
International Journal of Computer Science Trends and Technology (IJCS T) – Volume 4 Issue 2 ,  Mar -  Apr 2016  

 

ISSN: 2347-8578                          www.ijcstjournal.org                                                  Page 157 

 

EDHS Schedulability Analysis for Real-Time Multiprocessor 

Scheduling  
Rula Mreisheh [1], Mohammed Hijazieh [2] 

 PhD Student [1]  
Department of Computer and Automatic Control Engineering 

Assistant Professor [2] 
Department of Computer and Automatic Control Engineering  

Tishreen University 
Lattakia-Syria 

 

ABSTRACT 
Scheduling algorithms play a main role in the design of real-time systems. Due to high processing and low price of 

multiprocessors, real-time scheduling in such systems is more motivating but more complicated. Earliest Deadline and Highest-

priority Sp lit  (EDHS) is a  scheduling algorithm for sporadic tasks performs similar to the t raditional partit ioning scheduling, as 

long as tasks are successfully part itioned, but if a spare capacity of each individual processor is not enough to accept the full 

execution of the task, then a task is allowed to be shared between mult iple p rocessors, beyond partitioning. In this paper, we 

measure the EDHS number of migrat ions for sporadic tasks under different utilization bounds. We also compare the number of 

context switches, average deadline misses and tasks average waiting t ime of EDHS algorithm with well-known algorithms such 

as Partition Earliest Deadline First (P-EDF) and Partition Rate Monotonic (P-RM). In this comparison, the number of 

processors and tasks has been increased to evaluate the effect of this increment on the performance of the aforementioned 

scheduling algorithms.  

Keywords: - Multiprocessor System, Real Time Scheduling, EDHS algorithm, Sporadic tasks. 

 

I.     INTRODUCTION 

The recent and rapid growth of real-time applications 

increases the use of computers to control safety critical real-

time functions over the past few years. As a result, real-t ime 

systems [1] where the correctness of the system behaviour 

depends on both the logical results of the computation and the 

time at which these results are produced, have become the 

focus of much study.   

 

Multiprocessor scheduling techniques fall into two general 

categories [1,2]: Global and Partit ioning scheduling 

algorithms. In the global scheduling scheme, all ready tasks 

are kept in a global queue which is shared among all 

processors. In the partitioning scheduling scheme, the tasks 

are statically part itioned and all tasks in a part ition are 

assigned to the same processor and always executed on it. 

Tasks are not allowed  to migrate, therefore  the mult iprocessor 

scheduling problem is transformed to many uniprocessor 

scheduling problems. Recent studies have made a new class of 

multiprocessor scheduling, so-called semi-partit ioning [3]. In  

semi-partition ing scheduling, most of tasks are assigned to 

particular processors, but the rest of tasks are allowed to 

migrate between processors. As a result, it usually performs  

better than partitioning, while the number of migrations  is 

much smaller than global scheduling [3].  

 

 

 

 

Earliest Deadline and Highest-priority Split (EDHS) is a  

semi-partition ing scheduling algorithm presented by Kato & 

al. which improves schedulable multip rocessor utilization by 

10 to 30%  over the tradit ional part itioning approach when it  

schedules sporadic tasks [4].  

 

For EDHS [4,5], a trad itional part itioning is performed  

before splitting the worst-case execution time (ei) of a task. If 

the partitioned scheduling fails, the remaining ei portions are  

Shared on two or more processors. Each part  of the task is 

defined in order to fill a processor. Kato & al. chose to assign 

at most one migrating task to each processor. A task always 

migrates in  the same way, between the same processors and at 

the same time of their execution. Here, the notion of semi-

partitioned scheduling takes its full meaning. 

The reminder of this paper is organized  as follows: In  

section II, we summarize the scheduling criteria we have 

considered in  this paper.  In  section III, we introduce previous 

works that study and evaluate real t ime scheduling algorithms. 

In section IV, we describe our system model that we have 

carried out to evaluate scheduling algorithms. We analyze the 

performance of the EDHS algorithm depending on different 

values of parameters and we compare it with well-known 

algorithms such as Partition Earliest Deadline First (P-EDF) 

and Partition Rate Monotonic (P-RM) in section V. Finally, a  

conclusion is presented in section VI. 

