
International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 325

SQL Injection Attack Prevention Using 448 Blowfish

Encryption Standard
K. Rajeswari M.Sc, M.Phil.,

Associate Professor
Department Of Computer Science

 Tiruppur Kumaran College for Women, Tirupur – 641 687

C. Amsaveni, M.Phil
Research Scholor

Department Of Computer Science, Tirupur-641 687
Tamil Nadu

ABSTRACT

SQL Injection is a method where the intruder injects a contribution to the SQL Query with a specific end and goal to

change the structure of the Query proposed by the programmer and p icking up the access of the database which results

modification or deletion of the client's information. In the injection it misuses a security weakness (vulnerability)

happening in database layer of an application. SQL injection attack is the most well-known attack in web based sites

and application nowadays. Some malicious codes get inject to the database by unapproved clients and get the entrance

of the database due to absence of information approval. Information validation is the most critical portion o f

programming security that is not appropriately secured in the outline period of programming advance ment life-cycle

bringing about numerous security vulnerabilities. This proposed technique displays the procedures for identification

and avoidance of SQL injection attacks. There are no any known full verification protections accessible against such

sort of assaults. In this paper some predefined strategy for identification and the some current systems of preventions

are examined. In here we use the 448 bit Blowfish along with the some security algorithms to enhance the existing

model, to prevent the SQL Injection attacks. In Existing model we use RC4 and Normal Blowfish to Encrypt and

secure the web data from the SQL Injection attack but now we enhance using the 448 bit Blowfish Encryption

technique with less execution overhead.

Keywords:- SQLIA, Vulnerability, Blowfish, DES, Piggy back queries

I. INTRODUCTION

The data theft has occurred recently in all those web

applications, over internet that personally affects the

web users so much it has been also covered by OWASP

(Open Web Application Security Project), The project

issues the security to web related application that in

unbiased source information on the best practices,

various methods to address the SQL injection attacks

such as full scope of the problem or have the limitations

that prevention of Injection Attacks (SQLIA), Detecting

SQL fragments injected into a Web application has

proven extremely challenging. There are several tacks

enterprises can take – prevention, remediation, and

mitigation. When implementing prevention and

remediation efforts, the enterprise strives to develop

secure code and/or encrypt confidential data stored in

the database. However, these are not always available

options. For Example, in some cases the application

source code may have been developed by a third party

and not be available for modification. Additionally,

patching deployed code requires significant resources

and time. Therefore rewriting an existing operational

application would need to be prioritized ahead of

projects driving new business. Similarly, efforts to

encrypt confidential data stored in the database can take

even longer and require more resources. Given today’s

compressed development cycles, and limited number of

developers with security domain experience, even

getting the code rewrite project off the ground could

prove difficult. SQL injection vulnerabilities are caused

by software applications that accept data from an un-

trusted source (internet users), fail to properly validate

and sanitize the data, and subsequently use that data to

dynamically construct an SQL query to the database

backing that application. The numerous SQLIA

techniques used by attackers are based on the many

statement structure combinations offered by SQL, and

sometimes also take advantage of additional features in

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 326

specific DBMS implementations, particularly

Microsoft’s SQL Server. They pursue different goals at

various levels, from allowing other techniques to be

used (SQLIA escalation) to actually extracting database

data. The resulting threats are various and range from

system fingerprinting to Denial-of-Service (DoS) and

theft of confidential information. SQL Injections

Attacks thus threaten the confidentiality, integrity and

availability of databases’ data and structure, of their

hosting systems and of their dependant applications, and

as such greatly require the attention of application

developers and the deployment of effective prevention

solutions.

An SQL Inject ion Attack is probably the

easiest attack to prevent, while being one of the least

protected against forms of attack. The core of the attack

is that an SQL command is app ended to the back end of

a form field in the web or application front end (usually

through a website), with the intent of breaking the

original SQL Script and then running the SQL script that

was inject ed into the form fie ld. This SQL injection

most often happens when you have dynamically gene

rated SQL within your front -end application. The se at

tacks are most common with legacy Active Server Page

s (ASP) and Hypertext Preprocessor (PHP) applications,

but hey are still a problem with ASP.NET web-based

applications. The core reason behind an SQL Injection

attack comes down to poor coding practices both within

the front-end application and within the database stored

procedures. Many developers have learned better

development practices since ASP.NET was released, but

SQL Injection is still a big problem between the number

of legacy applications out there and newer applications

built by developers who didn’t take SQL Injection

seriously while building the application.

