

O 

UNIQUE 

CHARACT

ER 

LOW LIMIT 

PROBABILI

TY 

HIGH LIMIT 

PROBABILI

TY 

1. m1 0 0.4 

2. m2 0.4 0.6 

3. m3 0.6 0.9 

4. m4 0.9 1 

 

The table used to derive the fractional number for the 

given input message (M). 

If the message is “arasu” with each character 

probability given as in the table III.  

C. IMPLEMENTATION 

1. Get the input (“arasu”). 

2. Read the input character by character (‘a’,’r’,’a’,’s’,’u’). 

3. Identify unique character and its occurrences (‘a-1’,’r-

1’,’a-2’,’s-1’,’u-1’). 
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4. Find the probability of each unique character, as shown 

in the table III. 

TABLE III.  UNIQUE CHARACTER PROBABILITY 

S.

NO 

CHARACT

ER 

PROBABILI

TY 

1 ‘a’ 0.4 

2 ‘r’ 0.2 

3 ‘s’ 0.2 

4 ‘u’ 0.2 

 

5. Initialize the high limit = one, low limit = zero. 

6. Find the low limit and high limit probability for each 

unique character, as shown in the table IV. 

TABLE IV.  CODING TABLE WITH LOW AND HIGH LIMIT 

PROBABILITY 

S.

NO 

UNIQUE 

CHARACTE

R 

LOW LIMIT 

PROBABILIT

Y 

HIGH LIMIT 

PROBABILIT

Y 

1. a 0 0.4 

2. r 0.4 0.6 

3. s 0.6 0.8 

4. u 0.8 1 


 

7. Read the character from the left to right (‘a’). 

8. Find low limit by using the equation 1, 

Low limit = previous low limit + 

                    (Previous high limit – previous low limit) 

* Low limit probability of the taken character                               

Here the low limit probability of the character ‘a’ is 

zero. Hence, Low limit = zero. 

9. Find high limit by using the equation 2, 

High limit = previous high limit - 

                    (Previous high limit – previous low limit) 

* (1-high limit probability of the taken character)                        

        = 1 – (1 – 0) * (1 – 0.4) 

        = 1 – 1 * 0.6 

        = 1 – 0.6 

        = 0.4 

10. Apply step seven, eight, and nine recursively to the 

remaining characters. 

7. Read the character from the left to right (‘r’). 

8. Find low limit by using the equation 1, 

Low limit = previous low limit + 

                    (Previous high limit – previous low limit) 

* Low limit probability of the taken character                               

       = 0 + (0.4- 0) * 0.4 

       = 0 + 0.4 * 0.4 

       = 0 + 0.16 

       = 0.16 

9. Find high limit by using the equation 2, 

High limit = previous high limit - 

                    (Previous high limit – previous low limit) 

* (1-high limit probability of the taken character)                        

        = 0.4 – (0.4 – 0) * (1 – 0.6) 

        = 0.4 – 0.4 * 0.4 

        = 0.4 – 0.16 

        = 0.24 

10. Apply step seven, eight, and nine recursively to the 

remaining characters. 

7. Read the character from the left to right (‘a’). 

8. Find low limit by using the equation 1, 

Low limit = previous low limit + 

                    (Previous high limit – previous low limit) 

* low limit probability of the taken character                               

Here the low limit probability of the character ‘a’ is 0. 

Hence, Low limit = 0.16. 

9. Find high limit by using the equation 2, 

High limit = previous high limit - 

                    (Previous high limit – previous low limit) 

* (1-high limit probability of the taken character)                        

        = 0.24 – (0.24 – 0.16) * (1 – 0.4) 

        = 0.24 – 0.08 * 0.6 

        = 0.24 – 0.048 

        = 0.192 

10. Apply step seven, eight, and nine recursively to the 

remaining characters. 

