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ABSTRACT 
As the amount of data stored by various information systems grows very fast, there is an urgent need for a new 
generation of computational techniques and tools to assist humans in extracting useful information (knowledge) 
from the rapidly growing volume of data. Data mining (DM) is one of the most useful methods for exploring large 
data sets. Clustering, as a special area of data mining, is one of the most commonly used methods for discovering the 
hidden structure of the considered data set. The main goal o f clustering is to divide objects into well separated 
groups in a way that objects lying in the same group are more similar to each other than to objects in other groups.  If 
the data set to be analyzed contains many objects, the computation of the complete  weighted graph requires too 
much execution time and storing space. To reduce the time and space complexity many algorithms work only with 
sparse matrices, and thereby do not utilize the complete graph. The suggested visualization method is called 
Topology Representing Network Map. The primary aim of this analysis was to examine the preservation of 
distances and neighborhood relations  of data. 
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.I.  INTRODUCTION 

As the amount of data stored by various 
information systems grows very fast, there is an urgent 
need for a new generation of computational techniques  
and tools to assist humans in extracting useful 
information (knowledge) from the rapidly growing 
volume of data. Data mining (DM) is one of the most 
useful methods for exploring large data sets. 
Clustering, as a special area of data mining, is  one of 
the most commonly used methods for discovering the 
hidden structure of the considered data set. The main 
goal of clustering is to divide objects into well 
separated groups in a way that objects lying in the 
same group are more similar to each other than to 
objects in other groups. Clustering can be used to 
quantize the available data, to extract a set of cluster 
prototypes for the compact representation of the data 
set, to select the relevant features, to segment the data 
set into homogenous subsets, and to initialize 
regression and classification models. 
 
II. GRAPH BASED CLUSTERING 

Jaromczyk and Toussaint pointed out that 
graph based methods are the most powerful methods 

of clustering in difficult problems, which give results 
having the best agreement with human performance 
[1]. In accordance with this statement there have been 
many graph based clustering algorithms developed in 
recent years [2, 3, 4, 5, 6]. In graph based clustering 
methods objects are considered as vertices of a graph, 
while edges between them are treated differently by 
the various approaches. In the simplest case, the graph 
is a complete graph, where all vertices are connected 
to each other, and the edges are labeled according to 
the degree of the similarity of the objects. 
Consequently, in this case the graph is a weighted 
complete graph. If the data set to be analyzed contains 
many objects, the computation of the complete 
weighted graph requires too much execution time and 
storing space. To reduce the time and space 
complexity many algorithms work only with sparse 
matrices, and thereby do not utilize the complete 
graph. The sparse similarity matrices contain 
information only about a small subset of the edges, 
mostly those corresponding to higher similarity values. 
The accentuation of the most similar vertices has the 
effect that the sparse similarity matrix expresses 
spatial proximity and thereby only objects placed near 
each other are connected with edges on the graph. We 

RESEARCH ARTICLE                                     OPEN ACCESS 

http://www.ijcstjournal.org/


International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 3,  May -  Jun 2016  

 

ISSN: 2347-8578                          www.ijcstjournal.org                                         Page 235 
 

can say that sparse matrices encode the most relevant 
similarity values, and graphs based on these matrices 
visualize these similarities in a graphical way. Another 
way to reduce the time and space complexity is the 
application of a vector quantization (VQ) method (e.g. 
k-means [7], neural gas (NG) [8], Self- Organizing 
Map (SOM) [9]). The main goal of the vector 
quantization is to represent the entire set of objects by 
a set of representatives (codebook vectors), whose 
cardinality is much lower than the cardinality of the 
original data set. If a vector quantization method is 
used to reduce the time and space complexity, and the 
clustering method is based on graph-theory, vertices of 
the graph represent the codebook vectors and the 
edges denote the connectivity between them. Weights 
assigned to the edges express similarity of pairs of 
objects. Similarity measures corresponding to the 
labels of the edges are stored in a similarity matrix, 
and they can be calculated in different ways. The type 
of the objects’ similarity can be divided into two main 
categories: (i) structural information and (ii) distance 
information. Structural information of the edges 
expresses the degree of the connectivity of the vertices 
(e.g. number of common neighbors). Weights based 
on distance information are arising from different 
distance measures, which reveal the distance of the 
connected objects (e.g Euclidean distance). This paper 
suggests using a new distance measure to label the 
edges of the graph. The suggested measure stores 
structural information about the similarity of the 
vertices and it can be used in arbitrary clustering 
algorithm. 

