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ABSTRACT 

Cantor sets consisting of continued fraction expansions with restricted digits. For example the Hausdorff dimension of the 

set E2 (of those reals whose continued fraction expansion only contains digits 1 and 2) can be rigorously approximated, with 

an accuracy of over 100 decimal places, using points of period up to 25.The method for establishing rigorous dimension 

bounds involves the holomorphic extension of mappings associated to the allowed continued fraction digits, an appropriate 

disc which is contracted by these mappings, and an associated transfer operator acting on the Hilbert Hardy space of analytic 

functions on this disc. We introduce methods for rigorously bounding the approximation numbers for the transfer operators, 

showing that this leads to effective estimates on the We prove that the algorithm for approximating the Hausdorff dimension 

of dynamically defined Cantor sets, using periodic points of the underlying dynamical system, can be used to establish 

completely rigorous high accuracy bounds on the dimension. The effectiveness of these rigorous estimates. 

Keywords:- Hausdorff dimension, Continued fraction, Nonlinear Cantor set, Computational algorithm, Transfer operator 

Determinant 

 

I. INTRODUCTION  

For a finite subset A Ṓ N, let EA denote the set of all x  ɴ

(0, 1) such that the digits a1(x), a2(x), ... in the continued 

fraction expansion 

x = [a1(x),a2(x),a3(x),...] = 1 

a1(x) + a2(x)+(x1
)+ a3 ··· 

all belong to A. Sets of the form EA are said to be of 

bounded type (see e.g. [20,23]); in particular they are 

Cantor sets, and study of their Hausdorff dimension has 

attracted significant attention. 

Of particular interest have been the sets En = E{1,...,n}, with 

E2 = E{1,2} the most studied of these, serving as a test case 

for various general methods of approximating Hausdorff 

dimension. Jarnik [18] showed that dim(E2) > 1/4, while 

Good [15] improved this to 0.5306 < dim(E2) < 0.5320, 

Bumby [6] showed that 0.5312 < dim(E2) < 0.5314, 

Hensley [16] showed that 0.53128049 < dim(E2) < 

0.53128051, while Falk &  Nussbaum [11] rigorously 

justified the first 8 decimal digits of dim(E2), proving that 

0.531280505981423 Җ dim(E2) Җ 0.531280506343388. A 

common element in the methods [6,11,16] is the study of 

a transfer operator, while for the higher accuracy estimates 

[11,16] there is some element of computer-assistance 

involved in the proof. 

In [19] we outlined a different approach to 

approximating the Hausdorff dimension of bounded type 

sets, again using a transfer operator, but exploiting the real 

analyticity of the maps defining continued fractions to 

consider the determinant ȹ of the operator, and its 

approximation in terms of periodic pointsi of an underlying 

dynamical system. While some highly accurate empirical 

estimates of Hfausdorff dimension were given, for 

example a 25 decimal digit approximation to dim(E2), these 

were not rigorously justified. Moreover, although the 

algorithm was proved to generate a sequence of 

approximations sn to the Hausdorff dimension (depending 

on points of period up to n), with convergence rate faster 

than any exponential, the derived error bounds were 

sufficiently conservative (see Remark 1 below) that it was 

unclear whether they could be combined with the 

computed approximations to yield any effective rigorous 

estimate. 
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In the current paper we investigate the possibility of 

