
International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 2, Mar - Apr 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 233

Software Testing Using CMM Level 5
Dhananjay Singh

M.Tech (SE)

Gautam Buddha University

Greater Noida - India

ABSTRACT

The Capability Maturity Model is a software development processes with the goal of developing high quality

software within budget and planned cycle time. There are two major Things. One is identify the key project factor

such as software size that determine software project development outcome for CMM level 5 projects, Another one

is benchmark for effort, quality and cycle time based on CMM level 5 project data . Cycle time may be compressed

at the cost of quality. Quality may be achieved at the cost of increases testing effort. To find the software quality,

effort and cycle time we are using three constraints such as (1) Literature review, (2) Research model, de sign and

methodology, (3) Data analysis and results. The cycle time for software development, which depends on two factors

one is planned development time another one is actual development time. Software development effort as the total

effort beginning with the end of the requirements specification stage until the end of customer acceptance testing.

 Keywords:-Line Of Code, Effort Calculation, Function Point Count, Processing Complexity, Development Time.

I. INTRODUCTION

Developing software to meet functional needs with

acceptable levels of quality, within budget, and on

schedule, is a goal pursued by every software

development organization. CMM has been one of the

most popular efforts in enhancing software quality and

reducing development costs [1]. There is a need to

reexamine relationships between software project

development outcomes and various factors identified

from prior literature. Conventional wisdom suggests

that there are conflicting influences on software

development effort, quality, and cycle time. Cycle time

may be compressed at the cost of quality, experienced

professionals may improve quality but at increased

costs, quality may be achieved at the cost of increased

testing effort, larger team size may reduce development

time while raising total costs, process maturity may

improve quality but at high cost, and so forth. One of

the most important consequences of improved

processes is superior conformance quality. The

reduction in variability is likely to be most pronounced

in development organizations at CMM level 5, which is

the highest level of process maturity. Its results,

therefore, may not be generalizable outside the

environment where they were calibrated. Valuable

insights can be gained from a study that focuses

exclusively on CMM level 5 software development

projects [2]. We make two major contributions [3].

First, we identify key project factors such as software

size that determine software project development

outcomes for CMM level 5 projects. Second, we

provide benchmarks for effort, quality, and cycle time

based on CMM level 5 project data. Our results suggest

that estimation models based on CMM level 5 data are

portable across multiple CMM level 5 organizations [4]

[5].

II. CAPABILITY METURITY MODEL

Capability Maturity Model (CMM). Broadly refers to a

process improvement approach that is based on a

process model. CMM also refers specifically to the first

such model, developed by the Software Engineering

Institute (SEI) in the mid-1980s, as well as the family

of process models that followed. A process model is a

structured collection of practices that describe the

characteristics of effective processes; the practices

included are those proven by experience to be effective.

CMM can be used to assess an organization against a

scale of five process maturity levels. Each level ranks

the organization according to its standardization of

processes in the subject area being assessed. The

subject areas can be as diverse as software engineering,

systems engineering, project management, risk

management, system acquisition, information

technology (IT) services and personnel management.

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 2, Mar - Apr 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 234

2.1 Maturity Model

A maturity model can be viewed as a set of structured

levels that describe how well the behaviors, practices

and processes of an organization can reliably and

sustainably produce required outcomes. A maturity

model can be used as a benchmark for comparison and

as an aid to understanding - for example, for

comparative assessment of different organizations

where there is something in common that can be used

as a basis for comparison. In the case of the CMM, for

example the basis for comparison would be the

organizations' software development processes.

2.2 Structure

The model involves five aspects:

 Maturity Levels: a 5-level process maturity

continuum - where the uppermost (5th) level is

a notional ideal state where processes would

be systematically managed by a combination

of process optimization and continuous

process improvement.

 Key Process Areas: a Key Process Area

identifies a cluster of related activities that,

when performed together, achieve a set of

goals considered important.

 Goals: the goals of a key process area

summarize the states that must exist for that

key process. As to have been implemented in

an effective and lasting way. The extent to

which the goals have been accomplished is an

indicator of how much capability the

organization has established at that maturity

level. The goals signify the scope, boundaries,

and intent of each key process area.

