
International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 177

A Review on Google File System
Richa Pandey [1], S.P Sah [2]
Department of Computer Science

Graphic Era Hill University

Uttarakhand – India

ABSTRACT
Google is an American multinational technology company specializing in Internet -related services and products . A

Google file system help in managing the large amount of data which is spread in various databases.

A good Google file system is that which have the capability to handle the fault, the replication of data, make the data

efficient, memory storage. The large data which is big data must be in the form that it can be managed easily. Many

applications like Gmail, Facebook etc. have the file systems which organize the data in relevant format.

In conclusion the paper introduces new approaches in distributed file system like spreading file’s data across

storage, single master and appends writes etc.

Keywords:- GFS, NFS, AFS, HDFS

I. INTRODUCTION

The Google file system is designed in such a way that

the data which is spread in database must be saved in

a arrange manner.

The arrangement of data is in the way that it can

reduce the overhead load on the server, the

availability must be increased, throughput should be

highly aggregated and much more services to make

the available data more accurate and reliable. Many

methods are introduced in that process.

II. GFS EVOLUTION

The need of GFS arises because of the original

design of GFS. Mainly the single master design

selection was not that much efficient and contains a

lot of risk. So Google people decide to research so as

to make the master distributed file system to solve

existing challenges it faces.

 Some of the problems that Google faced:

1) Size of storage memory increased in the range of

petabytes. The single master started becoming a

problem when thousand client requests came

simultaneously.

2) 64 MB standard chunk size design choice which

was fixed created problems. The system had to deal

with applications generating large number of small

files e.g.Gmail.

 III. KEY IDEAS

3.1. Design and Architecture: GFS cluster consist

of single master and multiple chunk servers used by

multiple clients. Since files to be stored in GFS are

large, processing and transferring such huge files can

consume a lot of bandwidth. To efficiently utilize

bandwidth files are divided into large 64 MB size

chunks which are identified by unique 64-bit chunk

handle assigned by master.

3.2. No caching: File data is not cached by the client

or chunk server.Large streaming reads offer little

caching benefits since most of the cache data will

always be overwritten.

3.3. Single Master: Simplifies design and allows a

simple centralized management. Master stores

metadata and co-ordinates access. All metadata is

stored in master’s memory that makes operations

fast. It maintains 64 bytes/chunk. Hence, master

memory is not a problem. To reduce master

involvement lease mechanism is used. Lease is used

to maintain a consistent mutation (append or write)

order across replicas.

3.4. Garbage collection:The system has a special

approach for this. Once a file is deleted its data are

not regain immediately.Such files are removed if they

exist for 3 days during the regular scan. The

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 178

advantages offered by it are: 1) Simple in operation

2) Deleting of files can take place during master’s

idle periods and 3) Safety against accidental deletion.

3.5.Relaxed consistency model

1) File namespace transformation are always atomic.

2) File region is consistent if all clients read same

values from replicas.

3) File region is defined if clients see mutation writes

in entirety.

IV. GFS FEATURES INCLUDE

 Fault tolerance

 Critical data replication

 Automatic and efficient data recovery.

 High aggregate throughput.

 Reduced client and master interaction

because of large chunk server size.

 Namespace management and locking.

 High accessibility.

 The largest GFS clusters have more than 1,000

nodes with 300 TB disk storage capacity.

Google file system is a distributed file system built

for large distributed data intensive applications like

gmail etc.Originally it was built to store data

generated by its large crawling and indexing system.

The files generated by this system were usually huge.

Maintaining and managing such huge files and data

processing demands was a challenge with the existing

file systems. The main objective of the designers was

building a highly fault tolerant system while running

inexpensive hardware.

4.1.GFS design assumptions :

1) System fail a lot and GFS should be able to

recover from it.

2) Files stored are of high GB.

3) Reads of two types: large streaming reads and

small random reads.

4) Once files are written they are mostly read.Most of

the write operations are of append type.

5) Support concurrent appends by multiple clients to

the same file.

6) High supply bandwidth and throughput are more

important than low latency.

V. GENERAL ARCHITECTURE OF

GOOGLE FILE SYSTEM

GFS is clusters of computers. A cluster is simply a

network of computers. Each cluster might contain

hundreds or even thousands of machines. In each

GFS clusters there are three main entities:

1. Clients

2. Master servers

3.Chunkservers.

1.Client are other computers or computer application

which make a file request. Requests can range from

retrieving and manipulating existing files to create

new files on the system. Clients can be thought as

customers of the GFS.

2.Master Server is the manager for the cluster. Its

task include:-

(a).Maintaining an operation log, that keeps track of

the activities of the cluster. The operation log helps

keep service interruptions to a minimum if the master

server crashes.

(b) The master server also keeps track of metadata,

which is the information that describes chunks. The

metadata tells the master server to which files the

chunks are related and where they fit in the overall

file.

3.Chunk Servers are the powerstation of the GFS.

They store 64-MB file chunks. The chunk servers

send requested chunks directly to the client. The GFS

http://www.ijcstjournal.org/
http://2.bp.blogspot.com/-C7Qcn2akF7E/U0zVjII34hI/AAAAAAAAAQY/7Cvy2OX9m9s/s1600/GFS+architecture.JPG

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 179

copies every chunk multiple times and stores it on

different chunk servers. Each copy is called a replica.