Structured Query Language ('SQL') is a textual

language used to interact with relational databases.

There are many varieties of SQL; most dialects that are

in common use at the moment are loosely based around

SQL-92, the most recent ANSI standard. The typical

unit of execution of SQL is the 'query', which is a

collection of statements that typically return a single

'result set'. SQL statements can modify the structure of

databases (using Data Definition Language statements,

or 'DDL') and manipulate the contents of databases

(using Data Manipulation Language statements, or

'DML'). In this paper, we will be specifically discussing

Transact-SQL, the dialect of SQL used by Microsoft

SQL Server.

This statement will retrieve the 'id', 'forename'

and 'surname' columns from the 'authors' table, returning

all rows in the table. The 'result set' could be restricted

to a specific 'author' like this:

select id, forename, surname

from authors where forename = 'john'

and

surname = 'smith'

An important point to note here is that the

string literals 'john' and 'smith' are delimited with single

quotes. Presuming that the 'forename' and 'surname'

fields are being gathered from user-supplied input, an

attacker might be able to 'inject' some SQL into this

query, by inputting values into the application like this:

Forename: jo'hn

Surname: smith

The 'query string' becomes this:

select id, forename, surname from

authors where forename = 'jo'hn' and

surname = 'smith'

They are easy to detect and exploit; that is why

SQLIAs are frequently employed by malicious user for

different reasons. E.g. financial fraud, theft, confidential

data, deface website, sabotage, espionage, cyber

terrorism, or simply for fun. Throughout 2010,

Government, Finance and Retail verticals faced

different, but equally important, outcomes. Attacks

against Government agencies resulted in defacement in

26% of SQL injection attacks, while Retail was most

affected by credit card leakage at 27% of SQL injection

and finance experienced monetary loss in 64% of

attacks. Furthermore, SQL Injection attack techniques

have become more common more ambitious, and

increasingly sophisticated, so there is a deep to need to

find an effective and feasible solution for this problem

in the computer security community. Detection or

prevention of SQLIAs is a topic of active research in the

industry and academia. To achieve those purposes,

automatic tools and security system have been

implemented, but none of them are complete or accurate

enough to guarantee an absolute level of security on web

application. One of the important reasons of this

shortcoming is that there is lack of common and

complete methodology for the evaluation either in terms

of performance or needed source code modification

which in an over head for an existing system. A

mechanism which will easily deployable and provide a

good performance to detect and prevent the SQL

injection attack is essential one.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 327

SQL Injection Attacks (SQLIA) Process

SQLIA is hacking technique which the attacker

adds SQL statements through a web application’s input

field or hidden parameter to access to resources. Lack of

input validation in web applications causes hacker to be

successful. Basically SQL process structured in three

phases:

i. An attack sends the malicious HTTP request to the

web application.

ii. Create the SQL Statements.

\iii. Submits the SQL statements to the back end

database

Problems occurred of SQLIA

The result of SQLIA can be disastrous because

a successful SQL injection can read sensitive can read

sensitive data from the database, modify database data

(Insert/Update/Delete), execute administrative

operations on the Database (such as shutdown the

DBMS), recover the content on the DBMS file system

and execute commands (xp cmdshell) to the operating

system. The main consequences of these vulnerabilities

are attacks on:

i) Authorization Critical data that are stored in

a vulnerable SQL database may be altered by a

successful SQLIA, a authorization privilege.

ii) Authentication If there is no any proper

control on username and password inside the

authentication page , it may be possible to login to a

system as a normal user without knowing the right

username and/or password.

iii) Confidentially Usually databases are

consisting of sensitive data such as personal

information, credit card numbers and/ or social numbers.

Therefore loss of confidentially is a big problem with

SQL Injection vulnerability. Actually, theft of sens itive

data is one of the most common intentions of attackers.

iv) Integrity By a successful SQLIA not only

an attacker reads sensitive information, but also, it is

possible to change or delete this private information..

Vulnerabilities

Insufficient Input Validation Input validation

is an attempt to verify or filter any input for malicious

behavior. Insufficient input validation will allow code to

be executed without proper verification of its intention.