 Common Features: common features include

practices that implement and institutionalize a

key process area.

2.3 CMM LEVEL 5 AND KEY PROCESS

AREAS

There are five types of common features:

commitment to perform, ability to perform,

activities performed, measurement and

analysis, and verifying implementation.

 Key Practices: The key practices describe the

elements of infrastructure and practice that

contribute most effectively to the

implementation and institutionalization of the

area.

Level Focus Key Process Areas

1 Initial Ad hoc software development and

an Unstable development

environment

Non

2 Repeatable Basic software management

controls and disciplined process

adherence.

Software Project Planning.

Software Project Planning and Oversight.

Software Subcontract Management.

Software Quality Assurance

Software Configuration Management.

Requirements Management.

3 Defined Engineering Process

Standard and consistent

development process.

Organization Process Focus

Organization Process Definition

Peer Reviews

Training Program

Intergroup Coordination

Software Product Engineering

Integrated Software Management

4 Managed Product and Process Quality

Software Quality Management

Quantitative Process Management

http://www.ijcstjournal.org/
http://en.wikipedia.org/wiki/Structured

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 2, Mar - Apr 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 235

5 Optimizing Continuously improving process. Process Change Management

Technology Change Management

Defect Prevention

Table-1: The five levels of the CMM and their key process areas [6]

Organizing the CMM into the five levels shown in

Table-1 prioritizes improvement actions for increasing

software process maturity [10], [11], [12].

III. STUDY AND REVIEW OF

LITERATURE

According to Saleem Basha el.at, Reliable effort

estimation remains an ongoing challenge to software

engineers. Accurate effort es timation is the state of art

of software engineering, effort estimation of software is

the preliminary phase between the client and the

business enterprise. The relationship between the client

and the business enterprise begins with the estimation

of the software. The credibility of the client to the

business enterprise increases with the accurate

estimation. Effort estimation often requires generalizing

from a small number of historical projects.

Generalization from such limited experience is an

inherently under constrained problem. Accurate

estimation is a complex process because it can be

visualized as software effort prediction, as the term

indicates prediction never becomes an actual. This work

follows the basics of the empirical software effort

estimation models. The goal of this paper is to study the

empirical software effort estimation. The primary

conclusion is that no single technique is best for all

situations, and that a careful comparison of the results

of several approaches is most likely to produce realistic

estimates.[7]

 According to Martin Höggerl et.at, A CMM is a

process model of mature practices in a certain

discipline. CMMI tries to integrate multiple CMMs.

The old Software CMM is totally absorbed in CMMI.

CMMI identifies 25 process areas in the software

development process, each specifying a set of goals and

practices, and it offers a continuous and a staged

representation for each of its models. The continuous

representation assigns capability levels to process areas;

the staged representation assigns an overall maturity

level to an organization's development process [8].

CMMI is often said to favor large, bureaucratic

organizations, and it is also criticized for its exclusive

focus on the process. CMMI is similar to but not easily

comparable with the ISO/IEC 15504 (often referred to

as SPICE). The teams assessing an organization for

CMMI compliance have to meet various requirements,

such as special training and experience. We present two

examples of a CMMI assessment for illustration

purposes.

According to Jyoti G. Borade el.at, the main goal of

software project cost and effort estimation is to

scientifically estimate the required workload and its

corresponding costs in the life cycle of software system.

Software cost estimation is a complex activity that

requires knowledge of a number of key attributes that

affect the outcomes of software projects, both

individually and in concert. The most critical problem

is the lot of data is needed, which is often impossible to

get in needed quantities. Hence, Software cost and

effort estimation has become a challenge for IT

industries. In this paper, several existing methods for

software project effort, cost estimation are illustrated

and their aspects are discussed. Also, it describes

software metrics used for software project cost

estimation. This paper summarizes existing literature on

software project cost estimation. The paper includes

comment on the performance of the estimation models

and description of research trends in software cost

estimation [9].

IV. PROBLEM IDENTIFICATION

In existing system there are some drawbacks in that

quality of software. Those are in quality, cycle time,

effort, product size, and product complexity. These

factors are not producing satisfactory result because the

planed activity is not able to predict actual effort cycle

time, effort, product size, and product complexity. The

literature review in the existing system is not covering

each and every quality factors.

