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ABSTRACT 

Evaluating the structural patterns of chemical bonding involves identifying subset of the most probable chemical bonds that 

produces compatible results through analysis of sequential patterns. A sequential pattern mining algorithm may be evaluated 

from both the efficiency and effectiveness points of view. While the efficiency concerns the time required to classify structure 

of chemical bonds, the effectiveness is related to the number of matched sequential patterns. Based on these criteria, a 

Probabilistic Deterministic Classifier and Sequential Pattern Mining (PDC-SPM) is proposed and experimentally evaluated in 

this paper. The PDC-SPM evaluates the structural patterns of chemical bonding in chemical information data sets. Naive Bayes 

Probabilistic Deterministic Classifier identifies the structures of chemical bond with training samples. Probabilistic 

Deterministic Classifier provides probability of membership in each class of chemical bonds for identifying the new bonds. 

With the identified structures of new bonds, Sequential Pattern Mining is applied to evaluate structural patterns of chemical 

bonding.  Based on these criteria a Sequential Pattern Chemical Structure Bond Mining (SPCSBM) algorithm is proposed and 

experimentally evaluated in this paper. The efficiency and effectiveness of the SPCSBM algorithm are evaluated through an 

empirical study. Extensive experiments are carried out and the performance of PDC-SPM is evaluated and compared against 

existing state-of-art techniques.   The results show that the technique not only improves matched sequential pattern rate but also 

reduces the chemical bond classification time.   

Keywords:- Chemical bonding, Sequential pattern mining, Structural patterns Probabilistic Deterministic Classifier, 

Membership 

 

I. INTRODUCTION 

Chemical bonding is the interactions that account for 

the association of atoms into molecules, ions, crystals, and 

other stable species that make up the familiar substances in 

chemical information. Recently novel method enriching 

chemical bond classification and patterns mined have been 

evolved.   

 

Probabilistic Sequence Translation Alignment Model 

(PSTAM) [1] for time series classification using probabilistic 

model in order to efficiently capture the class specific 

patterns. Despite improvements observed in classification 

accuracy, the time at which the classification was performed 

remained unaddressed. A cluster based feature selection 

algorithm (FAST) [2] concerning time required to classify was 

presented using Minimum Spanning clustering tree method.  

A survey on frequent sub-graph mining algorithms was 

presented in [3]. 

 

Many researchers have published their study of 

eventually mining the patterns from different applications. In 

[4], a methodology for interactive mining using interactive 

visualization technique was presented to support ad hoc visual 

exploration of patterns mined for health record data. 

Probabilistic models were applied in [5] to study the hydrogen 

bond stability resulting in early prediction of H-bond stability 

with the aid of tree construction.  

 

For several decades, the major sources for clinical 

drug discovery lie in the study of Natural products (NPs). 

Proper mining through natural products results in 

identification of potential compounds. In [6], multiple 

compound mining approaches were applied to identify 

potential pyrromalide compounds during fermentation. In [7], 

RNA secondary structure prediction with the aid of soft 

computing was presented using metaheuristics.  

 

With the problem of sequential pattern mining 

proposed by different authors due to its wide variety of 

applications, several methods were presented to improve the 

patterns to be mined.  A new sequential pattern mining 

algorithm called, Node Linkage Depth First Traversal 
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algorithm [8] was presented to improve the rate of scalability. 

In [9], patterns in bio chemical reaction were mined using a 

tool chain that identified reoccurring patterns improving the 

rate of retrieval. However, the selection bias issue that 

patterns were selected from large number of candidates in 

database remained unaddressed. To solve this issue, in [10], a 

framework called selective inference was presented for 

finding scientifically significant patterns from database.  

 

Based on the aforementioned techniques and 

methods, in this paper, a Probabilistic Deterministic Classifier 

and Sequential Pattern Mining technique is presented. The 

paper is organized as follows: In section 2 some related 

classification and pattern mining methods are briefly 

reviewed. After formally stating the problem, our main 

approach is described in Section 3 with the detailed learning 

and inference algorithms. In Section 4 experimental settings 

are presented with which an extensive set of evaluations is 

conduction in Section 5. Section 6 provides conclusion.  