Attacker taking advantages of insufficient input

validation can utilize malicious code to conduct attacks.

Privileged account A privileged account has a

degree of freedom to do what normal accounts cannot.

Its action may also exempt from auditing and validation.

This present vulnerability since a jeopardized privileged

account, such as an administrator account, can

compromise much more than what a jeopardized regular

account can.

Description: Union query injection is called as

statement injection attack. In this attack attacker insert

additional statement into the original SQL statement.

This attack can be done by inserting either a UNION

query or a statement of the form “;< SQL statement >”

into vulnerable parameter. The output of this attack is

that the database returns a dataset that is the union of the

results of the original query with the results of the

injected query. For example, SELECT * FROM user

WHERE id=’1111’ UNION SELECT * FROM member

WHERE id=’admin’ --’ AND password=’1234’;

Stored Procedure

Attack Intent: Performing privilege

escalation, performing denial of service, executing

remote commands.

 Description: In this technique, attacker focuses

on the stored procedures which are present in the

database system. Stored procedures run directly by the

database engine. Stored procedure is nothing but a code

and it can be vulnerable as program code. For

authorized/unauthorized user the stored procedure

returns true/false. As an SQLIA, intruder input “;

SHUTDOWN; --" for username or password. Then the

stored procedure generates the following query: For

example, SELECT accounts FROM users WHERE

login= '1111' AND pass='1234 '; SHUTDOWN;--; This

type of attack works as piggyback attack. The first

original query is executed and consequently the second

query which is illegitimate is executed and causes

database shut down. So, it is considerable that stored

procedures are as vulnerable as web application code.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 328

Extra Functionality Extra functionalities

meant to provide a broader range of vulnerability, since

combinations of this functionality may result in

unintended actions. For example, xp_cmdshell is meant

to provide users with a way executing operating system

commands, but commonly used to added unauthorized

users into the operating system.

Database Server Fingerprint The database

server fingerprints contains information about the

database system in use. It indentifies the specific type

and version of the database, as well as the corresponding

SQL language dialect. A compromise of this asset may

allow attackers to construct malicious code specifically

for the SQL language dialect in question.

Database Schema The database schema

describes the server’s internal architecture Database

Structure information such as table names, size and

relationships are defined in the data schema. Keeping

this asset private is essential in keeping the

confidentiality and integrity of the database data .A

compromise in the database schema may allow attackers

to know the exact structure of the database, including

table, rows and column headings.

Database Data T he database data is the most

crucial asset in any database system. It contains the

information in the tables described in the database

schema, such as prices in an online store, personal

information of clients, administrator passwords, etc. A

compromise in the database data will usually result in

failure of the system’s intended functionality, thus, its

confidentiality and integrity must be protected.

Network A network interconnects numerous

hosts together and allows communication between them.

A compromise in a network will most likely

compromise every host in the network. Some networks

may also be interconnected with other networks,

furthering the potential damage, should an attack be

successful.

Piggy-backed Query

Attack Intent: Extracting data, adding or modifying

data, performing denial of service, executing remote

commands

Description: In the piggy-backed Query attacker tries to

append additional queries to the original query string.

On the successful attack the database receives and

executes a query string that contains multiple distinct

queries. In this method the first query is original whereas

the subsequent queries are injected. This attack is very

dangerous; attacker can use it to inject virtually any type

of SQL command. For example, SELECT * FROM user

WHERE id=’admin’ AND password=’1234’; DROP

TABLE user; --’; Here database treats above query

string as two query separated by “;” and executes both.

The second sub query is malicious query and it causes

the database to drop the user table in the database.

II. RELATED WORK

Reviews and analysis of SQL injection with various

prevention mechanisms

In Random4: An Application Specific

Randomized Encryption Algorithm to prevent SQL

injection, the authors proposed a solution to the problem

of unauthorized access to the database by preventing it

using an encryption algorithm based on randomization.

This approach is based on SQLrand and randomization

algorithm is used to convert input into a cipher text

incorporating the concept of cryptographic salt.

However, the main flaws in this approach are, Use of

lookup table is not efficient way, cannot handle second

order SQL injection attack and it also requires more

space to store the look up table.