V. OBJECTIVE

In existing system they are find the some drawbacks in

that quality of software. Those are in quality, cycle

time, effort, product size, and product complexity. One

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 2, Mar - Apr 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 236

is identify the key project factor such as software size

that determine software project development outcome

for CMM level 5 projects, Another one is benchmark

for effort, quality and cycle time based on CMM level 5

project data. Cycle time may be compressed at the cost

of quality; Quality may be achieved at the cost of

increases testing effort [13]. Software development

effort as the total effort beginning with the end of the

requirements specification stage until the end of

customer acceptance testing. In proposed system the

quality of software will be found based on the quality,

cycle time, effort, product size, product complexity and

schedule pressure.

VI. MODULES AND ITS

DESCRIPTION

a. Effort

b. Quality

c. Cycle Time

d. Testing

6.1 Effort

 Effort is often regarded as a surrogate for software

development cost since personnel cost is the dominant

cost in software development. In this module we have

used COCOMO algorithm. This algorithm use the

number of source lines of code (SLOC) as the basis for

effort estimation. Effort is a function of system size

combined with production rate that is how much work

someone can complete in a given time.

6.2 Quality

Product size (SIZE) can be measured using lines of

codes or using FPs .In this step we are using Function

Point count to measure the quality of the software. A

function point is a measure of program size that is

based on the system’s number and complexity of

inputs, outputs, queries, files, and program interfaces.

We List major elements of system and then Determine

the total number of each element. Specify complexity

index of each component (low, med., high).

6.3 Cycle Time

Cycle time is an important outcome variable because

software projects are often carried out under strict

delivery schedules. When planned schedules are

longer than the minimum cost-effective schedule, they

do not raise development costs. This is because, under

ideal circumstances, projects can be completed using

fewer developers than the optimal staffing strength.

The number of lines of code has been reported to be a

significant predictor of construction time.

6.4 Testing

 This module is involving both Software validation and

verification.

Software Verification and Validation:

Verification Validation

Are you building it right? Are you building the right thing?

Ensure that the software system meets all the

functionality.

Ensure that functionalities meet the intended

behavior.

Verification takes place first and includes the checking

for documentation, code etc.

Validation occurs after verification and mainly

involves the checking of the overall product.

Done by developers. Done by Testers.

Have static activities as it includes the reviews,

walkthroughs, and inspections to verify that software is

correct or not.

Have dynamic activities as it includes executing the

software against the requirements.

Table 2-Software Verification and Validation

VII. FUNCTION POINT

 Function Points are the output of the software

development process. Function points are the unit

of software. It is very important to understand that

Function Points remain constant regardless who

develops the software or what language the

software is developed in. Unit costs need to be

examined very closely. To calculate average unit

cost all items (units) are combined and divided by

the total cost. On the other hand, to accurately

estimate the cost of an application each component

cost needs to be estimated.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 2, Mar - Apr 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 237

1. Determine type of function point count and

determine the application boundary,

2. Identify and rate transactional function types

to determine their contribution to the unadjusted

function point count.

3. Identify and rate data function types to

determine their contribution to the unadjusted

function point count.

4. Determine the value adjustment factor

(VAF).

5. Calculate the adjusted function point count.

To complete function point count knowledge of

function point rules and application documentation is

needed. Access to an application expert can improve

the quality of the count. Once the application boundary

has been established, FPA can be broken into three

major parts

1. FPA for transactional function types

2. FPA for data function types

3. FPA for GSCs

Rating of transactions is dependent on both information

contained in the transactions and the number of files

referenced, it is recommended that transactions are

counted first. At the same time a tally should be kept of

all FTR’s (file types referenced) that the transactions

reference. Every FTR must have at least one or more

transactions. Each transaction must be an elementary

process. An elementary process is the smallest unit of

activity that is meaningful to the end user in the

business. It must be self-contained and leave the

business in consistent state.

7.1 FUNCTION POINT AL CULATIONS

The function point method was originally developed by

Bij Albrecht. A function point is a rough estimate of a

unit of delivered functionality of a software project.

