
International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 1, Jan - Feb 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 29

RESEARCH ARTICLE OPEN ACCESS

A Comparative Study of Disk Scheduling Algorithms
Tarsem Singh

Post Graduate

Department of Computer Science and Applications

GHG Khalsa College, Gurusar Sadhar

 Ludhiana - India

ABSTRACT
In the recent years, the speed of processor and main memory has increased more rapidly than those of secondary

storage devices, such as hard disk. As a result, processes requesting data on secondary storage tend to experience

relatively long service delays. In operating system, seek time is most important to get best access time. So,

scheduling of disk tracks is one of the main responsibilities of the operating system. In this paper, various basic disk

scheduling techniques like FCFS, SSTF, SCAN, LOOK, C-SCAN and C-LOOK along with some additional SCAN

techniques like FSCAN, N-Step SCAN etc. are discussed.
Keywords:- FCFS, SSTF, SCAN, LOOK, C-SCAN, C-LOOK, FSCAN, N-Step SCAN

I. INTRODUCTION

The management of disk performance is an important

aspect of an operating system. Since the speed of

processor and main memory have been increased several

times than the speed of the disk, the difference in the

speed of processor and the disk, I/O performance of disk

has become an important bottleneck. The performance of

disk storage subsystem is of vital concern, and much

research has gone into schemes for improving that

performance. In any disk system with a moving

read/write head, the seek time between cylinders takes a

significant amount of time. This seek time should be

minimized to get better access time. The main

responsibility of the operating system is to use the

hardware efficiently.

II. DISK PERFORMANCE

PARAMETERS

Seek Time: The seek time is the time for the disk arm to

move the heads to the cylinder containing the desired

track.

Rotational Latency: The Rotational Latency is the

additional time for the disk to rotate the desired sector to

the disk head.

Access Time: Access time is the sum of the seek time

and the rotational latency.

Transfer Time: The transfer time to or from the disk

depends on the rotation speed of the disk.

T = b/rN

Where T = Transfer Time

 b = Number of bytes to be transferred

 N = Number of bytes on a track

 r = Rotation speed, in revolutions per second

Thus the total average access time can be expressed as:

Ta = Ts + 1/2r + b/rN

where Ts is the average seek time.

Mean Response Time: The average time spent waiting

for a request to be serviced.

Disk Bandwidth: The disk bandwidth is the total number

of bytes transferred, divided by the total time between the

first request for service and the completion of the last

transfer.

Throughput: The number of requests serviced per unit

time.

A scheduling policy should attempt to maximize

throughput and minimize the mean response time. The

smaller the variance, the more likely it is that most disk

requests are serviced after waiting for a similar amount of

time. Therefore, variance can be seen as a measure of

fairness and of predictability. We desire a scheduling

policy that minimizes variance to avoid erratic service

times. Disk scheduling algorithms are used to choose one

of the disk requests available to execute.

III. DISK SCHEDULING ALGORITHMS

First Come First Serve (FCFS) Scheduling:

It is the simplest form of disk scheduling algorithm. This

policy uses a FIFO queue so that requests are serviced in

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 1, Jan - Feb 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 30

the order in which they arrive. In this algorithm the I/O

requests are processed from the queue in sequential

order. This algorithm is intrinsically fair because every

request is honoured. The disk assesses are in the same

order as the requests were originally received. The first

request is accessed and processed first and other requests

are processed with their order of arrival. This algorithm is

generally does not provide the fastest service.

Example: Consider a disk with 200 tracks (0-199) and

that the disk request queue has random requests in it. The

following track requests for I/O to blocks on cylinders:

60, 143, 15, 185, 85, 120, 33, 28, 146

Consider that the read/write head is initially at cylinder

70. Compute the total head movements for a 200 track

disk (0-199) and the total seek time needed to traverse all

the requests if the seek rate of 5 milliseconds is given.

Solution:

Fig. 1 FCFS Scheduling

Total Head Movements = (70-60) + (143-60) + (143-15)

+ (185-15) + (185-85) + (120-85) + (120-33) + (33-28) +

(146-28) = 736 cylinders

Total Seek Time = 736 x 5 = 3680ms

Shortest Seek Time First (SSTF) Scheduling:

This algorithm selects the disk I/O request that requires

the minimum seek time from the current head position.

For the same example as used in FCFS, in SSTF, the first

track accessed is 60, because this is the closest requested

track to the starting position. The next track accessed is

85 because this is the closest of the remaining requested

tracks to the current position of 60. Since seek time

increases with the number of cylinders traversed by the

head, SSTF chooses the pending request closest to the

current head position

Fig. 2 SSTF Scheduling

Total Head Movements = (70-60) + (85-60) + (120-85) +

(143-120) + (146-143) + (185-146) + (185-33) + (33-28)

+ (28-15) = 305 cylinders

Total Seek Time = 305 x 5 = 1525 ms

Since SSTF Scheduling has very less total head

movements from FCFS, it is not optimal. In the above

example, if head moves from 70 to 85, even though the

cylinder is not closest, and then to 60, 33, 28, 15, 120,

143, 146, 185. This technique reduces the total head

movement to 255 cylinders.

SCAN Scheduling:

In SCAN scheduling algorithm, the disk arm required to

move in one direction only, servicing requests until it

reaches the last track in that direction. At the other end,

the direction of head movement is reversed, and services

the pending requests. This algorithm is also known as

Elevator Algorithm since it works like an elevator. It first

processes all the requests in one direction and after that

all the remaining processes are processed in reverse

direction.

Fig. 3 SCAN Scheduling

Total Head Movements = (199-70) + (199-15)= 313

cylinders.