 

II. RELATED WORKS  

 

In most existing pattern mining methods, the consistent aspect of 

the interaction network such as neighbour counting, network 

analysis, graph pattern mining were concerned. However, 

application of gap constraints given with the sequential pattern 

mining remained unaddressed. In [11], to overcome the 

inconsistency problem, a tree graph was constructed with the 

aim of obtaining most accurate prediction with the highest 

accuracy rate. In [12], a concise border like presentation was 

presented using itemset based distinguishing sequential 

patterns to improve the efficiency.  

 

With the discovered knowledge using frequent sub-

sequences, sequential-pattern mining was used to discover the 

subsequences from sequence database. Many research 

scholars have only handled the static database to identify the 

desired sequential patterns. In [13], prelarge concept was 

adopted for efficient handling of discovered sequential 

patterns with sequence deletion aiming at reducing the 

execution time. A new domain of patterns called asubtrees 

was introduced in [14] with the aid of itemset closure and 

structural closure resulting in the good compromise between 

non-redundancy of solutions and execution time.  

 

Sequential pattern mining being computationally 

challenging, several researchers have applied several methods 

to reduce the complexity involved in the task of mining closed 

sequential patterns. In [15], a novel algorithm for mining 

closed frequent sequences of itemsets combining new data 

representation of the dataset, based on sparse id-lists and 

vertical id-lists was presented to reduce the pruning time and 

improve the search space. However, temporal relationships 

remained unaddressed. To solve this issue, in [16], to mine 

sequential patterns of diabetes a method that identified 

temporal patterns. Another method based on temporal patterns 

was presented in [17] using first order Markov behaviour to 

demonstrate the feasibility and effectiveness of the approach.  

 

One of the new frontiers in the field of 

communication engineering and networking is molecular 

nanonetworks based on the paradigm called Molecular 

Communication. In [18], a probability distribution model 

using Power Spectral Density (PSD) was applied to reduce the 

inference rate. In [19], hybridization of data mining and 

natural language processing was designed to improve the gene 

interaction detection rate.  

 

III. METHODOLOGY 

 

Chemical bonding is the interactions that account for 

the association of atoms into molecules, ions, crystals, and 

other stable species that make up the familiar substances in 

chemical information. Let us represent the compounds for 

chemical bonding be in a form of graph ‘ ’, where 

‘ ’ corresponds to the vertices with atom element type 

whereas the edges ‘ ’ with the bond type are in undirected as 

there exists no directional associative with chemical bonds.  

Figure 1 shows the framework of the proposed Probabilistic 

Deterministic Classifier and Sequential Pattern Mining (PDC-

SPM).  

 
Figure 1 Framework of the proposed Probabilistic 

Deterministic Classifier and Sequential Pattern Mining 

http://www.ijcstjournal.org/


International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 5, Sep - Oct 2016 

ISSN: 2347-8578                          www.ijcstjournal.org                                                  Page 225 

Chemical compounds are well-defined structures that 

are easily compressed by a graph representation. Improper 

classification of chemical compounds, along with irrelevant 

patterns, severely affects the number of matched sequential 

patterns [1] [2]. Thus, a classifier method selection should be 

able to identify the structure of chemical bonds in a significant 

manner and evaluate more relevant structural patterns as 

possible.  

 

Keeping these in mind, we develop a novel technique 

which can efficiently and effectively deal with both proper 

classification and evaluate relevant structural patterns and 

obtain a good sequence patterns for identified chemical bonds. 

We achieve this through a new Probabilistic Deterministic 

Classifier and Sequential Pattern Mining technique as shown 

in figure 1 with two connected components that used 

Probabilistic Deterministic Classifier and Sequential Pattern 

Mining model. The elaborate description is presented in the 

following section.  

 

A. Probabilistic Deterministic Classifier 

Initially, structures of chemical bond are identified 

with training samples using Probabilistic Deterministic 

Classifier with the aid of Naive Bayes model. Let us assume 

that that the chemical properties of each atom in a bond be 

defined by a probability. Therefore the whole bond in the 

proposed technique is defined by set of two probabilities and 

is as expressed below. 

 

   (1) 

 

Let us further consider that the total valence electrons 

are disseminated between two atoms, then, the probability 

function is expressed as given below. 

 

     (2) 

 

From (2), ‘ ’ corresponds to the number of valence 

occupancies whereas ‘ ’ corresponds to the valence 

electrons and is as expressed below. 