Function points (FP) measure size in terms of the

amount of functionality in a system. Function points are

computed by first calculating an unadjusted function

point count (UFC). Counts are made for the following

categories [23].

 7.2 Number of User Inputs-

Each user input that provides distinct application

oriented data to the software is counted.

7.3 Number of User Outputs:

Each user output that provides application oriented

information to the user is counted. In this context

"output" refers to reports, screens, error messages, etc.

Individual data items within a report are not counted

separately.

7.4 Number of User Inquiries:

An inquiry is defined as an on-line input that results in

the generation of some immediate software response in

the form of an on-line output. Each distinct inquiry is

counted.

7.5 Number of Files:

Each logical master file is counted.

7.6 Number of External Interfaces: All machine-

readable interfaces that are used to transmit information

to another system are counted.

Once this data has been collected, a complexity rating is

associated with each count according to Table-3 [20].

7.7 FUNCTION POINT COMPLEXITY WEIGHTS

Measurement parameter Weighting factor

Simple Average Complex

Number of user inputs 3 4 6

Number of user outputs 4 5 7

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 2, Mar - Apr 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 238

Number of user inquiries 3 4 6

Number of files 7 10 15

Number of external interfaces 5 7 10

Table-3: Function point complexity weights.

Each count is multiplied by its

corresponding complexity weight and the

results are summed to provide the UFC. The

adjusted function point count (FP) is

calculated by multiplying the UFC

by a technical complexity factor (TCF) also

referred to as Value Adjustment Factor

VAF). Components of the TCF are listed in

Table 3.

.

7.8 COMPONENTS OF THE TECHNICAL COMPLEXITY FACTOR

F1 Reliable back-up and recovery F2 Data communications

F3 Distributed functions F4 Performance

F5 Heavily used configuration F6 Online data entry

F7 Operational ease F8 Online update

F9 Complex interface F10 Complex processing

F11 Reusability F12 Installation ease

F13 Multiple sites F14 Facilitate change

Table-4: Components of the complexity factor.

Each of the general system characteristics will be

assigned a value from 0 to 5 to show its degree of

influence. [21],[22],[23].

7.9 The Values of The Degree of Influence

Represent:

0 = Not present, or no influence when present

1 = Insignificant influence

2 = Moderate influence

 3 = Average influence

 4 = Significant influence

 5 = Strong influence at all development stages

The adjustment factor is then calculated as a percentage

of the sum of the degree of influence from standard

solution (values 65) and the total degree of influence of

the system. The factor will range from 0.65 to 1.35.

[24].

Each component is rated from 0 to 5, where 0 means

the component has no influence on the system and 5

means the component is essential. The VAF can then be

calculated as: [25],[26].

7.10 VALUE ADJUSTMENT FACTOR

CALCULATION

VAF = 0.65 + (Sum of GSCs x 0.01) Where Sum of

GSCs = ∑ (Fi)

The factor varies from 0.65 (if each Fi is set to 0) to

1.35 (if each Fi is set to 5).

The final function point calculation is:

[16] [30].

Final Adjusted FP = UFC x VAF

Convert AFP into SLOC using appropriate conversion

factor. Applicable

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 2, Mar - Apr 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 239

SLOC = 16 x SLOC/AFP [NOTE: 16 is the conversion

factor]

EFFORT = EAF x A x (SLOC)EX

EAF = CPLX x TOOL

A = 3.2= Constant based on the development mode.

EX = 0.38= Constant based on the development mode.

CPLX = 1.3 = Constant based on the development

language.

TOOL = 1.1 = Constant based on the development

Tool.

TDEV = 2.5 x (EFFORT) EX in months.

Once all the 14 GSC’s have been answered, they should

be tabulated using the IFPUG Value Adjustment

Equation (VAF) --

 14 where: Ci = degree of influence for each General

System Characteristic [17] [18].

 VAF = 0.65 + [(Ci) / 100] .i = is from 1 to 14

representing each GSC.

The final Function Point Count is obtained by

multiplying the VAF times the Unadjusted Function

Point (UAF).

