
International Journal of Computer Science Trends and Technology (IJCS T) – Volume 4 Issue 3, May - Jun 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 67

A Reliable System for Scaling Application over Clouds

Sreepathi .B [1], Sheela B.P [2], Saisunethra K [3], Spandana [4]

 SnehaM.S [5], Rashmi.W [6]

Head of the Department [1], Assistant Professor [2]
Department of Information Science &Engineering

 V.T.U/ R.Y.M.E.C, Bellary

Karnataka - India

I. INTRODUCTION

On a cloud computing platform, dynamic resources can be

effectively managed using virtualization technology.

Virtualization technologies enable application computation

and data to be hosted inside virtual containers (e.g. virtual

disks) which are decoupled from the underlying physical

resources. These virtualization- based clouds provide a way to

build a large computing infrastructure by assessing remote

computational, storage and network resources. Since a cloud

typically comprises a large amount of virtual and physical

servers, to efficiently managing this virtual infrastructure has

attracted considerable interest in recent years. Thus, the

important objectives of this paper are to determine How to

achieve a reliable system for scaling application over clouds

and effective load balance in a cloud computing environment.

II. MOTIVATION AND RELATED

WORK

Cloud Computing concepts date back to the 1950s when

large-scale mainframes were made available to schools and

corporations. The mainframe’s colossal hardware

infrastructure was installed in what could literally be called a

―server room‖ (since the room would generally only be able

to hold a single mainframe), and multiple users were able to

access the mainframe via ―dumb terminals‖ – stations whose

sole function was to facilitate access to the mainframes. Due

to the cost of buying and maintaining mainframes, an

organization wouldn’t be able to afford a mainframe for each

user, so it became practice to allow multiple us ers to

shareaccess to the same data storage layer and CPU power

from any station. By enabling shared mainframe access, an

organization would get a better return on its investment in this

sophisticated piece of technology.

 In the last few years packaging

computing cycles and storage and offering them as a

metered service became a reality. Large farms of

computing and storage platforms have been assembled and

a fair number of Cloud Service Providers (CSPs) offer

computing services based on three cloud delivery models

SaaS (Software as a Service), PaaS (Platform as a

Service), and IaaS (Infrastructure as a

Service).Warehouse-scale computers (WSCs) are the

building blocks of a cloud infrastructure. A hierarchy of

networks connect,50, 000 to 100, 000 servers in a WSC.

The servers are housed in racks; typically, the 48 servers

in a rack are connected by a 48-port Gigabit Ethernet

switch. The switch has two to eight up-links which go to

the higher level switches in the network hierarchy.

ABSTRACT

In this paper we introduce a reliable system for scaling application over clouds used for load balancing and application scaling

on a cloud. The basic philosophy of our approach is defining a reliable and optimal operation regime and attempting to

maximize the number of servers operating in this regime. Idle and lightly-loaded servers are switched to one of the sleep states

to save energy. Load balancing of the entire cloud system can be handled dynamically by using virtualization technology where

it becomes possible to remap virtual machines (VMs) and physical resources according to the change in load. In order to

achieve the best performance, the virtual machines have to fully utilize its services and resources by adapting to the cloud

computing environment dynamically. The load balancing and proper allocation of resources must be guaranteed in order to

improve resource utility.

Keywords:- Reliable Scaling System, Application Scaling, Idle Servers, Server Application Manager Samk ,Virtual

Machine Monitor (VMM) Server Consolidat ion

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCS T) – Volume 4 Issue 3, May - Jun 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 68

The motivation of the survey of existing load balancing

techniques in cloud computing is to encourage the amateur

researcher to contribute in developing more efficient load

balancing algorithms. This will benefit interested researchers

to carry out further work in this research area.

 This paper is organized as follows:

Section III presents the system model,

Section IV shows the study and analysis of the existing load

balancing techniques in cloud computing,

Section V identifies the metrics considered in the existing load

balancing techniques and carries out the comparison between

them based on those identified metrics and

Section VI concludes the paper. To the best of our knowledge,

none of the techniques has focused on energy consumption

and carbon emission factors that is a dire need of cloud

computing.