 

 (3) 

 

The equation given in (2) defines normalized 

probability set. The proposed technique uses Naive Bayes 

Probabilistic Deterministic Classifier to identify the solution 

for measuring the closeness of these two probabilities ‘ ’ 

and ‘ ’ to each other. In the case of normalized 

probability set, pure covalent bond occurs whereas the ionic 

nature of the bond becomes more due to the increase in 

between the two probabilities ‘ ’ and ‘ ’ 

respectively.  

 

The Naive Bayes Probabilistic Deterministic 

Classifier in the proposed technique introduced a hypothesis 

value of ‘ ’ for testing. With the introduced hypothesis, the 

Probabilistic Deterministic Classifiers provides probability of 

membership in each class of chemical bonds for identifying 

the new bonds that are more proven to be more useful than 

performed with classification rules using Person’s cumulative 

test..  

 

  (4) 

 

From (4), the Pearson’s cumulative test ‘ ’ for 

identification of structures of chemical bond is obtained by the 

ratio of square of difference between the observations ‘ ’ of 

type ‘ ’ and expected frequency ‘ ’ of type ‘ ’ to the 

expected frequency ‘ ’ respectively. The Naive Bayes 

Probabilistic Deterministic Classifier uses training samples to 

identify the structure of chemical bonds. Figure 2 shows the 

example structure of chemical bonding. 

 
Figure 2 Example structure of chemical bonding 

(a sample graph) 

 

From the figure, the dependencies between the nodes 

(i.e. atoms or ions) are measured from which the learnt 

structure of chemical bonds is then mined using sequential 

pattern mining that helps in the identification of highly 

discriminative patterns for in chemical information datasets. 
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The main assumption underlying the Naive Bayes 

Probabilistic Deterministic Classifier is that every attribute (in 

our case, atoms, molecules, ion, crystals) ‘ ’, is 

conditionally independent from the rest of the attributes, given 

the state of the class variable (in our case, the chemical bonds), 

‘ ’. Therefore, Naive Bayes Probabilistic Deterministic 

Classifier for identification of structure of chemical bond with 

a finite set ‘ ’ is formulated 

as given below. 

 

 
    

 (5) 

From (5), ‘ ’ corresponds to the attributes 

whereas ‘ ’ represents the class variables with a constant 

factor ‘ ’. Thus the Naive Bayes Probabilistic Deterministic 

Classifier with Pearson’s cumulative test obtains the closeness 

of two atomic probabilities ‘ ’ and ‘ ’ to the 

assigned hypothesis value of ‘ ’. Therefore, the Naive 

Bayes Probabilistic Deterministic Classifier provides efficient 

means for probability of membership in each class of 

chemical bonds. Figure 3 shows the Naive Bayes Probabilistic 

Deterministic Classifier algorithm.  

 

Input: Training samples Dataset ‘ ’,  

Output: Efficient identification of structure chemical bonds  

1: Begin 

2:         For each training samples ‘ ’ 

3:                     Measure the probability function using (2) 

4:                     Identify structure of chemical bonds using (4) 

5:                     Evaluate Probabilistic Deterministic Classifier 

using (5) 

6:        End for 

7: End  

Figure 3 Naive Bayes Probabilistic Deterministic Classifier 

algorithm 

 

As shown in the figure, the Naive Bayes Probabilistic 

Deterministic Classifier algorithm identifies the structure of 

chemical bond whose vertices and edges have been labeled 

with several descriptors, such as atom and bond types. To 

identify the structure of chemical bond, the probability 

function is measured with which the Pearson’s cumulative test 

is performed to, such that the overall probability is maximized 

with respect to all possible alignments. Structure of chemical 

bonds is then measured using probabilistic function to perform 

efficient identification of structure chemical bonds. 

 

B. Sequential Pattern Mining  

 

From the identified structured chemical bond, 

Sequential Pattern Mining (SPMP is presented that evaluates 

the structural patterns of chemical bonding in chemical 

information data sets. These structured chemical bonds are 

then used to augment a maximum chemical bond function that 

calculates the maximum pair-wise chemical bond similarity 

between molecules. With this, different sequence patterns are 

identified and mined for the identified chemical bonds. Figure 

4 shows the block diagram of Sequential Pattern Mining-

based Chemical Structure Bond. 