sharpening the approach of [19] so as to obtain rigorous 

computer-assisted estimates on dim(EA), with particular 

focus on E2. There are several ingredients in this 

sharpening. The first step is to locate a disc D in the 

complex plane with the property that the images of D under 

the mappings Tn(z) = 1/ (z + n), n  ɴA, are contained in D. It 

then turns out to be preferable to consider the transfer 

operator as acting on a Hilbert space of analytic functions 

on D, rather than the Banach space of [19]; this facilitates 

an estimate on the Taylor coefficients of ȹ in terms of the 

approximation numbers (or singular values) of the 

operator, which is significantly better than those bounds 

derived from Banach space methods. The specific Hilbert 

space used is Hardy space, consisting of those analytic 

functions on the disc which extend as L2 functions on the 

bounding circle. The contraction of D by the mappings 

Tn(z) = 1/ (n + z), n  ɴA, prompts the introduction of the 

contraction ratio, which captures the strength of this 

contraction, and leads to estimates on the convergence of 

the approximations to the Hausdorff dimension. The nth 

Taylor series coefficient of ȹ can be expressed in terms of 

periodic points of period up to n, and for sufficiently small 

n these can be evaluated exactly, to arbitrary precision. For 

larger n, we show it is advantageous to obtain two distinct 

types of upper bound on the Taylor coefficients: we refer 

to these as the Euler bound and the computed Taylor 

bound. The Euler bound is used for all sufficiently large n, 

while the computed Taylor bound is used for a finite 

intermediate range of n corresponding to those Taylor 

coefficients which are deemed to be computationally 

inaccessible, but where the Euler bound is insufficiently 

sharp. Intrinsic to the definition of the computed Taylor 

bounds is the sequence of computed approximation 

bounds, which we introduce as computationally accessible 

upper bounds on the approximation numbers of the transfer 

operator. 

As an example of the effectiveness of the resulting 

method we rigorously justify the first 100 decimal digits of 

the Hausdorff dimension of E2, thereby improving on the 

rigorous estimates in [6,11,15,16,18]. Specifically, we 

prove (see Theorem 1) that 

dim(E2) = 0.53128050627720514162446864736847178549305910901839 

87798883978039275295356438313459181095701811852398... , 

using the periodic points of period up to 25. 

2. Preliminaries 

In this section we collect a number of results (see also [19]) which underpin our algorithm for approximating Hausdorff 

dimension. 

2.1. Continued fractions 

Let EA denote the set of all x  ɴ(0, 1) such that the digits a1(x), a2(x), ... in the continued fraction expansion 

1 

x = [a1(x),a2(x),a3(x),...] = a1(x) + a2(x)+1a (x1
)+ 

3  

all belong to A. For any i  ɴN we define the map Ti by 
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1 

Ti(x) =  , 

i + x 

and for a given A
 
Ṓ N, the collection

 
{Ti : i

 
 ɴA} is referred to as the corresponding iterated function system. Its limit set, 

consisting of limit  points of sequences Ti1  ϊϊϊ  

Tin(0), where each ij  ɴA, is precisely the set EA. 

Every set EA is invariant under the Gauss map T, defined by 

1 

 T(x) =  (mod 1). 

x 

2.2. Hausdorff dimension For a set E Ṓ R, define 

Hʶʵ(E) = infdiam(Ui)ʵ : U = {Ui} is an open cover of E such 

i 

that each diam(Ui) Җ ʁΣ 

and set Hʵ(E) = lim Ҧʁ0 Hʶʵ(E). The Hausdorff dimension dim(E) is then defined as 

dim(E) = inf{ʵ : Hʵ(E) = 0}. 

2.3. Pressure formula 

For a continuous function f : EA Ҧ w, its pressure P(f) is given by 

 P ờỞ n ef(x)+f(Tx)+...+f(Tnҍ1x)Ỡ
ỡ
Ợ , 

 nҦ+қ n T x=x 

ở x EɴA 

and if  f = ҍs log| T| then we have the following implicit characterisation of the Hausdorff dimension of EA (see [3,4,10,21]): 

Lemma 1. The function s
 
Ҧ P(ҍs log| T| ) is strictly decreasing, with a unique zero at s = dim(EA).  

2.4. Transfer operators 
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For a given A Ṓ N, and s  ɴR, the transfer 
operator 

LA,s, defined by 

 1 1 

=( z + i)2s f z + i ,  LA,sf(z) 
i Aɴ 

preserves various natural function spaces, for example the Banach space of Lipschitz functions on [0, 1]. On this space it has 

a simple positive eigenvalue eP(ҍs log | T| ), which is the unique eigenvalue whose modulus equals its spectral radius, thus by 

Lemma 1 the Hausdorff dimension of EA is the unique value s
 

 ɴR such that
 
LA,s has spectral radius equal to 1. 

2.5. Determinant 

The determinant for LA,s is the entire function defined for z of sufficiently small modulus4 by 

 қ zn n 

expҍ tr(LA,s), (1)  ȹ(z,s) = 

n 

and for other z ɴ  C by analytic continuation; here the trace tr(LA,s
n) is given (see [19,22]) by 

  T where the point zi, which 

has period n under T, is the unique fixed point of the n-fold composition Ti = Ti1  Ti2  ϊϊϊ  Tin. 