 
The key idea of the graph based clustering is 

extremely simple: compute a graph of the original 
points or its representatives, and then delete any edge 
in the graph according to some criteria. The result is 
an unconnected graph and each sub graph represents a 
cluster. Using graphs for clustering we are interested 
in finding the edges, whose elimination leads to the 
best clustering result. Such edges are called 
inconsistent edges. In the simplest case those edges are 
removed step by step that have the largest weight 
value. But the elimination of the edges opens the door 
to other possibilities, as well. 

III. DATA VISUALIZATION 

The visualization of the data set plays an 
important role in the knowledge discovery process. In 
practical data mining problems usually high-
dimensional data is to be analyzed. Data can be 
thought of as points in a high-dimensional vector 
space, with each dimension corresponding to an 
attribute of the observed object. Because humans 
simply cannot see high-dimensional data, it is 
necessary to reduce the dimensionality of the data. In 
most of these cases it is very informative to map and 
visualize the hidden structure of the complex data set 
in low-dimensional vector space.  
 

Exploratory Data Analysis (EDA) is an 
approach for data analysis that employs  a variety of 
techniques (mostly graphical) to maximize insight into 
a data set, uncover underlying structure, extract 
important variables, detect outliers and anomalies, and 
test underlying assumptions. The seminal work in 
EDA is written by Tukey [10]. Most EDA techniques 
are graphical in nature with a few quantitative 
techniques [11]. The role of EDA is to open-mindedly 
explore the data. Exploratory data analysis should 
ideally be a non-parametric method which is very 
often accompanied by heavy computational cost [12]. 
There are several methods to visualize the high 
dimensional data in two dimensional vector space (e.g. 
scatterplot, multidimensional scaling (MDS) [13, 14, 
15], Principal Component Analysis (PCA) [16, 17], 
Sammon mapping (SM) [18], Kohonen’s Self-
Organizing Maps [19], etc.). The scatterplot (scatter 
diagram) visualizes a relation between two variables, 
each one corresponding to a different one of the 
variables of the objects. The data points are 
represented in two dimensional spaces, where axes 
represent the variables. The scatterplot is a useful tool 
to identify potential associations between two 
variables, but this representation method does not 
necessarily reflect the true nature of the structure of 
the data set. An alternative approach is to project the 
data set or its representatives into a low-dimensional 
vector space in such a way that it preserves their 
structure as fully as possible. The reduction of 
dimensionality of the feature space also is important 
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because of the curse of dimensionality. In a nutshell, 
the same number of examples fills  more of the 
available space when the dimensionality is low, and its 
consequence is that exponential growth with 
dimensionality in the number of examples is required 
to accurately estimate a function. Hence, 
dimensionality reduction is an important task of 
(visual) data mining. There are many dimensionality 
reduction methods which preserve as much of the 
intrinsic structure of the data as possible. The 
combination of the graph based clustering methods 
with the low dimensional visualization techniques 
guarantees a powerful tool for the analyzers. Applying 
such methods the analyzers can see not only the 
objects or its representatives  in the low-dimension, but 
the intrinsic connections also show themselves.  

 
IV. MOTIVATION 

In the last decades a large number of 
clustering techniques have been developed. In 
different clustering algorithms different similarity or 
distance measures are used. The choice of the distance 
measure may significantly influence the opportunities 
and the limitations of the clustering methods. For 
example clustering algorithms based on the Euclidean 
distance are able to uncover only the well separated or 
compact clusters, but they work not so well if the 
clusters overlap each other or there is  a bridge (chain 
link) between them. Thereby the choice of the applied 
similarity measure is a key point. While some 
similarity measures are grounded on the spatial 
distances of the n-dimensional vector points, other 
similarity measures utilize the neighborhood relations 
of the objects. The neighborhood clustering algorithm 
is one of those methods that are based on the 
neighborhood relations of the objects. It utilizes  the 
number of the common neighbors of the k-nearest 
neighbors of the objects to disclose the clusters. The 
neighborhood algorithm first calculates the k nearest 
neighbors for each object to be clustered, and then it 
places the objects into the same cluster if they are 
contained in each other’s k-neighbor list and they have 
at least l nearest neighbors in common.  