 
Figure 4 Block diagram of Sequential Pattern 

Mining-based Chemical Structure Bond 

 

As shown in the figure, the Block diagram of 

Sequential Pattern Mining-based Chemical Structure Bond 

identifies the frequently occurring structured chemical bond 

groups represented as graphs, and measures the graph 

similarity measure based on the chemical bonding. We then 

build a Sequential Pattern Mining model to evaluate the 

structural patterns of chemical bonding. 

 

With the significant application of SPM in the 

proposed technique, different sequence patterns provided for 

identified chemical bonds are obtained. Let us consider two 

graphs ‘ ’ with vertices ‘ ’ and edges ‘ ’ 

respectively. The similarity bond equation that computes the 

bond information of two vertices (atoms) is represented as 

given below.  

 

(6) 
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The ‘ ’ function, calculates the similarity 

between two vertices using their maximum chemical bond, is 

as given below. 

 

 (7) 

 

The functions ‘ ’ and ‘ ’ measures the similarity 

between the atoms present in vertices and bonds in edges 

respectively. The resultant ‘ ’ of similarity of two 

chemical bonding graphs ‘ ’ and ‘ ’ is obtained as given 

below where the maximum chemical bonds between the 

vertices ‘ ’ and ‘ ’ are used  

 

        (8) 

 

From (6), ‘ ’ denotes the vertices in graph ‘ ’ and 

‘ ’ denotes the vertices in smaller chemical bonding graph 

‘ ’ respectively. Figure 5 shows the Sequential Pattern 

Chemical Structure Bond Mining algorithm. 

 

Input: Training samples Dataset ‘ ’, Vertices (represents 

the atoms) ‘ ’, ‘ ’, edges ‘ ’ bonding graphs ‘ ’ 

and ‘ ’,  

Output: efficient structural pattern mining  

1: Begin 

2:          For two vertices ‘ ’ and ‘ ’ 

3:                  Measure bond information of two vertices 

using (6) 

4:                 Measure similarity of two chemical bonding 

graphs using (7) 

5:                 Measure similarity between two vertices using 

their maximum chemical bond (8) 

6:            End for 

7: End  

Figure 5 Sequential Pattern Chemical Structure Bond 

Mining algorithm 

 

As shown in the figure, the Sequential Pattern 

Chemical Structure Bond Mining (SPCSBM) algorithm 

consists of three steps (i) measuring bond through vertices (ii) 

constructing chemical bonding graphs and (iii) measuring 

similarity between vertices using maximum chemical bond. 

For a training sample Dataset ‘ ’, with 

‘ ’ atoms and ‘ ’ 

bonds, the first step measures the bond information for two 

vertices. In the second step, similarity of two chemical 

bonding graphs between the vertices and edges is measured. 

After constructing the chemical bonding graphs, in the third 

step, similarity between vertices are measured with the aid of 

maximum chemical bond. This in turn improves the number 

of matched sequential patterns against the state-of-art 

techniques.  

 

IV. EXPERIMENTAL SETUP  

 

The experimental work is carried out in JAVA 

language for evaluating the matching sequences pattern in 

chemical bonding. The performance of proposed technique is 

evaluated with parameters such as density of chemical bonds, 

size of chemical bond structural, classification accuracy, and 

number of matched sequential patterns against existing state-

of-art techniques.  The experimental data used for the analysis 

of proposed and existing techniques are extracted from 

Molecular Description Data Sets (Octane Isomers (O8), 

PolyAromatic Hydrocarbons (PAH), and 

PolyChloroBiphenyls (PCB)). The data set description is 

provided in Table 1. 

 

Table 1 Molecular Description Data Set (Octane isomers) 

S. 