Gaurav Shrivastava and Kshitij Pathak

proposed a model for SQL injection prevention using

tokenization. In this paperl, they extract the where

clause from the input query and put the remaining query

(after where clause) in a temporary variable. They

applied tokenization only on the remaining query which

converts the tokens into hierarchical form such as left

and right child. They performed validation of each token

by comparing the value of left and right child to the root

condition This model prevents all type of SQL injection

attacks which are occurred only after the where claus e .

Debabrata Kar and Suvasini Panigrahi proposed a

lightweight approach to prevent SQL Injection attacks

by a novel query transformation scheme and hashing.

They used a novel query transformation scheme that

transforms a query into its structural form ins tead of the

parameterized form. In order to store the transformed

queries, they proposed to apply a suitable hashing

function to generate unique hash keys for each

transformed query. This approach can also be easily

implemented on any language or database platform with

little modification. However, this approach cannot

prevent second order SQL injection attempts since the

parameter values (especially the string values) are

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 329

removed during the transformation process. Another

drawback is that for query transformation, they used

query transformation scheme lookup table.

In 2011, Kai-Xiang Zhang et al. suggest SQL

injection attacks, a class of injection flaw in which

specially crafted input strings leads to illegal queries to

databases, are one of the topmost threats to web

applications. Based on their observation that the injected

string in a SQL injection attack is interpreted differently

on different databases, they propose a novel and

effective solution TransSQL to solve this problem.

TransSQL automatically translates a SQL request toa

LDAP-equivalent request. After queries are executed on

aSQL database and a LDAP one, TransSQL checks the

difference in responses between a SQL database and a

LDAPone to detect and block SQL injection attacks.

Their Experimental results show that TransSQL is an

effective and efficient solution against SQL injection

attacks.

In 2012, RamyaDharam et al. present a

framework which can be used to handle tautology based

SQL Injection Attacks using post-deployment

monitoring technique. Their framework uses two pre-

deployment testing techniques i.e. basis path and data

flow testing techniques to identify legal execution paths

of the software. Runtime monitors are then developed

and integrated to observe the behavior of the software

for identified execution paths such that their violation

will help to detect and prevent tautology based SQL

Injection Attacks. I

In 2012, XI-Rong Wu et al. proposed a new

method named k-centers (KC) to detect SQL injection

attacks (SQLIAs). The number and the centers of the

clusters in KC are adjusted according to unseen SQL

statements in the adversarial environment, in which the

types of attacks are changed after a period of time, to

adapt different kinds of attacks. The experimental

results show that the proposed method has a satisfying

result on the SQLIAs detection in the adversarial

environment

III. BACKGROUND STUDY ATTACKS

Tautology Attack: The main objective of tautology-

based attack is to inject code in conditional statements

so that they are always evaluated as true. Using

tautologies, the hacker wishes to either bypass user

authentication or insert inject-able parameters or extract

data from the database. A typical SQL tautology has the

form, where the comparison expression uses one or

more relational operators to compare operands and

generate an always true condition. Bypassing

authentication page and collecting data is the most

common example of this kind of attack.

Example Query:

SELECT * FROM user WHERE id=‘1‘ or

‗1=1‘-‗AND password=‘1234‘; ―or 1=1‖

the most commonly known tautology.

Logically Incorrect Query Attacks: The main

objective of the Illegal/Logically Incorrect Queries

based SQL Attacks is to gather the information about the

back end, database of the Web Application. When a

query is rejected, an error message is returned from the

database which includes useful debugging information.

This error messages help attacker to find vulnerable

parameters in the application and consequently database

of the application. In fact attacker injects junk input or

SQL tokens in query to produce syntax error, type

mismatches, or logical error by purpose. In this example

attacker makes a type mismatch error by injecting the

following text into the input field:

1. Original

URL:http://www.toolsmarketal.com/veglat/?id_nav=22

3455

2. SQL Injection: http://www.toolsmarket-al/veglat/?

id_nav=223455‘ 3. Error message showed: SELECT

name FROM Employee WHERE id=223455\‘. From

the message error we get the name of table and fields:

name; Employee; Id By the gained information attacker

can organize more perfect attacks. The Illegal/Logically

Incorrect Queries based SQL attack is considered as the

basis step for all the other attacking techniques.