III. A RELIABLE SCALING SYSTEM

MODEL

There are three primary contributions : a new model of cloud

servers that is based on different operating regimes with

various degrees of \energy efficiency" (processing power

versus energy consumption); a novel algorithm that performs

load balancing and application scaling to maximize the

number of servers operating in the energy-optimal regime; and

analysis and comparison of techniques for load balancing and

application scaling using three differently-sized clusters and

two different average load profiles. The objective of the

algorithms is to ensure that the largest possible number of

active servers operate within the boundaries of their respective

optimal operating regime. The actions implementing this

policy are: (a) migrate VMs from a server operating in the

undesirable-low regime and then switch the server to a sleep

state; (b) switch an idle server to a sleep state and reactivate

servers in a sleep state when the cluster load increases; (c)

migrate the VMs from an overloaded server, a server

operating in the undesirable-high regime with applications

predicted to increase their demands for computing in the next

reallocation cycles.

SYSTEM ARCHITECTUR
MODULES

 System Model

 Server

 Creating Load

 A reliable system model

The fig:3.1 shows the architecture of the reliable scaling

system with client servers and reliable scaling system

MODULES DESCRIPTION:

System Model:

In this module, we design the system, such that client makes

request to server. Usually, a it is designed with adequate

resources in order to satisfy the traffic volume generated by

end-users. In general, a wise provisioning of resources can

ensure that the input rate is always lower than the service rate.

In such a case, the system will be capable to efficiently serve

all users’ requests. Applications for one instance family have

similar profiles, e.g., are CPU-, memory-, or I/O-intensive and

run on clusters optimized for that profile; thus, the application

interference with one another is minimized.

A reliable system

model

 FIG 3.1:RELIABLE SCALING SYSTEM ARCHITECTURE

The normalized system performance and the normalized

power consumption are different from server to server; yet,

warehouse scale computers supporting an instance family use

the same processor or family of processors and this reduces

the effort to determine the parameters required by our model.

In our model the migration decisions are based solely on the

vCPU units demanded by an application and the available

capacity of the host and of the other servers in the cluster. The

model could be extended to take into account not only the

processing power, but also the dominant resource for a

particular instance family, e.g., memory for R3, storage for I2,

GPU for G2 when deciding to migrate a VM. This extension

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCS T) – Volume 4 Issue 3, May - Jun 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 69

would complicate the model and add additional overhead for

monitoring the application behavior.

Server

The term server consolidation is used to describe: switching

idle and lightly loaded systems to a sleep state; (2) workload

migration to prevent overloading of systems; or (3) any

optimization of cloud performance and energy efficiency by

redistributing the workload. In this module we design the

Server System, where the server processes the client request.

Cloud is a large distributed system of servers deployed in

multiple data centers across the Internet. The goal of a cloud is

to serve content to end-users with high availability and high

performance. Cloud serves a large fraction of the Internet

content today, including web objects (text, graphics and

scripts), downloadable objects (media files, software,

documents), applications (e-commerce, portals), live

streaming media, on-demand streaming media, and social

networks. Besides better performance and availability, cloud

also offload the traffic served directly from the content

provider's origin infrastructure, resulting in cost savings for

the content provider.

Creating Load

In this module, we create the load to the server. Though, in

this paper we focus exclusively on critical conditions where

the global resources of the network are close to saturation.

This is a realistic assumption since an unusual traffic

condition characterized by a high volume of requests, i.e., a

flash crowd, can always overfill the available system capacity.

In such a situation, the servers are not all overloaded. Rather,

we typically have local instability conditions where the input

rate is greater than the service rate. In this case, the balancing

algorithm helps prevent a local instability condition by

redistributing the excess load to less loaded servers.

