
International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 6, Nov - Dec 2016 

 ISSN: 2347-8578                                       www.ijcstjournal.org                                                           Page 137 

  

 

Review on Parallel Approach for Lossless File Compression on 

CPU using OpenMP 
Malhar Ujawane [1], Ashutosh Barve [2] 

Department of Computer Technology 

Yeshwantrao Chavan College of Engineering 

Nagpur – India 

ABSTRACT  
High performance computing (HPC) has proved to be a colossal computation resource for data intensive applications that 

require parallel processing for expeditious data analysis. In this paper, we analyze a parallel programming model using OpenMP 

for file compression. The intent of the paper is to explore literature on the subject and to provide a high level view of the 

features presented in the programming model, thus assisting lossless file compression. 

Keywords :— OpenMP, LZW, Lossless Compression, HPC 

 

I. INTRODUCTION 

Nowadays, research done for parallelizing lossless file 

compression algorithms has become dormant. Even though 

there are advancements made in other fields using parallel 

computing, file compression due to its dominant serial nature 

has experienced a slowdown.  An approach to solve this 

problem is discussed in this paper, where a serial lossless file 

compression algorithm can be implemented in a 

multiprocessing environment on the CPU using OpenMP.  

We often happen to meet problems requiring heavy 

computations or data-intensive processing. The increasing 

volume of data generated by entities unquestionably, require 

high performance parallel processing models for robust and 

speedy data analysis. With problem size and complexity 

increasing, the need for parallel computing has resulted in a 

number of programming models proposed for high 

performance computing. Several parallel and distributed 

programming models and frameworks have been developed to 

efficiently handle such problems [1]. 

As the high performance computing techniques have 

increasingly become a necessity in mainstream computing, a 

number of researchers have done work on documenting 

various features in parallel computing models [1]. Although 

there are many parallel programming models such as 

OpenMP, CUDA, MapReduce and MPI, etc. Exist, OpenMP 

and CUDA are amongst the most popular ones as they utilize 

multi-threading and are also relatively easy to integrate into 

existing applications [1]. 

In this paper, we will discuss the OpenMP approach 

to lossless file compression on CPU. This approach is based 

on LZW algorithm for file compression. 

 

II. DATA COMPRESSION 

Data Compression is a technique of representing information 

in a compact form. The creation of these compact 

representations is by identifying and using structures that exist 

in data. Data can be characters in a text file, numbers that are 

samples of speech or images. Data compression attempts to 

identify redundancy and use it effectively for compression. 

Data compression consists of two algorithms. First is 

compression algorithm that takes input X and generates a 

representation Xc  (compressed data) that requires fewer bits, 

and  Second is a reconstruction algorithm that operates on 

compressed representation Xc to generate reconstruction Y 

(reconstructed data). Based on requirements of reconstruction, 

data compression schemes can be divided into two broad 

categories: 

A. Lossless Compression Schemes 

In this scheme, Y (reconstructed information) is exactly 

same as X (original information). Lossless compression is 

generally used for applications that cannot tolerate any 

difference between the original and reconstructed data. Text 

compression is an important example of lossless compression. 

B. Lossy Compression Schemes 

In this scheme, Y (reconstructed information) is not 

exactly as X (original information), but it is almost same as X. 

It involves some loss of  irrelevant information. Data that have 

been compressed using lossy techniques generally obtain 

much higher compression ratios than it is possible with 

lossless compression. Speech, Video and Image compression 

are the important examples of lossy compression. 

RESEARCH ARTICLE                                     OPEN ACCESS 

http://www.ijcstjournal.org/


International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 6, Nov - Dec 2016 

 ISSN: 2347-8578                                       www.ijcstjournal.org                                                           Page 138 

  

Examples are shown in the figures below. For this 

research, we will be focusing only on the lossless data 

compression algorithms. 

 

Fig 1. High Compression (Low Quality) JPEG [2] 

 

Fig 2. Low Compression (High Quality) JPEG [2] 

C. LZW Algorithm 

While many lossless compression algorithms are 

available that are essentially derived from the Lempel Ziv 

family of algorithms, namely LZ77, LZ78, LZSS, LZMA 

LZW etc. this paper focuses on the LZW algorithm. 

Lempel–Ziv–Welch (LZW) is a universal lossless 

data compression algorithm created by Abraham Lempel, 

Jacob Ziv, and Terry Welch. It was published by Welch in 

1984 as an improved implementation of the LZ78 algorithm 

published by Lempel and Ziv in 1978. The algorithm is simple 

to implement, and has the potential for very high throughput 

in hardware implementations. It is the algorithm of the widely 

used UNIX file compression utility compress, and is used in 

the GIF image format [3]. 

The scenario described by Welch's 1984 paper 

encodes sequences of 8-bit data as fixed-length 12-bit codes. 