Union Query: attackers join injected query to the safe

query by the word UNION and then can get data about

other tables from the application

Example: Following executed from the server:

SELECT name, phone FROM tbl_user WHERE

userid=$id1

By injecting the following Id value into:

$id1= 1 UNION ALL SELECT credit Card

Number,

1 FROM Credit CardTable

Then we will have the following query:

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 330

SELECT name, phone FROM tbl_user WHERE

userid1 =1

UNION ALL SELECT creditCardNumber, 1

FROM

Credit CardTable

This will join the result of the original query with all the

credit card users to the attacker. The proposed

implemented system contains the mechanisms, which

will protect the web application from the above

discussed SQL injection attacks.

IV. PROPOSED METHODOLOGY

A. AES Encryption and Decryption The

attributes and data in the input query are encrypted using

AES (Advanced Encryption Standard) algorithm which

is fast, and requires little memory. Once the query is

arrived at server side, which is decrypted by using the

same key and in turn converts into various token which

are stored in to another dynamic table. The performance

comparison of cipher text over normal text shows that,

cipher text is very difficult and time consuming to crack.

Query tokenization Query tokenization

technique converts the input query into various tokens.

These tokens are generated by detecting single quote,

double dashes and space in an input query. All string

before a single quote, before double dashes and before a

space constitutes a token. Tokenization process executes

in following four essential steps and then forwarded to

the server side.

Step 1: Process the input query by replacing all

the unnecessary characters which are used to make

attacks on query.

Step 2: Detect Single Quote, Double Quote,

Double slashes and space in the input query.The fig.3.

shows how tokens are formed by detecting spaces

,single quote and double dashes in input query for the

below given input query. “ SELECT eid , ename FROM

Employee WHERE salary > 2000 ”

Step 3: Break the input query into various

useful tokens.

Step 4: Store the tokens in a Dynamic table.

Step 5: Query Forwarding – After tokenization, the

encrypted input query and dynamic token table are

forwarded to server.

Comparison with existing system

SQ L Injection

Types

SQ LIA Prevention Technique

RC4 Blowfish

By pass

Authentication

Prevented Prevented

Unauthorized

knowledge of

Database

Prevented Prevented

Injected Additional

query

Not Prevented Prevented

Second order SQ L

Injection

Not Prevented Not Prevented

Table 1: Comparison of existing algorithms

We propose a model for preventing SQL

injection attacks by combining two well-known

encryption techniques Blowfish (Symmetric key

encryption) and RC4 (Asymmetric key encryption)

at different levels of the proposed model.

In the proposed scheme, access to the

database will be provided only by the server to all

the authenticated users. If a new user wants to

access the database he will have to register himself

with the server. During the registration process, we

require every new user to provide username and

password.

Along with its regular process of checking

the availability of user name, on successful

completion, the server generates user key which is

hexadecimal value of the password and stores it in

the user table.

A. RC4 Methodology with SQL Injection

RC4 Algorithm

RC4 is a stream cipher, symmetric key algorithm.

The same algorithm is used for both encryption and

decryption as the data stream is simply XORed with the

generated key sequence. The key stream is completely

independent of the plaintext used. It uses a variable

length key from 1 to 256 bit to initialize a 256-bit state

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 331

table. The state table is used for subsequent generation

of pseudo-random bits and then to generate a

pseudorandom stream which is XORed with the

plaintext to give the ciphertext. The algorithm can be

broken into two stages: initialization, and operation. In

the initialization stage the 256-bit state table, S is

populated, using the key, K as a seed. Once the state

table is setup, it continues to be modified in a regular

pattern as data is encrypted. The steps for RC4

encryption algorithm is as follows:

• o be encrypted and the selected key.

• Create two string arrays.

• Initiate one array with numbers from 0 to 255.

• Fill the other array with the selected key.

• Randomize the first array depending on the array

of the key.

• Randomize the first array within itself to generate

the final key stream.

• XOR the final key stream with the data to be

encrypted to give cipher text

RC4 is a state cipher which is also termed

as stream cipher. RC4 was designed by Ron Rivest.

In this plain text digits are encrypted and processed

one at a time. The processing speed is higher than

block ciphers. RC4 algorithm is well suited for real

time processing. In RC4 both encryption and

decryption is performed using the same algorithm.

The RC4 algorithm is of two stages:

•Initialization –Data encryption using a

respective key, Creating arrays, Assigning values

and selected key to the arrays.