When acting on a suitable space of holomorphic functions, the eigenvalues of LA,s are precisely the reciprocals of the zeros 

of its determinant. In particular, the zero of minimum modulus for ȹ(s, ·) is eҍP(ҍs log | T| ), so the Hausdorff dimension of EA is 

characterised as the value of s such that 1 is the zero of minimum modulus of ȹ(s, ·). 

In fact we shall later show that, when LA,s acts on such a space of holomorphic functions, its approximation numbers decay 

at an exponential rate (see Corollary 1), so that LA,s belongs to an exponential class (cf. [1,2]) and is in particular a trace class 

operator, from which the existence and above properties of trace and determinant follow (see [25]). 

As outlined in [19], this suggests the possibility of expressing ȹ(z, s) as a power series 

zn , 

then defining D by 

D . 

   
   

    

         

1         
  

    

     
          

1         
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The function D is an entire function of s (see [19]), and solutions s of the equation 

 ) (3) 

have the property that the value 1 is an eigenvalue for LA,s; in particular, the unique zero of D in the interval (0, 1) is precisely 

dim(EA), being the unique value of s for which 1 is the eigenvalue of maximum modulus for
 
LA,s. 

As a result of the trace formula (2), the coefficients nɻ(s) are computable in terms of the periodic points of T| EA of period no 

greater than n, so for some suitable N ɴ  N, chosen so that 1ɻ(s), ..., Nɻ(s) can be computed to a given precision in reasonable 

time, we can define DN by 

N 

DN(s) := 1 +  ɻ n(s). 

n=1 

A solution to the equation 

(4) 

DN(s) = 0 (5) 

will be an approximate solution to (3), where the quality of this approximation will be related to the smallness of the discarded 

tail 

қ 

  ɻ n(s). (6) 

n=N+1 

In particular, any rigorous estimate of the closeness of a given approximate solution sN of (5) to the true Hausdorff dimension 

dim(EA) will  require a rigorous upper bound on the modulus of the tail (6). 

Remark 1. In [19] we considered the set E2 = E{1,2} and, although the empirical estimates of its Hausdorff dimension appeared 

convincing, the estimate on the tail (6) was not sharp enough to permit any effective rigorous bound. Essentially, the bound in 

[19] 

was
 
| nɻ(s)|

 
Җ ʁn := CKnnn/2ʻn(n+1) where C   2 122979405533,  

1/4 

K 895247, and  Ғ 0.970984. Although the bounding sequence  

nʁ tends to zero, and does so at super-exponential  rate O(ʻn ), the considerable in- 

ertia in this convergence (e.g. the sequence increases for 1 Җ n Җ 39 to the value 3ʁ9 Ғ 1.31235 × 1022, and remains larger than 1 

until n = 85) renders the bound ineffective in practice, in view of the exponentially increasing computation time required to 

calculate the nɻ(s) (as seen in this article, we can feasibly compute several million periodic points, but performing calculations 

involving more than 285 points is out of the question). 

Remark 2. The specific rigorous approximation of dimension is performed in this article only for the set E2 (see §6), 

corresponding to the iterated function system consisting of the maps T1(x) = 1/ (x + 1) and T2(x) = 1/ (x + 2). In principle, 

however, it can be performed for arbitrary iterated function systems consisting of real analytic maps T1, ..., Tl satisfying the 

open set condition (i.e. there exists a non-empty open set U such that Ti(U)
 
 Tj(U) =  ɲfor i = j, and Ti(U)

 
Ṓ U for all i). In this 
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setting the accuracy of our Hausdorff dimension estimate depends principally on the contractivity of the maps Ti and the number 

l of such maps, with stronger contraction and a smaller value of l corresponding to increased accuracy. Stronger contraction (as 

reflected by smallness of the contraction ratio defined in §3.4) is associated with more rapid decay of the Taylor coefficients 

of the determinant ȹ(z, s), implying greater accuracy of the polynomial truncations, while for l > 2 the time required to locate 

the points of period up to n increases by a factor of roughly (l/2)n relative to the case l = 2 (note that for infinite iterated function 

systems, i.e. l = қ, our method is rarely applicable, since it is usually impossible to locate all period-n points for a given n, 

though here non-rigorous approximations may be obtained by suitable approximation). If  the Ti are not Möbius maps then for 

practical purposes there is some minor decrease in the efficiency of our method: the compositions Ti are more highly nonlinear 

than in the Möbius case, so evaluation of their fixed points typically takes slightly longer. 

