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ABSTRACT 
 In the domain of mathematics and computer science, graph theory is the study of graphs that concerns with the relationship 

among edges and vertices. It is a popular subject having its applications in computer science, information technology, 

biosciences, mathematics, and linguistics to name a few. Graph classification is an important data mining task for which many 

methods are already implemented. Yet in this paper graph based features extracted and various relevant features are selected 

using feature selection algorithms. 

Keywords:- Graph, path, circuit, clustering, eccentricity, eigen value, trace, cello graph, protein graph. 
 

 
 

I. INTRODUCTION 

  What is a Graph? 

Graph: A graph is a pair of sets (V, E), where V is the set of 

vertices and E is the set of edges, connecting the pairs of 

vertices. Take a look at the following graph: 
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Fig. 1 

 

Vertices: Vertices are also known as nodes, points and (in 

social networks) as actors, agents or players.   

 

Edges: Edges are also known as lines and (in social 

networks) as ties or links. An edge e = (u,v) is defined by the 

unordered pair of vertices that serve as its end points.  

 

As an example, the graph depicted in Figure 1 has vertex 

set V={a,b,c,d,e.f} and edge set E = 

{(a,b),(b,c),(c,d),(c,e),(d,e),(e,f)}. 

 

Adjacency: Two vertices u and v are adjacent if there exists 

an edge (u,v) that connects them.  

 

Incidence: An edge (u,v) is said to be incident upon nodes u 

and v.  

   

Loop:  A loop is a special type of edge that connects a vertex 

to itself.  An edge that links a vertex to itself is known as a 

self-loop or reflexive tie.   

 

 

 

 

Fig. 2 

Degree of a vertex:  The degree of a vertex is the number of 

edges meeting at that vertex.  It is possible for a vertex to 

have a degree of zero or larger. 

 

Degree 0 Degree 1 Degree 2 Degree 3 Degree 4 

 

 

  

 

 

 

 

 

 

Path:  A path is a sequence of vertices using the edges.  

Usually we are interested in a path between two vertices.  For 

example, a path from vertex A to vertex M is shown below.  It 

is one of many possible paths in this graph.  

 

 

 

 

 

 

       Fig. 3 

 

Circuit.  A circuit is a path that begins and ends at the same 

vertex.  A circuit starting and ending at vertex A is shown 

below. 

 

 

 

 

 

 

       Fig. 4 

 

Adjacency matrix:  Every graph has associated with it an 

adjacency matrix, which is a binary nn matrix A in which aij 

= 1 and aji = 1 if vertex vi is adjacent to vertex vj, and aij = 0 

and aji = 0 otherwise. The natural graphical representation of 

an adjacency matrix is a table, such as shown in Figure 2.  

 
a b c d e f 

a 0 1 0 0 0 0 
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b 1 0 1 0 0 0 

c 0 1 0 1 1 0 

d 0 0 1 0 1 0 

e 0 0 1 1 0 1 

f 0 0 0 0 1 0 

Fig. 5. Adjacency matrix for graph in Figure 1. 

  

Subgraphs: A subgraph of a graph G is a graph whose 

points and lines are contained in G. A complete subgraph of 

G is a section of G that is complete (i.e., has density = 1). 

 

Cliques: A clique is a maximal complete subgraph. A 

maximal complete subgraph is a subgraph of G that is 

complete and is maximal in the sense that no other node of G 

could be added to the subgraph without losing the 

completeness property. In Figure 1, the nodes {c,d,e} 

together with the lines connecting them form a clique. 

Cliques have been seen as a way to represent what social 

scientists have called primary groups. 
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Fig. 6.  

 

Component. A component of a graph is defined as a 

maximal subgraph in which a path exists from every node to 

every other (i.e., they are mutually reachable). The size of a 

component is defined as the number of nodes it contains. A 

connected graph has only one component. 

 

Walk: A sequence of adjacent vertices v0,v1,…,vn is 

known as a walk. In Figure 6, the sequence a,b,c,b,c,g is a 

walk. A walk can also be seen as a sequence of incident 

edges, where two edges are said to be incident if they share 

exactly one vertex.  