RESEARCH ARTICLE                                     OPEN ACCESS 

http://www.ijcstjournal.org/


International Journal of Computer Science Trends and Technology (IJCS T) – Volume 4 Issue 2 ,  Mar -  Apr 2016  

 

ISSN: 2347-8578                          www.ijcstjournal.org                                                  Page 158 

II.     SCHEDULING CRITERIA 

Many criteria have been suggested for comparing real time 

scheduling algorithms. Those characteristics are used to 

compare and to make an essential difference in which  

algorithm is judged to be the best. The criteria  we have 

considered in this paper include the following: 

1. Migrations: we say that a task migrates if it is moved 

from one processor to another during its lifet ime. If tasks 

can change processor only at job boundaries, we say that 

task migrat ion is allowed; we call instead job migration, 

the possibility of moving a task from a processor to 

another during the execution of a job [6].  
2. Waiting time: [7] is the total time a task has been waiting 

in ready queue,   

3. Context switches: [7] is a task of storing and restoring 

context (state) of a preempted task, so that execution can 

be resumed from the same point at  a  later time. Context  

switch [8] makes multitasking possible. At the same  time, 

it causes unavoidable system overhead. The cost of 

context switch may come from several aspects. The 

processor registers need to be saved and restored, the 

operating system kernel code (scheduler) must execute, 

the translation look-aside buffer (TLB) entries need to be 

reloaded, and processor pipeline must be flushed. These 

costs [8] are d irectly  associated with almost every context  

switch in a multitasking system.  

4. Deadline misses: in a real-t ime system if a task cannot 

complete its execution and misses its deadline for any 

reason, it not only wastes the CPU time but also 

minimizes the chance of the other tasks waiting for 

execution to be completed.   
 

So, a good scheduling algorithm should  possess the 

following characteristics:  

 Minimize task migrations 

 Minimize task average waiting time 

 Minimize context switches 

 Minimize deadline misses 

III. RELATED WORKS  

Liu and Layland [9] came up with the static scheduling 

algorithm Rate Monotonic (RM) of real-time operating 

systems which is first scheduling algorithm implemented in 

almost all the real t ime systems. Processor utilization can be 

increased by using dynamic scheduling algorithms, such as 

the Earliest Deadline First (EDF) [9] or the Least Slack 

algorithm [10]. Both algorithms have been shown to be 

optimal and achieve fu ll processor utilization, although EDF 

can run with s maller overhead. Authors in [11] have made an 

extensive study on memory  management and scheduling in 

real-t ime systems. The framework for evaluation of real time 

systems has been described in [12], and this article makes a 

good point of analysing and comparing real-time operating 

system under different load conditions. Authors in [13] have 

made a worst case response time analysis of real time tas ks 

under hierarchical fixed  priority pre -emptive scheduling and 

they have developed an modified Round Robin algorithm for 

scheduling in real time systems. Kato & al. [4] came up with 

(EDHS) which is a semi-partit ioning scheduling algorithm 

and they chose the success ratio as the key factor to evaluate 

its performance in  the case of first-fit, best-fit and worst-fit. It  

has been proved that EDHS improves schedulable utilizat ion 

by about 10% over P-EDF and this evaluation has been done 

by using only 16 processors [4]. There are some other works 

which studied and evaluated semi-partit ioned scheduling 

based on the earliest deadline first algorithm and other 

algorithms [5,14].    

However, to the best of our knowledge, the number of 

tasks migrations, context switches, and average deadline 

misses and tasks average waiting time of EDHS has  not been 

measured. In this paper, we measure the EDHS number of 

migrat ions for sporadic tasks under different utilizat ion 

bounds. We also compare the number of context switches, 

average deadline misses and tasks average waiting time of 

EDHS algorithm with well-known algorithms such as 

Partit ion Earliest Deadline First (P-EDF) and Partit ion Rate 

Monotonic (P-RM). In th is comparison, the number of 

processors and tasks has been increased to evaluate the effect 

of this increment on the performance of the aforementioned 

scheduling algorithms.  

IV. SYSTEM  MODEL  

This paper considers the scheduling of n in -depended 

sporadic tasks with implicit  deadlines  (the deadline of the task 

is equal to its period) on a platform of m identical 

multiprocessor. Two parameters are used to describe a task Ti; 

its worst-case execution time ei as well as its period p i. The 

period of sporadic task [1,15] is a minimum inter-arrival time, 

that is, a min imum interval of t ime between two successive 

activations, because a sporadic task is activated irregularly  

with this bounded rate.  