Remark 3. Work of Cusick [7,8] on continuants with bounded digits characterised the  

Hausdorff dimension of En = 
E

{1,...,n} in terms of the abscissa of convergence of a certain Dirichlet series, and Bumby [5,6] 

showed that 0.5312 < dim(E2) < 0.5314. Hensley [16] obtained the bound 0.53128049 < dim(E2) < 0.53128051 using a recursive 

procedure, and in [17, Thm. 3] introduced a general approach for approximating the Hausdorff dimension of EA, obtaining in 

particular the empirical estimate dim(E2) = 0.5312805062772051416 ... 

3. Hilbert Hardy space, approximation numbers, approximation bounds 

In this section we introduce the Hilbert space upon which the transfer operator acts, then make the connection between 

approximation numbers for the operator and Taylor coefficients of its determinant, leading to so-called Euler bounds on these 

Taylor coefficients. 

3.1. Hardy space 

Let D Ṓ C be an open disc of radius r, centred at c. The Hilbert Hardy space 

H2(D) consists of those functions f which are holomorphic on D and such that 

. The inner product on H2(D) is defined by (f, g) = dt, which 
is well-defined since any element of H2(D) extends  

as an L function of the boundary Ҝ5. The norm of f  ɴH2(D) will  be simply written as  f  = (f, f)1/2. 

An alternative characterisation of H2(D) (see e.g. [24]) is as the set of functions f which are holomorphic on D and such that 

if  mk(z) = rҍk(z ҍ c)k for k җ 0, then 

f f
Ĕ
(k)mk 

where the sequence (fĔ(k))қk=0 is square summable. The norm  f  can then be expressed as 

 f | fĔ(k)| 2 . 

3.2. Approximation numbers 

Given a compact operator L : H Ҧ H on a Hilbert space H, its ith approximation number si(L) is defined as 

si(L) = inf{ L ҍ K  : rank(K) Җ i ҍ 1}, 
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so that in particular s1(L) 
= 

 
L
 . 

The following result exploits our Hilbert space setting, and represents an improvement over analogous Banach space 

estimates in [19] (where e.g. a multiplicative factor nn/2 reduces the quality of the bound on | nɻ(s)| ). 

Lemma 2. If
 
LA,s : H2(D)

 
Ҧ H2(D), then the nth Taylor coefficient nɻ(s) of its determinant can be bounded by 

n 

 | sij(LA,s). (7) 

Proof. If { n˂(s
)
} is the eigenvalue sequence for LA,s, ordered by decreasing modulus and counting algebraic multiplicities, then 

(see e.g. [25, Lem. 3.3]) we have 

n 

 nɻ(s) =  n  ˂ ij(s), 

i1<...<i j=1 

and 

 n n 

  sij(LA,s) 

i=1 

by [14, Cor. VI.2.6], so the result follows.  

In view of the link between Hausdorff dimension error estimates and the tail (6), together with the bounding of terms in this 

tail by sums of products of approximation numbers provided by Lemma 2, it will  be important to establish upper bounds on 

the Taylor coefficients nɻ(s) for those n where it is not computationally feasible to evaluate exactly via periodic points. We 

shall derive two distinct types of such upper bound, which we refer to as Euler bounds and computed Taylor bounds. There is 

an Euler bound on nɻ(s) for each n, given as a simple closed form; this bound will  be used for all sufficiently large values of 

n, though for low values of n may be too conservative for our purposes. The finitely many computed Taylor bounds will  be on 

the Taylor coefficients Pɻ+1(s), ..., Qɻ(s) where P is the largest integer for which we locate all period-P points, and Q is chosen 

so that the Euler bounds on | nɻ(s)| are sufficiently sharp when n > Q. In view of Lemma 2, the computed Taylor bounds will  

be derived by first bounding the finitely many approximation numbers s1(LA,s), ..., sN(LA,s), for some N  ɴN, by explicitly 

computable quantities that we call computed approximation bounds. The computations required to derive the computed 

approximation bounds are not onerous, the main task being the evaluation of numerical integrals defining certain H2 norms (of 

the transfer operator images of a chosen orthonormal basis). 