 FP = UAF * VAF

VIII. RESULTS

Figure-1: Line of code

Figure-2: Effort Calculation

Figure-3: Unadjusted Function Point

Count

Figure-4: Total Processing Complexity

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 2, Mar - Apr 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 240

Figure-5: Development Time

IX. SCOPE OF RESEARCH

The main scope of this research is measuring the

effectiveness of these techniques for reducing rate of

software defects produce failures. The quality of

software will be found based on the quality, cycle time,

effort, product size, product complexity and schedule

pressure. Developing software to meet functional needs

with acceptable levels of quality, within budget, and on

schedule, is a goal pursued by every software

development organization. Many organizations are

adopting the best practices in software development,

such as those based on Capability Maturity Model.

CMM has been one of the most popular efforts in

enhancing software quality and reducing development

costs. The reduction in variability is likely to be most

pronounced in development organizations at CMM

level 5, which is the highest level of process maturity.

Our results suggest that estimation models based on

CMM level 5 data are portable across multiple CMM

level 5 organizations.

X. CONCLUSIONS

In this study, we used data set of some projects from

different organizations that were at CMM level 5 to

investigate the impact of various factors on software

development outcomes. We found that software size

was the most significant factor that affected

development effort, quality, and cycle time. The

models, although parsimonious, achieved an MMRE of

about 12 percent in predicting effort and cycle time and

about 49 percent in predicting the number of defects in

holdout samples. This compared extremely favorably to

the widely used software estimation models that

achieved MMREs in effort estimation ranging from 100

percent for FPs to 600-700 percent for COCOMO [14]

[15]. Our results showed that the potential benefit of

achieving high process maturity was a step reduction in

variance in effort, quality, and cycle time that led to

relative uniformity in effort, cycle time, and quality

[19]. Our models for effort and cycle time appeared

portable across organizations based on good predictions

for effort and cycle time, whereas our model for quality

appeared less portable. Our results found that

productivity differences among organizations were

extremely important in estimating effort and that

software estimation models were not portable across

organizations. Overall, our results indicated that the

adoption of highly mature software development

processes during software development reduced the

significance of many factors such as personnel

capability, requirements Specifications, requirements

volatility, and so forth. Discussions with our principal

indicated some reasons for the reduced significance of

requirements-related factors: 1) increased adoption of

best practices by client organizations that were to a

great degree influenced by the software development

organizations, thereby leading to well-defined

requirements, and 2) software development

organizations leveraging their expertise from prior

engagements in assisting clients in requirements

gathering and specification.

XI. FUTURE DIRECTION

The project has covered almost all the requirements.

Further requirements and improvements can easily be

done since the coding is mainly structured or modular

in nature. Improvements can be appended by changing

the existing modules or adding new modules. One

important development that can be added to the project

in future is file level backup, which is presently done

for folder level.

REFERENCES

[1] D.E. Harter, M.S. Krishnan, and S.A.

Slaughter, “Effects of Process Maturity on

Quality, Cycle Time and Effort in Software

Product Development,” Management Science,

vol. 46, pp. 451-466, 2000.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 2, Mar - Apr 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 241

[2] H. Wohlwend and S. Rosenbaum,

“Schlumberger’s Software Improvement

Program,” IEEE Trans. Software Eng., vol. 20,

no. 11, pp. 833-839, Nov. 1994.

[3] M. Diaz and J. Sligo, “How Software Process

Improvement Helped Motorola,” IEEE

Software, vol. 14, no. 5, pp. 75-81, Sept.- Oct.,

1997.

[4] K. Chari and M. Agrawal, “Software Effort,

Quality and Cycle Time: A Study,” Proc.

INFORMS Conf. Information Systems and

Technology, 2005.

[5] Paulk, Mark C., Bill Curtis, Mary Beth

Chrissis, Charles V. Weber, Capability

Maturity Model for Software, v1.1, 1993.

[6] Paulk, Mark C.; Weber, Charles V.; and

Chrissis, Mary B., "The Capability Maturity

Model: A Summary" (1999). Institute for

Software Research.1999

[7] Saleem Basha, Dhavachelvan P.,” Analysis of

Empirical Software Effort Estimation

Models” (IJCSIS) International Journal of

Computer Science and Information Security,

Vol. 7, No. 3, 2010.