 

V.  FUZZY NEIGHBORHOOD 

SIMILARITY MEASURE 

There are several ways to apply the fuzzy 
neighborhood similarity or distance matrix. For 
example, hierarchical clustering methods work on 
similarity or distance matrices. Generally, these 
matrices are obtained from the Euclidian distances of 
pairs of objects. Instead of the other similarity/distance 
matrices, the hierarchical methods can also utilize the 
fuzzy neighborhood similarity/distance matrix. The 
dendrogram not only shows the whole iteration 
process, but it can also be a useful tool to determine 
the number of the data groups and the threshold of the 
separation of the clusters. To separate the clusters we 
suggest to draw the fuzzy neighborhood similarity 
based dendrogram of the data, where the long nodes 
denote the proper threshold to separate the clusters.  

 
The visualization of the objects may 

significantly assist in revealing the clusters. Many 
visualization techniques are based on the pair wise 
distance of the data. Because multidimensional scaling 
methods work on dissimilarity matrices, this  method 
can also be based on the fuzzy neighborhood distance 
matrix.  

 
Calculation of the transitive fuzzy neighborhood 

similarity measure Algorithm 

 
Step-1: Given a set of data X, specify the number of 
the maximum clusters rmax, and choose a first-order 
filter parameter α. Initialize the fuzzy neighborhood 
similarity matrix as S(0) = 0. 
 
Step-2: Repeat for r = 1, 2, …., rmax 

 
Step-3: Calculate the fuzzy neighborhood similarities 
for each pair of objects  as follows: 
 

(r) (r)
i j(r)

i, j (r) (r)
i j

A A
S  = 

A A
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where set  (r)
iA  denotes the r-order k-nearest 

neighbors of object xi  ε X, and  (r)
jA  respectively for 

xj  ε X. 
 
Step-4: Update the fuzzy neighborhood similarity 
measures based on the following formula: 
 

 (r) (r 1) (r)
i, j i, j i, jS  = (1- ) S  +  S   

 

Finally max(r )
i, jS  yields the fuzzy neighborhood 

similarities of the objects. 
 
As a result of the whole process a fuzzy 

neighborhood similarity matrix (S) will be given, 
which summarizes the pair wise fuzzy neighborhood 
similarities of the objects. The fuzzy neighborhood 
distance matrix (D) of the objects is obtained by the 
formula: D = 1 - S. Naturally, both the fuzzy 
neighborhood similarity and the fuzzy neighborhood 
distance matrices are symmetric matrices, that is ST = 
S and DT = D. 

 
The computation of the proposed transitive 

fuzzy neighborhood similarity/distance measure 
includes the following three parameters: k, rmax and α. 
The choice of the value of these parameters has an 
affect on the separation of clusters. Lower values of 
parameter k (e.g k = 3) separate the clusters better. By 
increasing value k clusters that overlap in some objects 
become more similar. The higher the value of 
parameter rmax is, the higher the similarity measure of 
similar objects becomes. The increase of the value rmax 
results in more compact clusters. The lower the value 
of α, the less the affect of neighbors far away 
becomes. As the fuzzy neighborhood similarity 
measure is a special case of the transitive fuzzy 
neighborhood similarity measure in the following 
these terms will be used as  equivalent. 

 
The Variety data set is a synthetic data set 

which contains 100 2-dimensional data objects. 99 
objects are partitioned in 3 clusters with different sizes 
(22, 26 and 51 objects), shapes and densities, and it 

also contains an outlier. Figure-1 shows some results 
of Neighborhood clustering applied on the normalized 
data set. The objects belonging to different clusters are 
marked with different markers. In these cases the 
value of parameter k was fixed to 8, and the value of 
parameter l was changed from 2 to 5. (The parameter 
settings k = 8, l = 2 gives the same result as k = 8 and l 
= 3.) It can be seen that the Neighborhood clustering 
algorithm was not able to identify the clusters in any 
of the cases. The cluster placed in the upper right 
corner in all cases is split into sub clusters. When 
parameter l is low         (l = 2, 3, 4) the algorithm is not 
able to detect the outlier. When parameter l is higher, 
the algorithm detects the outlier, but the other clusters 
are split into more sub clusters. After multiple runs of 
the JP algorithm there appeared a clustering result, 
where all objects were clustered according to 
expectations. This parameter setting was k = 10 and l 
= 5. To show the complexity of this data set in Figure-
2 the result of the well-known k-means clustering is 
also presented(the number of the clusters are 4). This 
algorithm is not able to disclose the outlier; thereby 
the cluster with small density is split into two sub 
clusters. Table-1 summarizes the clustering rates of the 
previously presented algorithms. The clustering rate 
was calculated as the fraction of the number of well 
clustered objects and the total number of objects. 