A reliable system model

The objective of the algorithms is to ensure that the largest

possible number of active servers operate within the

boundaries of their respective optimal operating regime. The

actions implementing this policy are: (a) migrate VMs from a

server operating in the undesirable-low regime and then

switch the server to a sleep state; (b) switch an idle server to a

sleep state and reactivate servers in a sleep state when the

cluster load increases; (c) migrate the VMs from an

overloaded server, a server operating in the undesirable-high

regime with applications predicted to increase their demands

for computing in the next reallocation cycles. We present a

new mechanism for redirecting incoming client requests to the

most appropriate server, thus balancing the overall system

requests load. Our mechanism leverages local balancing in

order to achieve global balancing. This is carried out through

a periodic interaction among the system nodes. Depending on

the network layers and mechanisms involved in the process,

generally request routing techniques can be classified in cloud

request routing, transport-layer request routing, and

application-layer request routing.fig:3.2 shows the dataflow

diagram of a reliable scaling system.fig 3.3 shows the UML

diagram of reliable scaling system.

.

VI. RELIABLE SCALING ALGORITHMS

The objective of the algorithms is to ensure that the largest

possible number of active servers operate within the

boundariesof their respective optimal operating regime. The

actions implementing this policy are: (a) migrate VMs from a

server operating in the undesirable-low regime and then

switch the server to a sleep state; (b) switch an idle server to a

sleep state and reactivate servers in a sleep state when the

cluster load increases; (c) migrate the VMs from an

overloaded server, a server operating in the undesirable-high

regime with applications predicted to increase their demands

for computing in the next reallocation cycles. The clustered

organization allows us to accommodate some of the desirable

features of the strategies for server consolidation. For

example, when deciding to migrate some of the VMs running

on a server or to switch a server to a sleep state, we can adopt

a conservative policy similar to the one advocated by auto

scaling to save energy. Predictive policies, such as the ones

discusse timal regime when historical data regarding its

workload indicates that it is likely to return to the optimal

regime in the near future.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCS T) – Volume 4 Issue 3, May - Jun 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 70

Start

End

Jobs Arrive at Main
Controller

Assign the jobs to particular nodes
according to the load

Heave State

Choose partition

Partition State

Jobs Arrive at the
Partitioner Balancer

Fig: 3.2 Data Flow diagram of a Reliable scaling system

Scaling decisions. The Server Application Manager SAMk is a

component of the Virtual Machine Monitor (VMM) of a

server Sk. One of its functions is to classify the applications

based on their processing power needs over a window of w

reallocation intervals in several categories: rapidly increasing

resource demands (RI), moderately increasing (MI),stationary

(S), moderately decreasing (MD), and rapidly decreasing

(RD). This information is passed to the cloud leader whenever

there is the need to migrate the VM running the application

SAMk interacts with the cluster leader and with the application

managers of servers accepting the migration of an application

currently running on server Sk. A report sent to the cluster

leader includes the list of applications currently running on Sk,

their additional demands of over the last reallocation cycle

and over a window of w reallocation intervals, and their

classification as RI/MI/S/MD/RD over the same window. The

scaling decisions are listed in the order of their energy

consumption, overhead, and complexity:

1) Local decision - whenever possible, carry out vertical

application scaling using local resources only.

(2) In-cluster, horizontal or vertical scaling - migrate some of

the VMs to the other servers identified by the leader; wake-up

some of the servers in a sleep state or switch them to one of

the sleep states depending on the cluster workload.

(3) Inter-cluster scaling - when the leader determines that the

cluster operates at 80% of its capacity with all servers

running, the admission control mechanism stops accepting

new applications. When the existing applications scale up

above 90% of the capacity with all servers running then the

cluster leader interacts with the leaders of other clusters to

satisfy the requests. This case is not addressed in this paper.

All decisions take into account the current demand for

processor capacity, as well as the anticipated load.

1. Local, vertical scaling. The anticipated load at the

end of the current and the following scheduling cycle

allow the server to continue operating in the optimal

regime.

 (1)

2. In-cluster scaling. The anticipated load could force

the server to transition to the suboptimal-low,

suboptimal-high,or undesirable-high regimes,

respectively:

 (2)

The leader includes the server in the WatchList when

Equations 2 are satisfied.