 

Closed:  A walk is closed if vo = vn. 

 

Path: A walk in which no vertex occurs more than once is 

known as a path. In Figure 6, the sequence a,b,c,d,e,f is a 

path. 

 

Trail: A walk in which no edge occurs more than once is 

known as a trail. In Figure 6, the sequence a,b,c,e,d,c,g is a 

trail but not a path. Every path is a trail, and every trail is a 

walk.  

 

Cycle: A cycle can be defined as a closed path in which n 

>= 3. The sequence c,e,d in Figure 6 is a cycle.  

 

Tree: A tree is a connected graph that contains no cycles. 

In a tree, every pair of points is connected by a unique path. 

That is, there is only one way to get from A to B. 

 

Length: The length of a walk (and therefore a path or trail) 

is defined as the number of edges it contains. For example, in 

Figure 6, the path a,b,c,d,e has length 4.  

 

Geodesic. A walk between two vertices whose length is as 

short as any other walk connecting the same pair of vertices is 

called a geodesic. Of course, all geodesics are paths. 

Geodesics are not necessarily unique. From vertex a to vertex 

f in Figure 6, there are two geodesics: a,b,c,d,e,f and 

a,b,c,g,e,f.  

 

Distance. The graph-theoretic distance (usually shortened 

to just “distance”) between two vertices is defined as the 

length of a geodesic that connects them. If we compute the 

distance between every pair of vertices, we can construct a 

distance matrix D such as depicted in Figure 7. The 

maximum distance in a graph defines the graph’s diameter. 

As shown in Figure 7, the diameter of the graph in Figure 1 is 

4.  If the graph is not connected, then there exist pairs of 

vertices that are not mutually reachable so that the distance 

between them is not defined and the diameter of such a graph 

is also not defined. 

 

a b c d e f g

a 0 1 2 3 3 4 3

b 1 0 1 2 2 3 2

c 2 1 0 1 1 2 1

d 3 2 1 0 1 2 2

e 3 2 1 1 0 1 1

f 4 3 2 2 1 0 2

g 3 2 1 2 1 2 0  
Fig. 7. Distance matrix of graph in Fig. 6 

 

Eccentricity. The eccentricity e(v) of a point v in a 

connected graph G(V,E) is max d(u,v), for all u  V. In other 

words, a point’s eccentricity is equal to the distance from 

itself to the point farthest away.  The eccentricity of node b in 

Figure 6 is 3.  

 

Radius & Diameter. . The minimum eccentricity of all 

points in a graph is called the radius r(G) of the graph, while 

the maximum eccentricity is the diameter of the graph. In 

Figure 6, the radius is 2 and the diameter is 4.  

 

Center. A vertex that is least distant from all other vertices 

(in the sense that its eccentricity equals the radius of the 

graph) is a member of the center of the graph and is called a 

central point. Every tree has a center consisting of either one 

point or two adjacent points. 

 

Degree. The number of vertices adjacent to a given vertex 

is called the degree of the vertex and is denoted d(v). It can be 

obtained from the adjacency matrix of a graph by simply 

computing each row sum. For example, the degree of vertex c 

in Figure 6 is 4.  

http://www.ijcstjournal.org/
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Average degree. The average degree, d , of all vertices 

depicted in Figure 6 is 2.29. There is a direct relationship 

between the average degree, d , of all vertices in a graph and 

the graph’s density: 

1


n

d
density

 
 

Isolates & pendants. A vertex with degree 0 is known as 

an isolate (and constitutes a component of size 1), while a 

vertex with degree 1 is a pendant.  

 

Degree variance. Holding average degree constant, there 

is a tendency for graphs that contain some nodes of high 

degree (and therefore high variance in degree) to have shorter 

distances than graphs with lower variance, with the high 

degree nodes serving as “shortcuts” across the network.  

 

II. DIRECTED GRAPHS 
 

Definition. A digraph D(V,E) consists of a set of nodes V 

and a set of ordered pairs of nodes E called arcs or directed 

lines. The arc (u,v) points from u to v.  