7. Read the character from the left to right (‘s’). 

8. Find low limit by using the equation 1, 

Low limit = previous low limit + 

                    (Previous high limit – previous low limit) 

* Low limit probability of the taken character                               

       = 0.16 + (0.192 – 0.16) * 0.6 

       = 0.16 + 0.032 * 0.6 

       = 0.16 + 0.0192 

      = 0.1792 

9. Find high limit by using the equation 2, 

High limit = previous high limit - 

                    (Previous high limit – previous low limit) 

* (1-high limit probability of the taken character)                        

        = 0.192 – (0.192 – 0.16) * (1-0.8) 

        = 0.192 – 0.032 * 0.2 

        = 0.192 – 0.0064 

        = 0.1856 

10. Apply step seven, eight, and nine recursively to the 

remaining characters. 

7. Read the character from the left to right (‘u’). 

8. Find low limit by using the equation 1, 

Low limit = previous low limit + 

http://www.ijcstjournal.org/
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                    (Previous high limit – previous low limit) 

* Low limit probability of the taken character                               

       = 0.1792 + (0.1856 – 0.1792) * 0.8 

       = 0.1792 + 0.0064 * 0.8 

       = 0.1792 + 0.00512 

      = 0.18432 

9. Find high limit by using the equation 2, 

High limit = previous high limit - 

                    (Previous high limit – previous low limit) 

* (1-high limit probability of the taken character)                        

Here, the high limit probability of the chosen character 

is 1. So high limit = previous high limit.      

   High limit = 0.1856 

10. Apply step seven, eight, and nine recursively to the 

remaining characters. The remaining input characters are 

nil. 

11. Find the average of low limit and high limit. 

 Average = (0.18432 + 0.1856) / 2 

  = 0.18496 

12. Convert the output fractional number into binary. 

                            0.18496 = 

0.0010111101011001100010 (eliminate prefix 0.) 

   = 0010111101011001100010 

The whole encoding process, as in the Table V.  

TABLE V.  ARITHMETIC ENCODING 

S.

NO 

UNIQUE 

CHARACT

ER 

PROBABILI

TY 

LOW LIMIT 

PROBABILI

TY 

HIGH  

LIMIT 

PROBABILI

TY 

LO

W 

LIM

IT 

HI

GH 

LI

MIT 

1 ‘a’ 0.4 0 0.4 0 0.4 

2 ‘r’ 0.2 0.4 0.6 0.16 0.24 

3 ‘a’ 0.4 0 0.4 0.16 0.19

2 

4 ‘s’ 0.2 0.6 0.8 0.179

2 

0.18

56 

5 ‘u’ 0.2 0.8 1 0.184

32 

0.18

56 

 

0010111101011001100010 

 

The total number of bits needed = 22 bits. 

The size of the input as uncompressed   

 = 5 * 8  

  = 40 bits 

IV. ARITHMETIC DECODING 

The arithmetic decoding regenerates the original input. 

A.    ALGORITHM 

1. Convert the binary to fractional number. 

2. Initialize high limit as one and low limit as zero. 

3. Divide the range using the probability of each unique 

character.
 

4. Check the range of the fractional number.  

5. Write the corresponding character. 

6. Find the average of the low limit and high limit. If the 

average and fractional number both are same then stop the 

process. 

7. Apply step 3 – 6 recursively. 

 

B.  IMPLEMENTATION 

1. Convert the binary to the fractional number 

(0.18496).
 

2. Initialize high limit as one and low limit as zero. 

3. Divide the range using probability of each unique 

character (0 – 0.4 for ‘a’, 0.4 – 0.6 for ‘r’, 0.6 – 0.8 for ‘s’, 

and 0.8 – 1 for ‘u’). 

4. Check the range of the fractional number (0.18496 fits 

the range 0 - 0.4).  

5. Write the corresponding character (‘a’). 

6. Find the average of the low limit and high limit. If the 

average and fractional number both are same then stop the 

process. Average = 0.4/2 = 0.2 not equal to 0.18496. 

7. Apply step 3 – 6 recursively. 

3. Divide the range using probability of each unique 

character (0 – 0.16 for ‘a’ 0.16 – 0.24 for ‘r’, 0.24 – 0.32 

for ‘s’, and 0.32 – 0.4 for ‘u’). 

