
International Journal of Computer Science Trends and Technology (IJCS T) – Volume 4 Issue 2 , Mar - Apr 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 336

Reducing Bug Triage in Software Development in Data Reduction
 M. Ahilandesware [1], J. Prathiba [2]

PG scholar [1], Assistant Professor [2] Sr. Grade
 Department of Computer Science and Engineering

 SRM University, Chennai
Tamil Nadu -India

I. INTRODUCTION

Bug triage is meant for minimizing time and cost in

software development. Bug triage aims to assign bugs to a

developer who is capable of fixing bugs. Due to large number

of bugs occurring and due to the lack of knowledge in fixing

the bugs, Manual bug triage is expensive in cost and time. The

time and cost between opening a bug and triaging a bug is

19.3 days. To reduce the time spent on triaging, we present an

approach to semi automating one part of the process, the

assignment of developer to a new bug report. This information

can help the triage process in two ways: it may allow a triage

to process a bug more quickly, and it may allow triages with

less overall knowledge of the system to perform bug

assignments more correctly as illustrated in Fig 1.

Fig 1 Architecture of Data Reduction

We use optimal asymmetric encryption padding with the

SHA-256 and MFG1 Padding for data replacement. Two

challenges which affect the use of repositories in software

development tasks, the large scale and low quality. Existing

work has proposed an automatic bug triage, which applies text

classification techniques to map the bug report to the

developer based on the results of text classification human

triage assigns new bugs by his expertise.

Anvik reports that average of 37 bugs per day is submitted to

the BTS and person on hours is required for manual bug

triage. 44 % of bugs are assigned to the wrong developer.to

solve those problems, use machine learning algorithm for

automatic bug triage. We use machine learning algorithm for

assigning bugs to the correct developer

II. ALGORITHM

A java implementation of optimal asymmetric encryption

padding to be used in conjunction with RSA. Also includes

MFG1 implementation. Optimal Asymmetric encryption

padding is a padding scheme together with RSA encryption.

OAEP was introduced by Bellare and Rogway.
 Fig 2 OAEP

RESEARCH ARTICLE OPEN ACCESS

ABSTRACT

This Paper presents automatic bug triage. The algorithm for implementing the automatic bug triage is discussed. The

advantage of implementing a bug triage is to minimize time and cost of manual work. The steps to identify the bug and to

fix the bug are saved in the database. The above steps are automated to implement automatic bug triage. The same bug

which was occurred previously repeatedly occurs next time, the system checks the database and the bug will be triaged and

fixed using the saved steps. These results in reducing the data .Using this algorithm data replacement will be reduced. The

Performance measurement will show the comparison between the previous report and reduced bug report.

Keywords:- Bug report, automatic bug triage, optimal asymmetric encryption padding, padding, Un-padding.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCS T) – Volume 4 Issue 2 , Mar - Apr 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 337

The OAEP algorithm is a form of Feistel network which

uses a pair of random oracles G and H to process the plaintext

prior to asymmetric encryption as in Fig 2. When combined

with any secure trapdoor one-way permutation F, this

processing is proved in the random oracle model to result in a

combined scheme which is semantically secure under chosen

plaintext attack. When implemented with certain trapdoor

permutations (e.g., RSA), OAEP is also proved secure against

chosen cipher text attack. OAEP can be used to build an all-

or-nothing transform

III. PADDING OF BYTES

byte[] pad(byte[] message, String params, int length);

It Returns a padded version of the message. params is a

tokenizable String separated by spaces. The first argument

should be the name of the hash function used, and the second

argument should be the name of the mask function used. An

example of a correct params string is SHA-256 MGF1, which

also happens to be the only combination I have supported so

far. Length is simply the desired final length of the message.

If you were using RSA-2048, this value would be 256.

IV. UNPADDING OF BYTES

byte[] unpad(byte[] message, String params);

It Returns an unpadded version of the message given

the params (these parameters should be the same as those used

in the pad method).

byte[] MGF1(byte[] seed, int seed Offset, int seed Length, int

desired Length);

In this paper I have also included an implementation of

MGF1 with this code. It takes an input seed and an offset

(seed Offset) and length (seed Length) so that only a slice of

the seed may be used to generate masks. Desired Length is the

length of the output, a mask generated from the given seed.

V. MFG1 MASKING

MGF1 is what I used for generating masks we are able to

expand and shrink data using hash functions. Optimal

Asymmetric Encryption Padding with SHA-256 message

digest and MGF1 mask generation function. Padding schemes

can be used in both asymmetric key ciphers as well as

symmetric key ciphers

Block-ciphers especially regularly use padding schemes

as they are based on the notion of fixed-length block sizes.

Public static final Padding Scheme OAEP with Sha512

and Mgf1

Optimal Asymmetric Encryption Padding with SHA-512

message digest and MGF1 mask generation function. This is a

convenient pre-defined OAEP padding scheme that embeds

the message digest and mask generation function. When using

this padding scheme, there is no need to in it the Cipher

instance with an OAEP Parameter Spec object, as it is already

'built in' to the scheme name

VI. MASK GENERATION FUNCTION

PSS requires a so-called mask generation function. This is

basically like a hash function, but with a variable output size.

In other contexts, similar functions are also called key

derivation functions. The PKCS #1 v2.1 standard lists only

one possible function, MGF1. It is based on an existing hash

algorithm and just works by using the input plus a four byte

counter starting with zero as an input for the hash function and

increment the counter to get enough output bits from the hash

function. The last output is cut to get the required size. MGF1

is mostly equivalent to the key derivation function KDF2,

MGF1 has the property that two calls to MGF1 with the

same hash function and the same input with a different output

size would lead to an output identical at the beginning. For

example, if we calculate both MGF1(SHA-256, "hello", 10)

and MGF1(SHA-256, "hello", 20), we get: MGF1(SHA-256,

"hello", 10) = da75447e22f9f99e1be0 MGF1(SHA-256,

"hello", 15) = da75447e22f9f99e1be09a00cf1a07

As we see, the first 10 bytes of the second MGF1 output

are identical to the first MGF1 output.