The codes from 0 to 255 represent 1-character sequences 

consisting of the corresponding 8-bit character, and the codes 

256 through 4095 are created in a dictionary for sequences 

encountered in the data as it is encoded. At each stage in 

compression, input bytes are gathered into a sequence until the 

next character would make a sequence for which there is no 

code yet in the dictionary. The code for the sequence (without 

that character) is added to the output, and a new code (for the 

sequence with that character) is added to the dictionary [3]. 

Fig 3. below shows how LZW works[4]. 

 

Fig 3. A flow chart of LZW compression [4] 

Some reasons behind choosing LZW algorithm include: 

 LZW creates a dictionary of common phrases in 

the data [5]. 

 LZW doesn’t require to  pass the string table to 

decompression code. Hence, table can be re-

created as it was during compression using input 

stream as data [3]. 

 LZW can have a pointer to an infinite string but 

algorithms such as LZSS can only contain string 

pointer up to 32 bits [5]. 

D. OpenMP 

Ref [1] highlights how we can effectively use multi-

processing to accelerate common applications and increase 

efficiency. OpenMP is a highlighted topic because of its ease 

of use for CPU parallelization and ability to integrate within 

applications. Hence, for our research we focus on using 

OpenMP for file compression. 

http://www.ijcstjournal.org/


International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 6, Nov - Dec 2016 

 ISSN: 2347-8578                                       www.ijcstjournal.org                                                           Page 139 

  

OpenMP also known as Open Multi-Processor is a 

shared-memory multiprocessing Application Program 

Inference (API) for easy development of shared memory 

parallel programs. It provides a set of compiler directives to 

create threads, synchronize the operations, and manage the 

shared memory on top of pthreads. The programs using 

OpenMP are compiled into multithreaded programs, in which 

threads share the same memory address space and hence the 

communications between threads can be very efficient. Its 

runtime maintains the thread pool and provides a set of 

libraries. It uses a block-structured approach to switch 

between sequential and parallel sections, which follow the 

fork/join model. At the entry of a parallel block, a single 

thread of control is split into some number of threads, and a 

new sequential thread is started when all the split threads have 

finished. Its directives allow the fine-grained control over the 

threads [1]. 

It is supported on various platforms like UNIX, 

LINUX, and Windows and various languages like C, C++, 

and FORTRAN [1]. Some of the advantages of OpenMP are: 

 

 OpenMP is much easier to use because the compiler 

takes care of transforming the sequential code into 

parallel code according to the directives [1]. 

 The programmer can write multithreaded programs 

without serious understanding of multithreading 

mechanism [1]. 

III. PARALLEL LZW IMPLEMENTATION 

The parallel implementation of the LZW algorithms 

uses the ability of multi-core CPUs to perform computations 

on each core separately. Since OpenMP allows us to execute 

specific parts of the program in parallel on the CPU, we use 

each core to process different bits of information. Steps for 

implementation:  

 Determine the number of processors available (n) using 

OpenMP. 

 Determine the size of the input file (s). 

 Divide input file into (s/n) parts such that their size 

remains same. 

 Perform encoding of bits separately (i.e compression) on 

each processor with OpenMP. 

 The compressed intermediate output will be combined 

into an output file  

This implementation can be explained with the 

following example. Consider a file size of 100 MB and an 

LZW algorithm with a compression rate of 5MB/sec and a 

quad-core CPU. In this scenario, the variables will have the 

following values: 

Number of Processors, n = 4 

Size of Input File, s = 100MB 

Now the algorithm will divide the input file into four 

blocks each of size (s/n) = 25MB. Once the algorithm starts 

compressing the blocks at the rate of 5MB/sec, the blocks will 

be compressed in 5 seconds. As compared to a serial approach 

where the compression would require 20 seconds, this parallel 

implementation gives 4x boost to the serial LZW algorithm. 

 

Fig 4. High-Level Overview Of This Approach 

IV. CONCLUSION 

After comparing with the serial implementation with 

the parallel OpenMP, compression time reduced significantly 

in a parallel computing environment about 4x-10x. Since the 

LZW algorithm is lossless in nature, it holds a tremendous 

potential for future work and integrations in other software. 

The future work could be aimed at extending this 

approach to a GPGPU computing environment using CUDA.  

REFERENCES 

[1] Zahid Ansari, Asif Afzal, Moomin Muhiuddeen, 

Sudarshan Nayak, Literature Survey for the 

Comparative Study of Various High Performance 

Computing Techniques. 

[2]    “Lossy Compression”, Wikipedia webpage [Online] 

https://en.wikipedia.org/wiki/Lossy_compression 

[3]  “Lempel Zev Welch Algorithm”, Wikipedia webpage 

[Online] https://en.wikipedia.org/wiki/Lempel-Ziv-Welch 

[4]    Steven W. Smith, “Chapter 27: Data Compression”, The 

Scientist and Engineer's Guide to Digital Signal 

Processing 

[5]    Yair Wiseman., The Relative Efficiency Of Data 

Compression, LZW and LZSS 

 

http://www.ijcstjournal.org/