4. Check the range of the fractional number (0.18496 fits 

the range 0.16 - 0.24).  

5. Write the corresponding character (‘r’). 

6. Find the average of the low limit and high limit. If the 

average and fractional number both are same then stop the 

process. Average = 0.4/2 = 0.2 not equal to 0.18496. 

7. Apply step 3 – 6 recursively. 
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3. Divide the range using probability of each unique 

character (0.16 – 0.192 for ‘a’, 0.192 – 0.208 for ‘r’, 0.208 

– 0.224 for ‘s’, and 0.224 – 0.24 for ‘u’). 

4. Check the range of the fractional number (0.18496 fits 

the range 0.16 - 0.192).  

5. Write the corresponding character (‘a’). 

6. Find the average of the low limit and high limit. If the 

average and fractional number both are same then stop the 

process. Average = 0.352/2 = 0.176 not equal to 0.18496. 

7. Apply step 3 – 6 recursively. 

3. Divide the range using probability of each unique 

character (0.160 – 0.1728 for ‘a’, 0.1728 – 0.1792 for ‘r’, 

0.1792 – 0.1856 for ‘s’, and 0.1856 – 0.192 for ‘u’). 

4. Check the range of the fractional number (0.18496 fits 

the range 0.1792 - 0.1856).  

5. Write the corresponding character (‘s’). 

6. Find the average of the low limit and high limit. If the 

average and fractional number both are same then stop the 

process. Average = 0.3648/2 = 0.1824 not equal to 

0.18496. 

7. Apply step 3 – 6 recursively. 

3. Divide the range using probability of each unique 

character (0.1792 – 0.18176 for ‘a’, 0.18176 – 0.18304 for 

‘r’, 0.18304 – 0.18432 for ‘s’, and 0.18432 – 0.1856 for 

‘u’). 

4. Check the range of the fractional number (0.18496 fits 

the range 0.18432 – 0.1856).  

5. Write the corresponding character (‘u’). 

6. Find the average of the low limit and high limit. If the 

average and fractional number both are same then stop the 

process. Average = 0.36992/2 = 0.18496 equal to 0.18496. 

Hence, stop the process. 

 

The entire decoding process, as in the table VI. 

TABLE VI.  ARITHMETIC DECODING 

S.NO FRACTION

AL 

NUMBER 

RANGE OF UNIQUE CHARACTER OUTPUT 

CHARACT

ER 

AVERA

GE 

‘a’ ‘r’ ‘s’   ‘a’ 

1 0.18496 0- 

0.4 

0.4- 

0.6 

0.6- 

0.8 

1 0.18496 0- 

0.4 

2 0.18496 0- 

0.16 

0.16- 

0.24 

0.24- 

0.32 

0.32- 

0.4 

‘r’ 0.2 

3 0.18496 0.16- 

0.192 

0.192- 

0.208 

0.208- 

0.224 

0.224- 

0.24 

‘a’ 0.176 

4 0.18496 0.16- 

0.1728 

0.1728- 

0.1792 

0.1792- 

0.1856 

0.1856- 

0.1920 

‘s’ 0.1824 

5 0.18496 0.1792- 

0.18176 

0.18176- 

0.18304 

0.18304- 

0.18432 

0.18432- 

0.1856 

‘u’ 0.18496 

V.      RESULT AND DISCUSSION 

The compression ratio, space savings and average bits 

calculated for the examples are 

Compression ratio = 40/22  

= 20:11 

=1.82:1 

Space savings  =1-(22/40)  

= 1-(11/20)  

= 1-0.55 

= 0.45  

= 45% 

Average bits   = 22/5 

 

 

 

= 4.4 bits per character 

VI. CONCLUSION 

The arithmetic coding is an innovative compression 

technique. It represents entire message by using the 

floating-point number as compared to code words. The 

obtained results depict that arithmetic coding gives better 

compression ratio, space savings, and average bits per 

character.  
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