VII. RESULTS AND OBJECTIVES

The data reduction can be shown using an X-graph result.

XGRAPH is a general purpose x-y data plotter with

interactive buttons for panning, zooming, printing, and

selecting display options. It will plot data from any number of

files on the same graph and can handle unlimited data-set

sizes and any number of data files.

XGRAPH produces WYSIWYG PostScript, PDF, PPTX,

and ODP output for printing hard-copies, storing, and/or

sharing plotted results, and for importing, graphs directly into

word-processors for creating documentation, reports, and

view-graphs.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCS T) – Volume 4 Issue 2 , Mar - Apr 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 338

Data file formats: XGRAPH expects data in an x y

format. Typically, this is one x-y data-point pair per line. Data

values may be separated by white-space (spaces or tabs),

commas, semi-colons, or colons. Multi-column data has

several values per line. Each value, or column, is separated by

white-space (spaces or tabs), commas, semi-colons, or colons.

Any column can be selected as the ordinate or the abscissa by

the '-c' column option.

The Graph shows the comparison between the previous

and reduced bug report using X-graph as in Fig 3 and Fig 4.

Data replacement time has been reduced using this algorithm

optimal asymmetric encryption padding.

Fig 3 Before Data Reduction

Fig 4: After Data Reduction

VIII. CONCLUSION

Manual bug triage is an expensive step in software

development in the aspect of time and cost. In this paper, we

use an optimal asymmetric encryption padding for encrypting

and decrypting the data and to reduce the scale of bug data

sets and to improve the quality of data. We use SHA-256 and

MFG 1 padding with OAEP for padding and unpadding bytes.

We empirically investigate the data reduction on many

applications. This work provides an approach to techniques on

processing of data in to reduced form and high –quality bug

data in software development and maintenance. Using this

approach, data replacement have been reduced.

In future work, we plan on improving the results of data

reduction in bug triage to explore how to prepare a high

quality bug data set and tackle a domain –specific software

task. We plan to work on strengthening the security of this

algorithm.

REFERENCES

[1] J. Anvik, L. Hiew, and G. C. Murphy, Who should

fix this bug? in Proc. 28th Int. Conf. Softw. Eng.,

May 2.

[2] J. Anvik and G. C. Murphy, Reducing the effort of

bug report triage: Recommenders for development-

oriented decisions, ACM Trans. Soft. Eng.

Methodol., vol. 20, no. 3, article 10, Aug. 2011.

[3] S. Artzi, A. Kie_zun, J. Dolby, F. Tip, D. Dig, A.

Paradkar, and M. D.Ernst, Finding bugs in web

applications using dynamic test generation and

explicit-state model checking, IEEE Softw., vol.

36,no. 4, pp. 474–494, Jul./Aug. 2010.

 [4] C. C. Aggarwal and P. Zhao, Towards graphical

models for text processing, Knowl. Inform. Syst.,

vol. 36, no. 1, pp. 1–21, 2013.

[5] D. _Cubrani_c and G. C. Murphy, Automatic bug

triage using text categorization, in Proc. 16th Int.

Conf. Softw. Eng. Knowl. Eng.,Jun. 2004, pp. 92–97.

[6] G. Jeong, S. Kim, and T. Zimmermann, Improving

bug triage with bug tossing graghs, Proc. Joint

Meeting European Software Engineering Conf. &

ACM SIGSOFT Symp. Foundations.

[7] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, An

approach to detecting duplicate bug reports using

natural language and execution information, in

Proceedings of the 30th international conference on

Software engineering, ser. ICSE ’08. New York, NY,

USA: ACM, 2008, pp. 461–470. [Online]. Available:

http://doi.acm.org/10.1145/1368088.1368151.

[8] N. Okazaki and J. Tsujii, Simple and efficient

algorithm for approximate dictionary matching, in

Proceedings of the 23rd International Conference on

Computational Linguistics (Coling 2010), Beijing,

China, August 2010, pp. 851–859. [Online].

Available: http://www.aclweb.org/anthology/C10-

1096.

[9] O. Baysal, M. W. Godfrey, and R. Cohen, A bug you

like: A framework for automated assignment of bugs,

http://www.ijcstjournal.org/
http://doi.acm.org/10.1145/1368088.1368151

International Journal of Computer Science Trends and Technology (IJCS T) – Volume 4 Issue 2 , Mar - Apr 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 339

in Proceedings of the 17th IEEE International

Conference on Program Comprehension (ICPC),

2009.

[10] F. Servant and J. A. Jones, Whosefault: automatic

developer-to-fault assignment through fault

localization, in Proceedings of the 2012 International

Conference on Software Engineering, ser. ICSE

2012. Piscataway, NJ, USA: IEEE Press, 2012, pp.

36-46.Online].

Available:http://dl.acm.org/citation.cfm?id=2337223.

2337228.

[11] M. Bellare and P. Rogaway. Optimal asymmetric

encryption. In Advances in Cryptology |Eurocrypt

'94, pages 92 111, 1994.

[12] E. Fujisaki, T. Okamoto, D. Pointcheval, and J.

Stern. RSA OAEP is Secure under the RSA

Assumption. In Crypto '2001, LNCS 2139, pages

260{274. Springer-Verlag, Berlin, 2001.

http://www.ijcstjournal.org/
http://dl.acm.org/citation.cfm?id=2337223.2337228
http://dl.acm.org/citation.cfm?id=2337223.2337228