No 

Properties Description 

1 BP Boiling Point 

2 MP Melting point 

3 CT Heat capacity at T constant 

4 CP Heat capacity at P constant 

5 S Entropy 

6 DENS Density 

7 HVAPP Enthalpy of vaporization 

8 DHVAP Standard enthalpy of vaporization 

9 HFORM Enthalpy of formation 

10 DHFORM Standard enthalpy of formation 

11 MON Motor Octane Number 

12 MR Molar Refraction 

13 AcenFac Accentric Factor 

14 TSA Total Surface Area 

15 LogP Octanol Water Coefficient 

16 MV Molar Volume 
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V. DISCUSSION  

 

In this section we present the experiment results in 

terms of chemical bond density, chemical bond size, chemical 

bond classification time, chemical bond classification 

accuracy and number of matched sequential patterns. For the 

purpose of exploring the statistical significance of the results, 

we statistically compared two techniques, Probabilistic 

Sequence Translation Alignment Model (PSTAM) [1] and 

Fast Clustering based Feature Selection algorithm (FAST) [2].  

 

A. Chemical bond classification time  

Chemical bond classification time is measured using 

the number of chemical bonds (i.e. density) and the 

classification time to identify new bonds. The mathematical 

formulation for Chemical bond classification time is given as 

below. 

               (9) 

From (9), the classification time ‘ ’ is measured 

using the number of chemical bonds or density of chemical 

bonds ‘ ’ and the time taken to perform the classification 

using probabilistic classifier and measured in terms of 

milliseconds. To measure the classification time, with 

chemical bond density of 15, chemical bond classification 

time using PDF-SPM was observed to be 5.25ms, 6.15ms 

using PSTAM and 6.6ms using FAST. The results are 

presented in table 2.  

 

Table 2 Chemical bond classification time 

Chemical 

bond density 

Chemical bond classification time (ms) 

PDC-SPM  PSTAM FAST 

15 5.29 6.17 6.63 

30 8.34 10.14 11.24 

45 13.14 15.34 16.44 

60 18.19 20.43 21.53 

75 23.14 25.13 26.23 

90 28.24 30.34 31.44 

105 32.14 34.64 35.64 

 

To assess the performance of PDC-SPM technique and 

compare it to other techniques, namely, PSTAM [1] and 

FAST [2] all three techniques were implemented using JAVA 

with Weka tool and tabulation are shown in table 2. 

 

 
Figure 6 Measure of Chemical bond classification 

time 

 

To estimate the chemical bond classification time, 

the density of chemical bonds are combined and the product 

of the density of chemical bonds is performed based on the 

samples taken from 18 Octane isomers. To measure chemical 

bond classification time, the melting point, boiling point, heat 

capacity at T constant and heat capacity at P constant were 

considered. Figure 6 illustrates the impact of changes in the 

chemical bond classification time on different sample periods 

(i.e. with different chemical bonds). As illustrated in Figure 6 

the chemical bond classification time for chemical dataset c9 

using different sample periods.  

 

The chemical bond classification time is reduced 

using PDS-SPM technique by 13% compared to PSTAM [1] 

that helps in better classification of chemical bonds using the 

Probabilistic Deterministic Classifier. Moreover, by applying 

Probabilistic Deterministic Classifier in PDS-SPM technique 

applies Pearson’s cumulative test that extracts the results 

based on the closeness of two atomic probabilities and 

therefore reduces the chemical bond classification time by 

20% compared to FAST [2].  

 

B. Classification accuracy 

 

The classification accuracy is the measure to 

determine the rate of probability of the structures of chemical 

bonds being classified. The classification accuracy is 

mathematically formulated as given below. 

 

 (10)

  

From (10), the classification accuracy ‘ ’ is 

measured with chemical bonds properly classified to the total 

chemical bonds ‘ ’ used in the experimentation. It is 

measured in terms of percentage and higher the classification 

accuracy more efficient the method is said to be. Out of 30 

chemical bond density, the chemical bond properly classified 
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using PDC-SPM was 27, 24 using PSTAM and 21 using 

FAST. Table 3 provides the chemical bond classification 

accuracy values obtained from (10).  

 

Table 3 Chemical bond classification accuracy 

Chemical 

bond density 

Chemical bond classification accuracy 

(%) 

PDC-SPM  PSTAM FAST 

15 85.23 77.32 68.23 

30 91.35 82.14 72.28 

45 93.47 84.15 75.89 

60 86.17 75.78 68.32 

75 88.24 78.32 80.14 

90 92.15 82.14 74.69 

105 94.32 83.12 75.90 

 

 

 
Figure 7 Measure of classification accuracy 

 

Figure 7 compares the chemical bond classification 

accuracy for different samples (i.e. chemical bond density) 

using PDC-SPM technique to that of PSTAM and FAST for 

the similar scenarios discussed above. In all scenarios, the 

PDC-SPM technique outperforms all two systems. As 

illustrated in the graphs, the chemical bond classification 

accuracy is not linear which states that the association of 

atoms into molecules, ions, crystals, and other stable species 

that make up the familiar substances in chemical information 

differ with different chemical bond size.  