•Operation – Swapping and XOR the final

output to obtain the cipher text

Performance Evaluation of RC4 Algorithm

Q uery Encryption Time Decryption Time

Encrypted query

for username and

password

=chinchu

528ns 528ns

Encrypted query

for username and

518 ns 518 ns

password =

ajiths

Table 2: Performance in nano seconds

The above stated performance evaluation of

RC4 algorithm is very clear that it works on 528 nano

seconds to encrypt and 518 nano seconds to decrypt the

text, from this encryption the SQL injection attacks

possibility is less but the percentage of SQL Injection

attack is very high, because the hacker hacks the

programmer before the encrypts the text or after the

encryption, also the hacker inject the code using their

techniques.

B. Blowfish Methodology

Blowfish is a symmetric block cipher that can

be effectively used for encryption and safeguarding of

data. It takes a variable-length key, from 32 bits to 448

bits, making it ideal for securing data. Blowfish was

designed in 1993 by Bruce Schneier as a fast, free

alternative to existing encryption algorithms. Blowfish

is unpatented and license-free, and is available free for

all uses.

Blowfish is a variable-length key block cipher.

It is suitable for applications where the key does not

change often, like a communications link or an

automatic file encryptor. It is significantly faster than

most encryption algorithms when implemented on 32-

bit microprocessors with large data caches.

Blowfish Algorithm is a Feistel Network,

iterating a simple encryption function 16 times. The

block size is 64 bits, and the key can be any length up to

448 bits. In such a way we need to use 448 bits of

encryption fully at each time of encryption because 448

bit encryption not allows an hacker to inject the query in

encrypted format and also here the technique is followed

that after we analyze the data for encryption we need to

check the round of feistel cipher, because the cipher

made the blowfish bit encryption very strong one.

Although there is a complex initialization phase required

before any encryption can take place, the actual

encryption of data is very efficient on large

microprocessors.

Fiestel Network

A Feistel network is a general method of

transforming any function (usually called an F function)

into a permutation. It was invented by Horst Feistel and

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 332

has been used in many block cipher designs. The

working of a Feistal Network is given below:

 Split each block into halves

 Right half becomes new left half �

 New right half is the final result when the left

half is XOR’d with the result of applying f to the right

half and the key. �

 Note that previous rounds can be derived even

if the function f is not invertible.

Blowfish Algorithm

Blowfish is a variable-length key, 64-bit block

cipher. The algorithm consists of two parts: a key-

expansion part and a data- encryption part. Key

expansion converts a key of at most 448 bits into several

subkey arrays totaling 4168 bytes.

Data encryption occurs via a 16-round Feistel

network. Each round consists of a keydependent

permutation, and a key- and data-dependent

substitution. All operations are XORs and additions on

32-bit words. The only additional operations are four

indexed array data lookups per round.

Blowfish uses a large number of subkeys.

These keys must be pre-computed before any data

encryption or decryption.

Generating the Subkeys

The subkeys are calculated using the Blowfish

algorithm:

 Initialize first the P-array and then the four

Sboxes, in order, with a fixed string. This string consists

of the hexadecimal digits of pi (less the initial 3): P1 =

0x243f6a88, P2 = 0x85a308d3, P3 = 0x13198a2e, P4 =

0x03707344, etc.

 XOR P1 with the first 32 bits of the key, XOR

P2 with the second 32-bits of the key, and so on for all

bits of the key (possibly up to P14). Repeatedly cycle

through the key bits until the entire Parray has been

XORed with key bits. (For every short key, there is at

least one equivalent longer key; for example, if A is a

64-bit key, then AA, AAA, etc., are equivalent keys.)

 Encrypt the all-zero string with the Blowfish

algorithm, using the subkeys described in steps (1) and

(2). – Replace P1 and P2 with the output of step (3).

 Encrypt the output of step (3) using the

Blowfish algorithm with the modified subkeys. – P3 and

P4 with the output of step (5).

 The process, replacing all entries of the P array,

and then all four S-boxes in order, with the output of the

continuously changing Blowfish algorithm.