 The time constraints  of task Ti is usually a deadline Di. An  

instance of a task (i.e ., release) is known as a job and is 

denoted as Tij= (eij, pij) where j=1, 2, 3,…, and eij denotes the 

worst-case execution requirement of job Tij where pij denotes 

its period. The deadline of a job is the arrival time of its 

successor. For example the deadline o f the job of  Tij, would  

be the arrival time of job Ti(j+1) , that is at (j + 1) pi. The laxity  

of a job Tij at time t, denoted lij ,t , is the time that Tij can 

remain  id le before its execution should be started, i.e.         

lij ,t= pij - eij ,t - t, where eij ,t denotes the remaining execution of  

job Tij at time t.  

One more  important parameter that is used to describe a 

task Ti is its utilization [1,2,5,16] and is denoted as: 

  ui = ei / pi         (1) 

The utilizat ion of a task is the portion of time that it needs 

to execute after it has been released and before it reached its 

deadline. Usum denotes [1,2,5,16] the total utilization of a 

http://www.ijcstjournal.org/


International Journal of Computer Science Trends and Technology (IJCS T) – Volume 4 Issue 2 ,  Mar -  Apr 2016  

 

ISSN: 2347-8578                          www.ijcstjournal.org                                                  Page 159 

given task set T, whereas Umax describes its maximum 

utilization. 

 Usum = ∑ ui        (2)  

A task set T is said to be schedulable on m identical 

multiprocessor [16] if and only if: 

Usum (T) <= m  &&  Umax(T) ≤ 1   (3) 

The concerned algorithms in this paper are:  

1. Earliest Deadline and Highest-priority Split (EDHS) 

2. Partition Earliest Deadline First (P-EDF) 

3. Partition Rate Monotonic (P-RM)  

V. EXPERMENTAL RESULTS 

In the experiments, the values of the parameters are 

considered as below, unless mentioned otherwise. 

     1.  Tasks are preempt-able. 

2.  The period of tasks is  a random number with a uniform 

distribution between 1 and 100. 

3. The number of tasks is 4, 8, 16, 32, 64 and 128 which are 

executed on 2, 4, 8, 16, 32 and 64 processors respectively, 

i.e., the number of tasks is double the number of processors 

(n=2m).   

4. We have generated 1000 task sets with full utilization    

Usum (T) = m.  

5. The results have been obtained in an observation window 

between 1 and 10000.  

A. Experiment 1: The task migrations of  EDHS 

In this paper, we measure the number of migrat ions of the 

EDHS algorithm for sporadic tasks under different utilizat ion 

bounds  and the results we have obtained are shown in Fig. 1. 

 
Fig. 1  The average migrations of the EDHS algorithm under different 
utilization bounds. 

 Since a  migration occurs when the semi-partit ioned 

technique is used, the results show no migration with low task 

sets utilizat ion. Our graph focus on the range of utilizat ion 

[m;m-8].  

B. Experiment 2: Tasks average waiting time of EDHS, P-

EDF and P-RM 

 
Fig. 2 Comparison of average waiting time between EDHS algorithm and the 
best known algorithms. 

Fig. 2 shows the results of simulat ions based on tasks 

average wait ing time. We have carried out a study to 

compare the tasks average waiting time of  P_RM, P_EDF 

and EDHS algorithms. Since a good scheduling algorithm 

should minimize the waiting time, the results show that the 

EDHS algorithm outperform the other algorithms based on 

partitioned scheduling that because EDHS algorithm allows 

only the un-partitioned tasks to migrate between processors 

thus it minimizes the wait ing time of tasks in the ready 

queues.   

C. Experiment 3: The context switches of EDHS, P-EDF 

and P-RM   

 
Fig. 3  Comparison of average context switches per job between EDHS 
algorithm and the best known algorithms. 

The average number o f context switches of EDHS, P_EDF 

and P_RM is shown in Fig. 3. As the number of processors 

increases, the number of context switches  of all the algorithms 

increases. In this case, the partitioned policies show a better 

performance. 

D. Experiment 4: Average deadline misses of EDHS, P-

EDF and P-RM  

In this experiment we compare the average number of' 

deadline misses of EDHS, P_EDF and P_RM algorithms and 

the results are shown in Fig. 4.  

http://www.ijcstjournal.org/


International Journal of Computer Science Trends and Technology (IJCS T) – Volume 4 Issue 2 ,  Mar -  Apr 2016  

 

ISSN: 2347-8578                          www.ijcstjournal.org                                                  Page 160 

 
Fig. 4 Comparison of average deadline misses per job between EDHS 

algorithm and the best known algorithms. 

 

According to our analysis , the results show that by 

increasing the number of processors to 64, EDHS algorithm 

lessens the average deadline misses about 22% more than 

partitioned policies. Since EDHS algorithm receives one un-

partitioned task on each processor, the large number of 

processors allows to receive large number of shared tasks and 

thus most of shared tasks are able to meet their deadlines.  