 
Neighborhood Algorithm Cluster Rate 
k=8 and l=3 95 % 
k=8 and l=4 98 % 
k=8 and l=5 65 % 
k=10 and l=5 100 % 
Table-1: Clustering rates for different mappings of the 

Variety data set 
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Figure-1(a): k=8 and l=3 

 

 
Figure-1(b): k=8 and l=4 

 

 
Figure-1(b): k=8 and l=5 

 

 
Figure-2: Result of the k-means clustering on the 

normalized Variety data set 
 

The proposed fuzzy neighborhood similarity 
measure was calculated with different k, rmax and α 
parameters. Different runs with parameters k = 3, …, 
25, and  rmax = 2, …, 5 and  α= 0.1, …, 0:4 have been 
resulted in good clustering outcomes. If a large value 
is chosen for parameter k, it is necessary to keep 
parameter rmax on a small value to avoid merging the 
outlier object with one of the clusters. 

 

 
Figure-3(a): MDS based on the fuzzy neighborhood 

distance matrix 
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Figure-3(b): VAT based on the single linkage 
fuzzy neighborhood distances  

 
To show the fuzzy neighborhood distances of 

the data, the objects are visualized by 
multidimensional scaling and VAT. Figure-3(a) shows 
the MDS mapping of the fuzzy neighborhood 
distances with the parameter settings: k = 6, rmax = 3 
and α = 0.2. Other parameter settings have also been 
tried, and they show similar results to Figure-3(a). 
Figure-3(b) shows the VAT representation of the data 
set based on the single linkage fuzzy neighborhood 
distances. The three clusters and the outlier are also 
easily separable in this figure. To find the proper 
similarity threshold to separate the clusters and the 
outlier the dendrogram based on the single linkage 
connections of the fuzzy neighborhood distances of 
the objects shown in Figure-4 has also been drawn. 
The dendrogram shows that the value d i,j = 0.75                 
(di,j = 1-s i,j) is a suitable choice to separate the clusters  
and the outlier from each other (k = 6,          rmax = 3 
and α = 0.2). Applying a single linkage agglomerative 
hierarchical algorithm based on the fuzzy 
neighborhood distances, and halting this algorithm at 
the threshold di,j = 0.75 the clustering rate is 100%. In 
other cases (k = 3,…,25)                      rmax = 2 ,…, 5 
and  α = 0.1 ,…, 0.4, and if the value of parameter k 
was large, the parameter rmax was kept on low values) 
the clusters also were easily separable and the 
clustering rate obtained was 99 to 100%. 

 

 
Figure-4: Single linkage dendrogram based on the 
fuzzy neighborhood distances (Variety data set) 

 
This simple example illustrates that the 

proposed fuzzy neighborhood similarity measure is 
able to separate the clusters with different sizes, 

shapes and densities; furthermore it is able to identify 
outliers. 

 
VI. CONCLUSION 

The fuzzy neighborhood similarity measure 
extends the similarity measure of the neighborhood 
algorithm in two ways: (i) it takes into account the far 
neighbors partway and (ii) it fuzzifies the crisp 
decision criterion of the neighborhood algorithm. The 
fuzzy neighborhood similarity measure is based on the 
common neighbors of the objects, but differently from 
the neighborhood algorithm it is not restricted to the 
direct neighbors. While the fuzzy neighborhood 
similarity measure describes  the similarities of the 
objects, the fuzzy neighborhood distance measure 
characterizes the dissimilarities of the data. The values 
of the fuzzy neighborhood distances  are easily 
computable from the fuzzy neighborhood similarities. 
The application possibilities of the proposed measures 
are widespread. All methods that work on distance or 
similarity measures can also be based on the fuzzy 
neighborhood similarity/distance measures. We have 
introduced the application possibilities of the fuzzy 
neighborhood similarity and distance measures  in 
hierarchical clustering and in VAT representation. It 
was demonstrated through an application example that 
clustering methods based on the proposed fuzzy 
neighborhood similarity/distance measure can discover 
clusters with arbitrary shapes, sizes and densities. 
Furthermore, the proposed fuzzy neighborhood 
similarity/distance measure is able to identify outliers, 
as well. 
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