 

Digraphs are usually represented visually like graphs, 

except that arrowheads are placed on lines to indicate 

direction (see Figure 5). When both arcs (u,v) and (v,u) are 

present in a digraph, they may be represented by a 

double-headed arrow (as in Figure 8a), or two separate 

arrows (as shown in Figure 8b). 
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Fig. 8(a) 
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Fig. 8(b) 

 

Directed Walk: In a digraph, a walk is a sequence of nodes 

vo,v1,…vn in which each pair of nodes vi, vi+1 is linked by an 

arc (vi,vi+1). In other words, it is a traversal of the graph in 

which the flow of movement follows the direction of the arcs, 

like a car moving from place to place via one-way streets. A 

path in a digraph is a walk in which all points are distinct.  

 

Semiwalk: A semiwalk is a sequence of nodes vo,v1,…vn 

in which each pair of nodes vi, vi+1 is linked by either the arc 

(vi,vi+1) or the arc (vi+1,vi). In other words, in a semiwalk, 

the traversal need not respect the direction of arcs, like a car 

that freely goes the wrong way on one-way streets.  By 

analogy, we can also define a semipath, semitrail, and 

semicycle.  

 

Underlying graph: Another way to think of semi-walks is 

as walks on the underlying graph, where the underlying 

graph is the graph G(V,E) that is formed from the digraph 

D(V,E’) such that (u,v)  E if and only if  (u,v)  E’ or (v,u)  

E’. Thus, the underlying graph of a digraph is basically the 

graph formed by ignoring directionality. 

 

Strongly connected: A digraph is strongly connected if 

there exists a path (not a semipath) from every point to every 

other. Note that the path from u to v need not involve the 

same intermediaries as the path from v to u.  

 

Unilaterally connected: A digraph is unilaterally 

connected if for every pair of points there is a path from one 

to the other (but not necessarily the other way around).  

 

Weakly connected: A digraph is weakly connected if 

every pair of points is mutually reachable via a semipath (i.e., 

if the underlying graph is connected).  

 

Strong component: A strong component of a digraph is a 

maximal strongly connected subgraph. In other words, it is a 

subgraph that is strongly connected and which is as large as 

possible (there is no node outside the subgraph that is 

strongly connected to all the nodes in the subgraph). A weak 

component is a maximal weakly connected subgraph.  

 

Outdegree: The number of arcs originating from a node v 

(i.e., outgoing arcs) is called the outdegree of v, denoted 

od(v).  

 

Indegree: The number of arcs pointing to a node v (i.e., 

incoming arcs) is called the indegree of v, denoted id(v). In a 

graph representing friendship feelings among a set of 

persons, outdegree can be seen as indicating gregariousness, 

while indegree corresponds to popularity. The average 

outdegree of a digraph is necessarily equal to the average 

indegree.  

 

Directed adjacency: The adjacency matrix A of a digraph 

is an n × n matrix in which aij = 1 if (vi,vj)  E and aij = 0 

otherwise. Unlike the adjacency matrix of an undirected 

graph, the adjacency matrix of a directed graph is not 

constrained to be symmetric, so that the top right half need 

not equal the bottom left half (i.e., aij <> aji). If a digraph is 

acyclic, then it is possible to order the points of D so that the 

adjacency matrix upper triangular (i.e., all positive entries are 

http://www.ijcstjournal.org/
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above the main diagonal). 

III. ATTRIBUTES FOR CLASSIFICATION 

OF GRAPHS 

Brief description of graph attributes contained in 

feature vector for classification: 

1. Average Degree: It is defined as the average value of 

degree of all nodes in the graph i.e d(G)=∑ nid(ui)/n, 

where d(ui) denotes the degree of node ui. 

 

2. Average clustering coefficient: It is actually the ratio of 

the number of actual edges between neighbors of u to 

the number of possible edges between them, 

represented as c(u)=λ(u)/τ(u), where λ(u) is the 

number of triangles of a node u and 

τ(u)=(d(u)2-d(u))/2;the number of triples a node u has. 