VI. CONCLUSION  

From the EDHS comparative study with partit ioned 

policies (1000 random sporadic task sets have been generated 

with fu ll utilizat ion Usum (T) = m), it can be concluded that 

even if EDHS algorithm min imizes deadline misses and tasks 

wait ing time in queues, it  causes large number of context  

switches. Since the concept of time constrain is of such 

importance in real-time applicat ion systems, EDHS 

scheduling algorithm can meet the needs of real-t ime 

applications, in soft applications, it is still needed to be 

improved to meet the evolving needs of critical real-t ime 

systems. 

 

REFERENCES 
 

[1]  S.  Baruah and J.  Goossens, “Scheduling Real-time 

Tasks: Algorithms and Complexity,” Computer and 

Information Science Series, vol. 28, p. 38, 2004. 

[2]  A. Mohammadi and S. G. Akl, “Scheduling Algorithms 

for Real-Time Systems,” Queen’s University, Canada 

K7L 3N6, Tech. Rep.2005-499, 2005. 

[3]  B. Andersson and K. Bletsas, “Sporadic Multiprocessor 

Scheduling with Few Preemptions,” in Proc. o f the 

Euromicro Conference on Real-Time Systems , 2008,  pp. 

243–252.  

[4]  S. Kato and N. Yamasaki, “Semi-part itioning technique 

for multiprocessor real-time scheduling,” in Proc. of the 

WIP Session o f the 29th Real-Time Systems Symposium 

(RTSS), IEEE Computer Society, 2008, p. 4. 

[5]  L. George, P. Courbin, and Y. Sorel, “Job vs Portioned 

Partit ioning for the Earliest Deadline First Semi-

Partit ioned Scheduling,” Journal of Systems 

Architecture, vol. 57, pp. 518–535, May. 2011.  

[6] M. Bertogna, M. Cirinei, and G. Lipari, “Schedulability 

analysis of global scheduling algorithms on 

multiprocessor platforms,” IEEE Transactions on 

Parallel and Distributed Systems, vol. 20,  pp. 553 – 566, 

June, 2008. 

[7] A. Abdulrahim, S. E. Abdullahi, and J. B. Sahalu, “A 

New Improved Round Robin (NIRR) CPU Scheduling 

Algorithm,” International Journal of Computer 

Applications, vol. 90, no. 4, pp. 27-33, Mar. 2014. 

[8] C. Li, C. Ding, and K. Shen, “Quantifying The Cost of 

Context Switch,” San Diego, ExpCS, June. 13-14, 2007.  

[9]  C. Liu and J. Leyland, “Scheduling algorithm for 

multiprogramming in a hard real-time environment,” 

Journal of the Association for Computing Machinery , 

vol. 20,  pp. 46-61, Jan. 1973. 

[10] A. K. Mok, “Fundamental Design Problems of 

Distributed Systems for the Hard-Real-Time 

Environment, ” Ph.D. thesis, MIT, 1983.  

[11] S. Baskiyar and N. Meghanathan, “A Survey On Real 

Time Systems,”  Informatica (29), pp. 233-240, 2005. 

[12] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic 

scheduling algorithm: Exact characterization and 

average case behaviour,” IEEE       Real-Time Systems 

Symposium, 1989, p. 5.  

[13] C. Yaashuwanth and R. Ramesh, “Design of real time 

scheduler simulator and development of modified round 

robin architecture,” International Journal of Computer 

Applications, vol. 10, no. 3, pp.43-47, Mar. 2010. 

[14] M. K. Bhatti, C. Belleudy, and M. Auguin, “A semi-

partitioned real-t ime scheduling approach for periodic 

task systems on multicore platforms,” in Proc of the 27 th 

Annual ACM Symposium on Applied Computing, Riva, 

Trento, Italy, 2012, pp. 1594-1601. 

[15] V. B. Alberto and M. Spaccamela,  “Feasibility  Analysis 

of Sporadic Real-Time Multip rocessor Task Systems,” 

in Proc. of the 18th European Symposium on Algorithms, 

2010, pp. 230-241. 

[16] B. B. Brandenburg, “Scheduling and Locking in 

Multiprocessor Real-Time Operating Systems ,” Ph.D. 

thesis, the Department of Computer Science,  North 

Carolina,  2011. 

 

 

http://www.ijcstjournal.org/
http://www.sciencedirect.com/science/journal/13837621
http://www.sciencedirect.com/science/journal/13837621