V. RESULTS AND DISCUSSION

This paper has presented a lightweight method

to prevent SQL injection attacks by applying query

tokenization technique to convert SQL queries into

number of useful tokens and then encrypting the table

name, fields, literals and data on the query using 448 bit

Blowfish Encryption algorithm. This approach avoids

memory requirements to store the legitimate query in

repository and facilitates fast and efficient accessing

mechanism with database. Our experimental results

show that this approach can effectively prevent all types

of SQL injection attempts. This approach does not

require major changes to application code and has

negligible effect on performance even at higher load

conditions due to its low processing overhead. It can

also be easily applied to any other language & database

platform without major changes. Further explore on the

query transformation scheme is needed to make use of

new encryption algorithm for preventing SQL injection

attacks.

Total Database

Requests sent by

Client

Injected

Queries

Valid

Queries

600 90 430

800 100 600

1000 175 825

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 333

Table 3: Injected and Valid Queries

Fig 1 : Comparison of Injected and Valid queries

From the above chart shows that the total

requests, attacks made, and success of the message, This

application is experimented with number of requests in

three different iterations, the basis of different SQL

injection type like Bypass authentication, Unauthorized

Knowledge of Database, injected additional query and

Second order SQL Injection.

Comparison of Query Encryption in 448 bit Blowfish

Q uery Encryption Time Decryption Time

Encrypted query

for username and

password

=chinchu

528ns 528ns

Encrypted query

for username and

password =

ajiths

518 ns 518 ns

Encrypted query

for username and

password =

chinchu

300 ns 300 ns

Encrypted query

for username and

password =

ajiths

300 ns 300 ns

Table 4: Comparison of query encryption in 448 bit

Blowfish

Fig 2: Comparison of Algorithm using Nanoseconds

Comparison of Algorithm

Algorithm
Injected

Queries

Valid

Queries

RSA 90 430

RC4 100 600

148 Bit Blowfish 175 825

448 Bit Blowfish 78 900

Table 5: Algorithm comparison in Query validation

Fig 3: Comparison of Algorithms

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 334

The proposed a new approach that is

completely based on the hash method of using the SQL

queries in the web based environment, which is much

secure and provide the prevention from the attackers

SQL. But, our proposed strategy requires the alterations

in the design of existing schema database and a new

guideline for the database user before writing any new

database. Through these guidelines , we found the

effective outcomes in SQL injections Preventions. SQL

injection attacks make the database vulnerable to

unwanted access by non-reliable users that may not be

good in terms of security. A secure database needs to

restrict its user’s activity according to the authentication

of the user in order to work efficiently. In our scheme

the proposed authentication process ensures user

authenticity and efficient SQL query generation and in

turn efficient database access and usage. The user name

and SQL query both are encrypted and the query is only

executed after the authenticity of the user is verified,

hence making the process highly secured.

VI. CONCLUSION

Web applications need protection in their

database to ensure security. SQL injection attacks allow

attackers to spoof identity, tamper with existing data,

can cause repudiation issues such as voiding

transactions or even changing balances, allow the

complete disclosure of all data, destroy the data or make

it otherwise unavailable, and become administrators of

the database server. If an application fails to properly

construct SQL statements it is possible for an attacker to

alter the statement structure and execute unplanned and

potentially hostile commands. The longer key size is

more secure but the encryption time and decryption

speed is slow. In order to overcome this problem in

Blowfish algorithm reducing of two S-boxes will

increase the speed and provide the better security to data.

The main advantage of optimized Blowfish is that the

execution time is reduced to 0.2 milliseconds and the

throughput is increased to 0.24bytes/milliseconds

compare than original algorithms. The main objective

was to analyze the performance of the most popular

symmetric key algorithms in terms of Authentication,

Flexibility, Reliability, Robustness, Scalability,

Security, and to highlight the major weakness of the

mentioned algorithms, making each algorithm’s

strength and limitation transparent for application.

REFERENCES

[1] Bruce Schneier, "The Blowfish encryption

algorithm9", Dr. Dobb's Journal of Software

Tools, 19(4), p. 38, 40, 98, 99, April 1994.

[2] X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian,

and L. Tao. A Static Analysis Framework for

Detecting SQL Injection Vulnerabilities,

COMPSAC 2007, pp.87-96, 24-27 July 2007.

[3] Mei Junji, An approach for SQL injection

vulnerability detection. Sixth International

Conference on Information Technology,

(2009): New Generations: pp. 1411-1414.