The clustering coefficient C(G) of a graph is the 

average clustering coefficient of nodes in the graph 

represented as C(G)= 1/n(∑ ni=1c(ui)) 

 

3. Average effective eccentricity: The eccentricity for a 

node assume for node u is defined by maximum 

distance of the shortest path from u to v denoted as 

e(u)=max{d(u,v): v Vɴ},where d(u,v) is the length of 

the shortest path from u to v .For effectiveness we 

consider the maximum length of the shortest path 

from node u. With the average of effective 

eccentricity over all nodes in the graph we get the 

effective eccentricity. 

 

4. Maximum effective eccentricity: It provides 

maximum value of eccentricity over all nodes in the 

graph. It is actually the diameter of  the graph.   

 

diam(G) =max{e(u)|u Vɴ}=max{d(u,v)|u,v Vɴ}. 

 

For maximum effective eccentricity it gives effective 

diameter 

 

5. Minimum effective eccentricity: It provides minimum 

value of eccentricity over all nodes in the graph. It is 

actually the radius of the graph, So 

rad(G)=min{e(u)|u Vɴ}=min{d(u,v)|u,v Vɴ}.Foe 

maximum effective eccentricity it gives effective 

radius. 

 

6. Average path length (Closeness centrality): the 

closeness centrality is defined by the reciprocal of the 

averaged total path length between node u and every 

other node that is reachable from node u, where u Vɴ. 

With the calculation of average of closeness centrality 

of all nodes considered as a global feature for a graph, 

i.e. close(u)=(n-1)/ ∑v Vɴ,vʻd(u,v). 

 

7. Percentage of total central point: It is computed by the 

ratio of total number of central points to the total 

number of points in the graph where each cenral point 

with respect to a node can be found where eccentricity 

of that node equal to effective radius  of the graph 

means effective_rad(G)=e(u) where u Vɴ 

 

8. Percentage of end points: If the end node is denoted as 

degree of one in graph then this type feature is 

calculated as a ratio of the number of end points to the 

total number of nodes in the entire graph. 

 

9. Number of nodes: Simply it evaluates the total number 

of nodes the entire graph. 

 

10. Number of edges: It counts the total number of edges. 

 

11. Spectral radius: It is computed by the largest 

magnitude Eigen value of the adjacency matrix of the 

graph.if|λ1|>|λ2|>….>| λn| where λ1, λ2, λ3… λn are 

distinct Eigen values of the adjacency matrix A of the 

graph, and sorted by their magnitude. if ρ(G) 

represents the magnitude then ρ(G)=| λ1| 

 

12. Percentage of isolated points: If the isolated point of 

a node is denoted as degree of one in graph then this 

type feature is calculated as a ratio of the number of 

isolated points to the total number of nodes in the 

entire graph. 

 

13. Second largest Eigenvalue: It is calculated by taking 

second largest Eigen value of the adjacency matrix A, 

i.e.,| λ2|. 

 

14. Trace: This feature is obtained by calculating the sum 

of all eigenvalue from a adjacency matrix A with 

respect to a graph, So that Tr(A)=  ∑ ni=1|λi|.It is 

helpful for a graph having so many loops. The loop 

free graph has trace that is equal to 0. 

 

15. Energy: It is evaluated by sum of all square of Eigen 

values of the adjacency matrix A with respect to a 

graph G. So that it can be expressed as E(G)= ∑ 

ni=1|λi|2 

 

16. Number of eigenvalue: If there are n Eigen values in 

an adjacency matrix A with respect to a graph G and 

among them s are distinct Eigen values. Every eigen 

values will be distinct is not always true.  

 

17. Label entropy: If in a graph G has n different labels 

then label entropy can be measured as sum of the 

product of probability of a particular label and 

logarithm of probability of that label, if graph G has n 

different labels l1…..ln, then the label entropy is 

represented as H(G)=- ∑ ni=1p( li )log(li). 