[8] Martin Höggerl, Bernhard Sehorz, ”An

Introduction to CMMI and its Assessment

Procedure”, Department of Computer Science

University of Salzburg Seminar for Computer

Science, February 2006.

[9] Jyoti G. Borade, Vikas R. Khalkar ”Software

Project Effort and Cost Estimation

Techniques” International Journal of

Advanced Research in Computer Science and

Software Engineering, Volume 3, Issue 8,

August 2013.

[10] Mark C. Paulk, Charles V. Weber, Mary B.

Chrissis,”The Capability Maturity Model: A

Summary”, Institute for Software

Research.1999.

[11] Robert S. Oshana , Richard C. Linger, ”

Capability Maturity Model Software

DevelopmentUsing Cleanroom Software

Engineering Principles - Results of an Industry

Project”, Proceedings of the 32nd Hawaii

International Conference on System Sciences –

1999.

[12] Majed Alyahya, Rodina Ahmad, and Sai Peck

Lee, “Impact of CMMI-Based

ProcessMaturity Levels on Effort, Productivity

and Diseconomy of Scale”, The International

Arab Journal of Information Technology, July

2012.

[13] Manish Agrawal and Kaushal Chari “Software

Effort, Quality, and Cycle Time: A Study of

CMM Level 5 Projects”, IEEE Transactions

on Software Engineering, March 2007.

[14] Kevin Crowston , Jian Qin “ A Capability

Maturity Model for Scientific Data

Management:Evidence from the Literature”

National Conference on Postgraduate

Research (NCON-PGR) 2009.

[15] Saša Baškarada, Andy Koronios, Jing Gao,

“Towards a Capability Maturity Model for

information quality management”, Journal of

Theoretical and Applied Information

Technology .2010.

[16] D.E. Harter, M.S. Krishnan, and S.A.

Slaughter, “Effects of Process Maturity on

Quality, Cycle Time and Effort in Software

Product Development,” Management Science,

vol. 46, pp. 451-466, 2000.

[17] H.Wohlwend and S. Rosenbaum,

“Schlumberger’sSoftware mprovement

Program,” IEEE Trans. Software Eng., vol.

20,no. 11, pp. 833-839, Nov. 1994.

[18] M. Diaz and J. Sligo, “How Software Process

Improvement Helped Motorola,” IEEE

Software, vol. 14, no. 5, pp. 75-81, Sept.-Oct.,

1997.

[19] D.E. Harter, M.S. Krishnan, and S.A.

Slaughter, “Effects of Process Maturity on

Quality, Cycle Time and Effort in Software

Product Development,” Management Science,

vol. 46, pp. 451-466, 2000.

[20] M.C. Paulk et al., “Capability Maturity Model,

Version 1.1,” IEEE Software, vol. 10, no. 4,

pp. 18-27, July 1993.

[21] W.S. Humphrey, “Characterizing the Software

Process: A Maturity Framework,” IEEE

Software, vol. 5, no. 3, pp. 73-79, Mar. 1988.

[22] W.S. Humphrey, “Characterizing the Software

Process: A Maturity Framework,” IEEE

Software, vol. 5, no. 3, pp. 73-79, Mar. 1988.

[23] Paulk, Mark C., Bill Curtis, Mary Beth

Chrissis, Charles V. Weber, Capability

Maturity Model for Software, v1.1, 1993

[24] [24] Linger, R.C. and Carmen J. Trammell,

“The SEI Cleanroom Software Engineering

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 2, Mar - Apr 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 242

Reference Model and its Implementation for

the CMM for Software, Proceedings of the 3rd

Annual International Conference on

Cleanroom Software Engineering Practices,

October 1996.

[25] K.K.Aggarwal, Yogesh Singh, A.Kaur,

O.P.Sangwan "A Neural Net Based Approach

to Test Oracle" ACM Software Engineering

Notes Vol. 29, No. 4, pp 1-6, 2004.

[26] Linger, R.C., Mark C. Paulk, and Carmen J.

Trammell, “Cleanroom Software Engineering

Implementation of the Capability Maturity

Model for Software”, Software Engineering

Institute, December 1996.

http://www.ijcstjournal.org/