[4] R. Ezumalai, G. A. (2009). Combinatorial

Approach for Preventing SQL Injection

Attacks.2009 IEEE International Advance

Computing Conference (IACC 2009). Patiala,

India: pp.1212-1217.

[5] Tingyuan Nie Teng Zhang, A study of DES and

Blowfish encryption algorithm, Tencon IEEE

Conference, 2009.

[6] Shaukat Ali, Azhar Rauf, Huma Javed

“SQLIPA : An authentication mechanism

Against SQL Injection”.

[7] W.G.J. Halfond, A. Orso, “AMNESIA: analysis

and monitoring for Neutralizing SQL-injection

attacks,” 20th IEEE/ACM International

Conference on Automated Software

Engineering, Long Beach, CA, USA, 2005, pp.

174–183.

[8] Asha. N, M. Varun Kumar,Vaidhyanathan.G of

Anomaly Based Character Distribution Models

in the,”Preventing SQL Injection Attacks”,

International Journal of Computer

Applications (0975 – 8887) Volume 52–

No.13, August 2012

[9] Debabrata Kar, Suvasini Panigrahi, Prevention

of SQL Injection Attack Using Query

Transformation and Hashing, IEEE

International Advance Computing Conference

(IACC),2013.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 335

[10] Avireddy. S, Perumal.V, Gowraj.N,Kannan

R.S, Thinakaran.P, Ganapthi .S, Gunasekaran

J.R, Prabhu.S, Random4: An Application

Specific Randomized Encryption Algorithm to

prevent SQL injection, ieee transactions on

communications, vol. 60, no. 5, may 2012.

[11] Kai-Xiang Zhang, Chia-Jun Lin, Shih-Jen

Chen, Yanling Hwang, Hao-Lun Huang, and

Fu-Hau Hsu, “TransSQL: A Translation and

Validation-based Solution for SQL-Injection

Attacks”, First International Conference on

Robot, Vision and Signal Processing, IEEE,

2011

[12] Halfond W. G., Viegas, J., and Orso, A., A

Classification of SQL-Injection Attacks and

Countermeasures. In Proc. of the Intl.

Symposium on Secure Software Engineering,

Mar. 2006.

[13] Kemalis, K. and T. Tzouramanis. SQL-IDS: A

Specification-based Approach for SQL

injection Detection. SAC’08. Fortaleza, Ceará,

Brazil, ACM 2008, pp. 2153-2158.

[14] Boyd S.W. and Keromytis, A.D., SQL rand:

Preventing SQL Injection Attacks. Proceedings

of the 2nd Applied Cryptography and Network

Security (ACNS’04) Conference, June (2004),

pp. 292–302.

[15] Shubham Shrivastava, Rajeev Ranjan Kumar

Tripathi, Attacks Due to SQL injection & their

Prevention Method for Web-Application,

International Journal of Computer Science and

information technologies, Vol 3 (2), pp.3615-

3618, 2012.

[16] Sruthi Bandhakavi and Prithvi Bisht Preventing

SQL Injection Attacks using Dynamic

Candidate Evaluations, Alexandria, Virginia,

USA, 2007

[17] R.Ezumalai (2009), An Combinatorial

approach for SQL injection detection, IEEE

[18] Mahima Srivastava, Algorithm to prevent back

end database against SQL Injection attacks,

IEEE, 2014.

[19] RSA Laboratories, “RC6 Block Cipher”,

2012, Historical: RSA Algorithm: Recent

Results on OAEP Security: RSA Laboratories

submissions

[20] W. G. J. Halfond, et al., "A Classification of

SQL-Injection Attacks and Countermeasures,"

in Proceedings of the IEEE International

Symposium on Secure Software Engineering,

Arlington, VA, USA,2006.

[21] C. Bockermann, et al., "Learning SQL for

Database Intrusion Detection Using Context-

Sensitive Modelling (Extended Abstract)," in

6th International Conference on Detection of

Intrusions and Malware, and Vulnerability

Assessment (DIMVA '09), Berlin, Heidelberg,

2009, pp. 196--205

[22] K. Kemalis and T. Tzouramanis, "SQL-IDS: a

specification-based approach for SQL-

injection detection," in Proceedings of the 2008

ACM symposium on Applied computing

(SAC'2008), New York, NY,USA, 2008, pp.

2153--2158.

http://www.ijcstjournal.org/