 

18. Neighborhood Impurity: Suppose L(u) is the label of 

a graph G and N(u) is the neighborhood of node u or 

N(u) contains the nodes which is adjacent to u, then 

degree of impurity will be zero when every node in 

neighborhood of u has same node label. So that, 

Impurity Deg(u)=|L(v):v Nɴ(u),L(u)ʻL(v)| 

http://www.ijcstjournal.org/
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19. Link Impurity: When L(u) ʻ L(v) then edge 

connecting node u and node v or edge e(u,v) is said to 

be impure, For the entire graph G the impurity can be 

measured by {|(u,v) Eɴ:L(u)ʻL(v)|}/m, where m is 

the number of total edges in graph G. 

IV. GRAPH IMAGES FOR TEST 

Images of the thirty one graphs (Protein and Cell graph) are 

given below. 

 

Cello Graph Images:  

 

        

        Cell (G1)                   Cell (G2) 

     

        Cell (G3)                   Cell (G4) 

      

        Cell (G5)                  Cell (G6) 

      

        Cell (G7)                    Cell (G8) 

           

     Cell (G9)                    Cell (G10) 

             

    Cell (G11)                    Cell (G12) 

    

    Cell (G13)    Cell (G14)    Cell (G15)  

 
Protein graph images: 

 

                  
  Protein (G1)                Protein (G2)    

     

    Protein (G3)              Protein (G4) 
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Protein (G5)   Protein (G6)   Protein (G7) 

 

    

     Protein (G8)              Protein (G9) 

        

    Protein (G10)              Protein (G11) 

        

     Protein (G12)             Protein (G13) 

    

  Protein (G14)    Protein (G15) 

 

Protein (G16) 

V. FEATURED RESULT EXTRACTION OF GRAPHS BASED ON SOME CHARACTERISTICS:

Table 1 consumes 10 features and Table 2 consumes 9 features of the above mentioned 31 graphs i.e. 15 cello graphs and 16 

protein graphs. 

 

Graph Average 

degree 

Average 

Clustering 

Coefficient 

Average 

Effective 

Eccentricit

y 

Max. 

Effective 

Eccentricit

y 

Min. 

Effective 

Eccentricit

y 

Closeness 

centrality 

% of 

Central 

points 

% of 

isolated 

points 

%  of 

end 

points 

Numbe

r of 

nodes 

Cell (G1) 3.5 0.206667 4.3 5 3 0.3946 15 0 0 20 

Cell (G2) 5 0.483333 2.5 3 2 0.6332 50 0 0 12 

Cell (G3) 3.55556 0.696296 2.4444 3 2 0.6343 55.556 0 0 9 

Cell (G4) 5 0.55 2 2 2 0.6964 100 0 0 10 

Cell (G5) 3.73333 0.4344 5.0667 6 4 0.3468 26.667 0 0 30 

Cell (G6) 6 0.8 2 2 2 0.875 100 0 0 8 

Cell (G7) 3.42857 0 4 4 4 0.4643 100 0 0 9 

Cell (G8) 9 0.554762 2.5 3 2 0.5999 50 0 0 9 

Cell (G9) 6 0.8 2 2 2 0.875 100 0 0 8 

Cell 

(G10) 

6.58333 0.379861 2.7083 3 2 0.5259 29.167 0 0 8 

Cell 

(G11) 

6 0.8 2 2 2 0.875 100 0 0 8 

Cell 

(G12) 

3.07407 0.055556 9.2407 11 7 0.2064 11.11 0 0 9 

Cell 

(G13) 

6 0.8 2 2 2 0.875 100 0 0 8 

Protein 

(G1) 

4.2 0.6667 2.6 3 2 0.6193 40 0 0 10 
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Protein 

(G2) 

2.7 0.1 4.75 7 0 0.3775 5 5 10 20 

Protein 

(G3) 

3.8 0.289524 3.85 5 3 0.4251 30 0 0 20 

Protein  

(G4) 

2.1818 0 4.8182 6 3 0.3773 9.091 0 18.18 11 

Protein 

(G5) 

5 1 1 1 1 1 100 0 0 6 

Protein 

(G6) 