 

It can be observed that with the chemical bond 

density from 15 – 45, the chemical bond classification 

accuracy observed using all three techniques increased 

whereas with chemical bond density in the range of 45 – 60, 

the chemical bond classification accuracy decreased using 

PDC-SPM technique in comparison to two other techniques [1] 

and [2]. This is because of the application of Naive Bayes 

Probabilistic Deterministic Classifier algorithm. Using the 

Pearson’s cumulative test in Naive Bayes Probabilistic 

Deterministic Classifier algorithm, set of two probabilities 

with total valence electrons disseminated between two atoms 

resulting in maximizing the chemical bond classification 

accuracy. As a result, the maximum chemical bond 

classification accuracy increases by 11% compared to 

PSTAM and 20% compared to FAST respectively.  

 

C. Number of matched sequential patterns 

 

The number of matched sequential patterns ‘ ’ 

measures the effectiveness of the technique. It is the 

difference between the total sequential patterns generated 

‘ ’ and incorrect sequential patterns ‘ ’ and is 

expressed as given below. 

  (11) 

From (11), higher the number of matched sequential 

patterns, more efficient the technique is said to be. The 

chemical bond size is measured in terms of picometre ‘pm’. 

Table 4 shows the results of matched sequential patterns 

obtained using the three techniques, namely, PDC-SPM, 

PSTAM and FAST respectively.  

 

Table 4 Number of matched sequential patterns 

 

Chemical 

bond size 

(pm) 

Number of matched sequential patterns 

PDC-SPM  PSTAM FAST 

25 14 12 9 

50 22 19 16 

75 35 31 28 

100 51 48 41 

125 65 60 55 

150 78 71 67 

175 91 85 80 

 

 
Figure 8 Measure of number of matched sequential 

patterns 
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Figure 8 shows the behaviour of the number of 

matched sequential patterns in response to total sequential 

patterns generated by varying the chemical bond size.  The 

average number of matched sequential patterns of the three 

methods was observed to be increasing with the increasing 

chemical bond size in the range of 25pm and 175 pm. Despite 

equivalency, the number of matched sequential patterns was 

observed to be greater using the PDC-SPM technique when 

compared to PSTAM [1] and FAST [2] respectively. This is 

because of applying Sequential Pattern Chemical Structure 

Bond Mining (SPCSBM) algorithm that initially measures the 

bond, then constructs the equivalent graphs and through which 

similarity between vertices based on maximal chemical bond. 

This in turn improves the matching rate using PDC-SPM by 

10% compared to PSTAM. Besides, using maximum chemical 

bond function, maximum pair-wise chemical bond similarity 

between molecules are significantly calculated with the aid of 

SPCSBM algorithm form an improvement in the number of 

matched sequential patterns by 21% compared to FAST.  

 

VII. CONCLUSION  

 

In this work, an effective technique called 

Probabilistic Deterministic Classifier and Sequential Pattern 

Mining (PDC-SPM) is presented. The technique improves the 

number of matched sequential patterns that in turn reduces the 

chemical bond classification time based on the chemical bond 

size and density. The goal of PDC-SPM is to improve the 

chemical bond classification accuracy with the identified 

structure of chemical bonds as belonging to a specific class 

and therefore to evaluate the structural patterns of chemical 

bonding which significantly contribute to the relevance. To do 

this, we first designed a Probabilistic Deterministic Classifier 

model that measures the probability of membership in each 

class of chemical bonds based on the probability function. 

Then, based on this measure, a Sequential Pattern Chemical 

Structure Bond Mining (SPCSBM) algorithm is designed for 

identifying different sequential patterns in an extensive 

manner. Extensive experiments were carried out and 

compared with the state-of-the art methods. The results show 

that PDC-SPM technique offers better performance with an 

improvement of chemical bond classification accuracy by 

15% and reduces the time taken for chemical bond 

classification by 16% compared to PSTAM and FAST 

respectively. 
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