3. Inter-cluster scaling. The anticipated load could force

the server to transition to the undesirable-low regime.

 (3)

The leader includes the server in the MigrationList in case of

Equation 3 In addition to the lazy approach .when a server

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCS T) – Volume 4 Issue 3, May - Jun 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 71

operates within the boundaries of the sub optimal high regime

until its capacity is exceeded, one could use an anticipatory

strategy. To prevent potential SLA violations in this case we

force the migration from the suboptimal-high region as soon

as feasible.

Synchronous operation. The algorithm executed by

SAM-k every Tk units of time is :
1. Order applications based on the demand. Compute

the actual rate of increase or decrease in demand over

a window of w reallocation cycles

2. Compute servers available capacity.. If Equations 1

or 2 are satisfied send an imperative request for

application migration.

3. If first or third equations in 2 are satisfied send a

warning including application history.

4. Else, reallocate CPU cycles to allow each

application its largest rate of increase .If time elapsed

from the last status report is larger than in-cluster

reporting period send an update to the leader

 ADMIN

 Purchasing product

 USER

 Item Rating

 Time And Interval

 Maintaining Product

Currernt Server State

Add Server

Load balancing based
on Strategy

 Fig:3.4 UML Diagram of Reliable scaling system

Advantages Of Proposed System:

 After load balancing, the number of servers in the

optimal regime increases from 0 to about 60% and a

fair number of servers are switched to the sleep state.

 There is a balance between computational efficiency

and SLA violations; the algorithm can be tuned to

maximize computational efficiency or to minimize

SLA violations according to the type of workload

and the system management policies

IV. CONCLUSION

In the project, we implemented an optimized reliable scaling

system which combines multi-strategy mechanism with the

prediction mechanism. We adopt different control strategy for

different domains which are divided according to the host

resource utilization. We design and implement optimized

control strategy for load balancing based on live disruptive

migration of virtual Machine

The realization that power consumption of cloud computing

centers is significant and is expected to increase substantially

in the future motivates the interest of the research community

in energy-aware resource management and application

placement policies and the mechanisms to enforce these

policies. Low average server utilization and its impact on the

environment make it imperative to devise new energy-aware

policies which identify optimal regimes for the cloud servers

and, at the same time, prevent SLA violations A quantitative

evaluation of an optimization algorithm or an architectural

enhancement is a rather intricate and time consuming process;

several benchmarks and system configurations are used to

gather the data necessary to guide future developments. For

example, to evaluate the effects of architectural enhancements

supporting Instruction-level or Data-level

Parallelism on the processor performance and their power

consumption several benchmarks are used. The results show

different numerical outcomes for the individual applications in

each benchmark. Similarly, the effects of an energy-aware

algorithm depend on the system configuration and on the

application and cannot be expressed by a single numerical

value.

Research on reliable scaling system and resource

management in large scale systems often use simulation for a

quasi-quantitative and, more often, a qualitative evaluation of

optimization algorithms or procedures. As stated in \First, they

(WSCs) are a new class of large-scale machines driven by a

new and rapidly evolving set of workloads. Their size alone

makes them difficult to experiment with, or to simulate

efficiently." It is rather difficult to experiment with the

systems discussed in this paper and this is precisely the reason

why we choose simulation. The results of the measurements

reported in the literature are difficult to relate to one another.

For example, the wakeup time of servers in the sleep state and

the number of servers in the sleep state are reported for the

Auto Scale system; yet these configures would be different for

another processor, system configuration, and application. We

choose computational efficiency, the ratio of the amount of

normalized performance to normalized power consumption, as

the performance measure of our algorithms . The amount of

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCS T) – Volume 4 Issue 3, May - Jun 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 72

useful work in a transition processing benchmark can be

measured by the number of transactions, but it is more

difficult to assess for other types of applications. SLA

violations in a transaction processing benchmark occur only

when the workload exceeds the capacity of all servers used by

the application, rather than the capacity of individual servers.