2.67 0.8277 1.8333 2 1 0.7024 16.67 0 0 6 

Protein 

(G7) 

1.67 0 1.8333 2 1 0.6296 16.67 0 83 6 

Protein 

(G8) 

2 0.2166 4.8 6 3 0.3759 10 0 30 10 

Protein 

(G9) 

2 0 3.3 4 2 0.4586 10 0 60 10 

Protein 

(G10) 

3.875 0 4 4 4 0.4653 100 0 0 16 

Protein 

(G11) 

4 0 4 4 4 0.4688 100 0 0 16 

Protein 

(G12) 

3.875 0 4 4 4 0.4653 100 0 0 16 

Protein 

(G13) 

3 0 5 5 5 0.38 100 0 0 20 

Protein 

(G14) 

4.33 0.694 3.3333 4 2 0.4953 16.667 0 0 12 

Protein 

(G15) 

3.23 0.6465 4 5 3 0.4505 15.385 0 7.692 13 

Table 1 

 

Graph Number 

of edges 

Spectral 

radius 

Second 

largest 

Eigenvalue 

Trace Energy Number of 

Eigenvalue 

Label 

Entropy 

Neighbourhood 

Impurity 

Link 

Impurity 

Cell (G1) 35 3.8607 2.8159 32 70 20 5.1293 2 0.54286 

Cell (G2) 30 5.2361 2.618 21 60 11 4.9069 2 0.4 

Cell (G3) 16 4 2 14 32 8 4.25 2.6667 0.75 

Cell (G4) 25 5.2361 2 18 50 9 4.6439 2 0.4 

Cell (G5) 58 4.4581 3.4199 52 118 30 5.8074 2.6667 0.7143 

Cell (G6) 24 6 2 12 48 8 4.585 0 0 

Cell (G7) 24 3.4641 2 19 48 13 4.585 3.4286 1 

Cell (G8) 20 9.1231 5.3223 56 216 23 6.7682 4 0.4444 

Cell (G9) 24 6 2 12 48 8 4.585 0 0 

Cell (G10) 20 6.7538 4.2345 50 158 24 6.3038 3.25 0.4937 

Cell (G11) 24 6 2 12 48 8 4.396 0 0 

Cell (G12) 36 3.6533 3.1789 82 166 54 6.375 0.9259 0.3012 

Cell (G13) 24 6 2 12 48 8 4.585 0 0 

Protein (G1) 21 4.4751 2.6747 16 42 10 4.3923 4 0.9524 

Protein (G2) 27 3.3932 2.6887 28 54 20 4.7548 2.1 0.7778 

Protein (G3) 38 4.2275 3.3864 33 76 20 5.2479 3.4 0.8947 

Protein (G4) 12 2.4035 2.2739 13 24 11 3.5849 1.4545 0.6667 

Protein (G5) 15 5 1 10 30 6 3.9068 0 0 

Protein (G6) 8 2.9474 1.8208 8.2 16 6 3 2.3333 0.875 

Protein (G7) 5 2.2361 2.2361 4.5 10 4 2.3219 1.6667 1 
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Protein (G8) 10 2.4401 2.1171 12 20 10 3.3219 1.8 0.9 

Protein (G9) 10 2.6131 1.4142 10 20 10 3.3219 1.6 0.8 

Protein (G10) 31 3.9049 2.1742 24 62 15 4.9542 0.75 0.1935 

Protein (G11) 32 4 2 24 64 12 5 0 0 

Protein (G12) 31 3.9049 2.1742 24 62 16 4.9542 0.75 0.1935 

Protein (G13) 30 3 2 32 60 16 4.9069 0 0 

Protein (G14) 26 5.0911 3.233 20 52 11 4.7 2.667 0.6154 

Protein (G15) 21 3.7117 3.1325 18 42 13 4.3923 2.6154 0.8095 

Table 2 

 

VI. FUTURE SCOPE 

By applying the concept of this characteristics of different 

graphs I am planning to design a relevant feature selection 

algorithm based on neural network 
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