By default,GFS makes three replicas per chunk, but

users can change the setting and make more or fewer

replicas as desired.

VI. COMPARISON

Comparing GFS with other distributed file system

like Sun Network file system (NFS) and Andrew File

system (AFS) and Hadoop File System(HDFS):

VII. PROS AND CONS

 Pros:

1) Very high availability and fault tolerance through

replication: a) Chunk and master replication and b)

Chunk and master recovery.

2) Simple and efficient centralized design with a

single master. Delivers good performance for what it

was designed for i.e. large sequential reads.

3) Concurrent writes to the same file region are not

serializable. Thus replicas might have duplicates but

there is no interleaving of records. To ensure data

integrity each chunkserver verifies integrity of its

own copy using checksums.

4) Read operations takes at least a few 64KB blocks

therefore the checksum costs reduces.

5) Batch operations like writing to operation log,

garbage collection help increase the bandwidth.

6) Atomic append operations ensures no

synchronization is needed at client end.

7) No caching eliminates cache coherence issues.

8) Decoupling of flow of data from flow of control

allows to use network efficiently.

9) Orphaned chunks are automatically collected using

garbage collection.

10) GFS master constantly monitors each

chunkserver through continous messages.

Cons:

1) Special purpose design is a limitation when

applying to general purpose design.

2) Inefficient for small files.:

i) Small files will have small number of chunks. This

can lead to chunk servers storing these files to

become special in case of many client requests.

ii) Also if there are many such small files the master

involvement will increase and can lead to a problem.

Thus,single master node can become an issue.

3) Slow garbage collection can become a problem

when the files are not static. If there many deletions

then not recycling can become trouble.

4) Since a relaxed consistency model is used clients

have to perform consistency checks on their own.

5) Performance can degrade if the numbers of writers

and random writes are more.

6) Master memory is a limitation.

7) The whole system is tailored according to

workloads present in Google. GFS as well as

applications are adjusted and tuned as necessary since

both are controlled by Google.

8) No reason is given for the choice of standard

chunk size (64MB).

 Future relevance: GFS is good at for the application

it was designed for:i.e. sequential reads for large files

by data-parallel workloads. Since HDFS has become

sort of an industry standard for storing large amounts

of data, it's increasingly being used for other types of

workloads. H Base is one example of this (a more

database-like column store), which definitely does a

lot more random I/Os.

The GFS node cluster is a single master with multiple

chunk servers that are continuously accessed by

different client systems. Chunk servers store data as

Linux files on local disks. Stored data is divided into

large chunks (64 MB), which are replicated in the

network a minimum of three times. The large chunk

size reduces network overhead.

GFS NFS AFS HDFS

Cluster

based

architecture

Client-Server

based

architecture

Cluster

based

architecture

Cluster

based

architecture

No caching Client and

server

caching

Client

caching

No caching

Not similar

to UNIX

Similar to

UNIX

Similar to

UNIX

Not similar

to UNIX

End users

do not

interact.

End users

interact

End users

interact

End user

interact

Server

replication

No

replication

Server

replication

Server

replication

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 180

GFS is designed to accommodate Google’s large

cluster requirements without burdening applications.

Files are stored in hierarchical directories which are

identified by path names. Metadata - such as

namespace, access control data, and mapping

information - is controlled by the master, which

interacts with and monitors the status updates of each

chunk server through timed heartbeat messages.Thus,

a more efficient file system must be design which

overcomes all the shortcoming of the curent gfs.

REFERENCES

[1] Sanjay Ghemawat, Howard Gobioff, and

Shun-Tak Leung,Google

[2] GFS:Evolution on fast-forward :

http://queue.acm.org/detail.cfm?id=1594206

[3] Garth A. Gibson, David F. Nagle, Khalil

Amiri, Jeff Butler, Fay W. Chang, Howard

Gobioff, Charles Hardin, ErikR iedel, David

Rochberg, and Jim Zelenka. A cost-

effective, high-bandwidth storage.

[4] Thomas Anderson, Michael Dahlin, Jeanna

Neefe, David Patterson, Drew Roselli, and

Randolph Wang. Serverless networkfil e

systems. In Proceedings of the 15th ACM

Symposium on Operating System Principles,

pages 109–126, Copper Mountain Resort,

Colorado, December 1995.

[5] Remzi H. Arpaci-Dusseau, Eric Anderson,

Noah Treuhaft, David E. Culler, Joseph M.

Hellerstein, David Patterson, and Kathy

Yelick. Cluster I/O with River: Making the

fast case common. In Proceedings of the

Sixth Workshop on Input/Output in Parallel

and Distributed Systems (IOPADS ’99) ,

pages 10–22, Atlanta, Georgia, May 1999.

[6] Luis-Felipe Cabrera and Darrell D. E. Long.

Swift: Using distributed disks triping to

provide high I/O data rates. Computer

Systems, 4(4):405–436, 1991.

[7] http://www.users.cselabs.umn.edu/classes/F

all-2012/csci8980-2/papers/gfs.pdf

[8] http://en.wikipedia.org/wiki/Andrew_File_S

ystem.

http://www.ijcstjournal.org/
http://queue.acm.org/detail.cfm?id=1594206