Thus, in our experiment there is no SLA violation because

there are servers operating in low-load regimes. We need to

balance computational efficiency and SLA violations; from

The lazy approach would eliminate this effect. Even the

definition of an ideal case when a clairvoyant resource

manager makes optimal decisions based not only on the past

history, but also on the knowledge of the future can be

controversial. For example, we choose as the ideal case the

one when all servers operate at the upper boundary of the

optimal regime; other choices for the ideal case and for the

bounds of the have regimes could be considered in case of fast

varying, or unpredictable workloads. The have-regime model

introduced in this paper reflects the need for a balanced

strategy allowing a server to operate in an optimal or near-

optimal regime for the longest period of time feasible. A

server operating in the optimal regime is unlikely to request a

VM migration in the immediate future and to cause an SLA

violation, one in a sub-optimal regime is more likely to

request a VM migration, while one in the undesirable high

regime is very likely to require VM migration. Servers in the

undesirable-low regime should be switched to a sleep state as

soon as feasible. The model is designed for clusters built with

the same type of processors and similar configurations; the

few parameters of the model are then the same for all the

servers in the cluster. The clustered organization allows an

effective management of servers in the sleep state as they

should be switched proactively to a running state to avoid

SLA violations. It also supports effective admission control,

capacity allocation, and load balancing mechanisms as the

cluster leader has relatively accurate information about the

available capacity of individual servers in the cluster.

Typically, we see a transient period when most scaling

decisions require VM migration, but in a steady-state, local

decisions become dominant.

REFERENCES

[1] D. Kusic, J. O. Kephart, N. Kandasamy, and G.

Jiang/Power and performance management of

virtualized computing environments via lookahead

control." Proc 5th Int. Conf. Autonomic Comp.

(ICAC2008), pp. 3{12,2008.

[2] C. Tung, M. Steinder, M.Spreitzer, and G. Paci_ci.

\A scalable application placement controller for

enterprise data centers." Proc. 16th Int. Conf. World

Wide Web (WWW2007), 2007

[3] D. Ardagna, B. Panicucci, M. Trubian, and L.

Zhang. “Energy-aware autonomic resource

allocation in multi- tier virtualized

environments.” IEEE Trans. on Services

Computing, 5(1):2–19, 2012.

[4] [2] J. Baliga, R.W.A. Ayre, K. Hinton, and

R.S. Tucker. “Green cloud computing: balancing

energy in process- ing, storage, and transport.”

Proc. IEEE, 99(1):149-167,2011.

[5] [3] L. A. Barroso and U. Hozle. “The case for

energy- proportional computing.” IEEE

Computer, 40(12):33–37, 2007.

[6] [4] L. A. Barossso, J. Clidaras, and U.Hözle.

The Data- center as a Computer; an

Introduction to the Design of Warehouse-Scale

Machines. (Second Edition). Morgan &

Claypool, 2013.

[7] [5] A. Beloglazov, R. Buyya “Energy efficient

resource man- agement in virtualized cloud data

centers.” Proceedings of the 2010 10th

IEEE/ACM International Conference on Cluster,

Cloud and Grid Comp., 2010

[8] K. R. Jackson, L. Ramakrishnan, K. Muriki, S.

Canon,S. Cholia, J. Shalf, H. Wasserman, N. J.

Wright. \Performance analysis of high performance

computing applications on the Amazon Web services

cloud." Proc. IEEESecond Int. Conf. on Cloud

Computing Technology and Science, pp. 159{168,

2010.

[9] D. Gmach, J. Rolia, L. Cherkasova, G. Belrose, T.

Tucricchi, and A. Kemper. \An integrated approach

to resource pool management: policies, e_ciency, and

quality metrics." Proc. Int. Conf. on Dependable

Systems and Networks, pp. 326{335, 2008.

[10] Google. \Google's green computing: e_ciency at

scale."http://static.googleusercontent.com/external

content/untrusted

dlcp/www.google.com/en/us/green/pdfs/google-

green-computing.pdf (Accessed on August 29, 2013).

http://www.ijcstjournal.org/