Total Seek Time = 313x5 = 1565ms.

C-SCAN Scheduling:

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 1, Jan - Feb 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 31

C-SCAN (Circular SCAN) Scheduling policy is a variant

of SCAN scheduling which restricts scanning to one

direction only. In this scheduling when I/O head moves

from one end to the other, servicing requests as it goes.

When it reaches the other end, it immediately returns to

the other end of the disk without servicing any request

and scan remaining processes after moving other

direction. It further reduce variance of response times as

the expense of throughput and mean response time.

Fig. 4 C-SCAN Scheduling

Total Head Movements = (199-70) + (199-0) + (60-0)

= 388 cylinders

Total Seek Time = 388 x 5 = 1940ms

LOOK Scheduling:

This algorithm is similar to SCAN algorithm except the

sweep of head movement restricts to the first and last

serviced track instead of end to end sweep.

Fig. 5 LOOK Scheduling

Total Head Movements = (185-70) + (185-15)= 285

cylinders

Total Seek Time = 285 x 5 = 1425 ms

C-LOOK Scheduling:

This algorithm is a modified version LOOK Scheduling.

Here the disk arm only travels as far as the last request in

each direction and reverses direction immediately

without going to the end of the disk.

Fig. 6 C-LOOK Scheduling

Total Head Movements=(185-70)+(185-15)+(60-15)

=330 cylinders

Total Seek Time = 330 x 5 = 1650ms

Modifications to the SCAN Scheduling:

FSCAN Scheduling: In FSCAN Scheduling is

modification of SCAN scheduling which eliminate the

possibility of indefinitely postponing requests. This

strategy uses two sub-queues. When a scan begins, all of

the requests are in one of the queues, with the other

empty. During the scan, all new requests are put into the

other queue. Thus, service of new requests is deferred

until all of the old requests have been processed. FSCAN

uses the SCAN strategy to service only those requests

waiting when a particular sweep begins (the “F” stands

for “freezing” the request queue at a certain time).

Fig. 7 FSCAN Scheduling

Suppose request 170 arrives after 146 is processed and

request 50 arrives after 60 is processed, the seek pattern

under FSCAN strategy is shown in figure .

N-Step SCAN Scheduling: N-Step SCAN scheduling is

another modification of SCAN strategy which also

prevents starvation. It segments the disk request queue

into sub-queues of length n. These sub-queues are

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 1, Jan - Feb 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 32

processed one at a time using SCAN. When the sweep is

complete, the next n requests are serviced. New requests

are placed at the end of the request queue. N-Step SCAN

can be tuned by varying the value for n. When n=1, N-

Step SCAN degenerates to FCFS. As n approaches

infinite, N-Step degenerates SCAN.

This policy also offers good performance due to high

throughput and low mean response times, because they

prevent indefinite postponement.

IV. COMPARISON OF VARIOUS DISK

SCHEDULING ALGORITHMS

FCFS Scheduling:

It is a fair scheduling policy. It prevents starvation and

gives low overhead. This is acceptable when the load on

a disk is light. It has extremely low throughput due to

lengthy seeks.

SSTF Scheduling:

SSTF Scheduling has higher throughput and lower

response time than FCFS Policy. It is reasonable solution

for batch processing system. Sometimes, it does not

ensure fairness because with this scheduling starvation is

possible. This policy is generally not acceptable for

interactive systems. It leads to higher variances of

response times.

SCAN Scheduling:

It offers an improved variance of response time. The

drawback of this scheduling policy is that it does not

change the direction until edge of disk is reached.

Starvation is still possible in this scheduling. Under a

light load, SCAN policy is best.

C-SCAN Scheduling:

It maintains high level of throughput while further

limiting variance of response times by avoiding

discrimination against the innermost and outermost

cylinders.

LOOK Scheduling:

The main advantage of this scheduling is that it only

performs sweeps large enough to service all requests. It

improves efficiency by avoiding unnecessary seek

operation. It gives high throughput.

C-LOOK Scheduling:

It gives lower variance of response time than LOOK, at

the expense of throughput.

REFERENCES

[1]. H. M. Deitel, Operating Systems, 3rd Edition,

Pearson Education, Inc. and Dorling

Kindersley Publishing, Inc. , 2004

[2]. William Stallings, Operating Systems, Internal

and Design Principles, 6th Edition, Dorling

Kindersley Pvt. Ltd., 2009

[3]. Andrew S. Tanenbaum, Modern Operating

Systems, 3rd Edition, Pearson Education Inc. ,

2008

[4]. A. Silberschatz, P. B. Galvin, and G. Gagne,

"Operating System Concepts", 7th Edn. , John

Wiley and Sons Inc, 2005

[5]. Sourav Kumar Bhoi, Sanjaya Kumar Panda,

and Imran Hossain Faruk, "Design and

Performance Evaluation of an Optimized Disk

Scheduling Algorithm (ODSA)", International

Journal of Computer Applications, Vol. 40, No.

11, Feb 2012, pp. 28-35.

[6]. John Ryan Celis, Dennis

Gonzales,Erwinaldgeriko Lagda and Larry

Rutaquio Jr. “A Comprehensive Review for

Disk Scheduling Algorithms”

[7]. Manish, K. M., “An Improved First Come First

Serve(IFCFS) Disk Scheduling Algorithm”,

Volume 47–No.13,June 2012, pp. 20-24

[8]. Sandipon Saha, et al, “A New Heuristic Disk

Scheduling Algorithm’, International Journal of

Science and Technology Researh, Vol. 2, Issue

1, Jan 2013, pp. 49-53.

http://www.ijcstjournal.org/