We shall approximate LA,s by first projecting H2(D) onto the space of polynomials up to a given degree. Let
 
LA,s : H2(D)

 
Ҧ 

H2(D) be a transfer operator, where D Ṓ C is an open disc of radius  centred at c, and
 
{mk}қk=0 is the corresponding orthonormal 

basis of monomials, given by 

 mk(z) = ҍk(z ҍ c)k . (8) 
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3.3. Approximation bounds 

Definition 1. For n җ 1, define the nth approximation ōƻǳƴŘ ʰn(s) to be 

 қ 2 1/2 

 nh(s) =  LA,s(mk)   .

 (9) 

k=n 1 

f f
Ĕ
(k)mk 

where the sequence (fĔ(k))қk=0 is square summable. Define the rank-(n ҍ 1) projection  

Ʉn : H2(D)
 
Ҧ H2(D) by 

nҍ2 

Ʉn(f) =  fĔ(k)mk , 

k=0 

where in particular Ʉ1  0. 

The transfer operator
 
LA,s is approximated by the rank-(n

 
ҍ 1) operators 

(n) 

LA,s := LA,sɄn , 

and  LA,s ҍ L(
A,s

n)  can be estimated using the CauchyïSchwarz inequality as follows: 

ққ 

 )f = f 

  (LA,s ҍ L(A,sn)      Ĕ(k)LA,s | fĔ(k)| LA,s(mk)  

 k=nҍ1 k=nҍ1 

Җқ  LA,s(mk) 21/2  қ | Ĕ(k)| 21/2 f 

 k=nҍ1 k=nҍ1 

ҍ 

Proposition 1. For each n җ 1, 

 

sn(LA,s) Җ hn(s). 

Proof. For f  ɴH2(D) we can write 

(10) 
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 қ 2 1/2 

 Җ [A,s(mk)    f , 

k 

and therefore
 
 LA,s ҍ LA,s(n) 

 Җ 
k
қ

=nҍ1  LA,s(mk) 21/2 = h n(s). Since
 
LA,s(n) has rank n ҍ 1, it follows that sn(LA,s) Җ hn(s), as required. 

3.4. Contraction ratios 

Let Ci : H2(D) Ҧ H2(D) be the composition operator 

Cif = f  Ti . 

The estimate arising in the following lemma motivates our definition below (see Definition 2) of the contraction ratio 

associated to a disc D and subset A Ṓ N. 

Lemma 3. Let D and D be concentric discs, with radii  and  respectively. If, for i  ɴA, the image Ti(D) is contained in D, then 

for all k җ 0, 

  k 

  Ci(mk) Җ  . (11) 

 

Proof. Let c denote the common centre of the discs D, D. If  z ɴ  D then 

| Ci k , 

so  Ci   k, as required.  

For each i
 

 ɴA, s
 

 ɴR, if  the open disc D is such that
 
ҍi

 
/ɴ D then define the weight function wi,s : D Ҧ / by 

 2s wi,s(z) =  , 1

z + i 

and the multiplication operator Wi,s : H2(D) Ҧ H2(D) by 

Wi,sf = wi,sf . 

We may write 
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1    

LA,s = Wi,sCi , 

i Aɴ 

so that 

 LA,s  Wi,sCi  wi,s қ Ci(mk) , 

and if  i is such that Ti(D) is contained in the concentric disc Di
 of radius i then  

Lemma 3 implies that 

  LA,s  wi,s қ(i/ )k . (12) 

For our purposes it will  be more convenient to work with a slightly simpler (and less sharp) version of (12). This prompts 

the following definition: 

Definition 2. Let A Ṓ N be finite, and D Ṓ C an open disc of radius  such that i᷾ AɴTi(D) Ṓ D. Let D be the smallest disc, concentric 

with D, such that i᷾ AɴTi(D) Ṓ D, and let  denote the radius of D. The corresponding contraction ratio h = hA,D is defined to be 

 

 h = hA,D =  . (13) 

 

Lemma 4. Let A Ṓ N be finite, and D an admissible disc, with contraction ratio h = hA,D.  

For all k җ 0, 

  LA,s hk  wi,s қ . (14) 

Proof. If D is as in Definition 2 then  = maxi Aɴ i in the notation of (12), and the result follows from  

Corollary 1. Let A Ṓ N be finite, and D an admissible disc, with contraction ratio h = hA,D. For all n җ 1, 

 sn(LA,s) Җ hn(s) Җ Kshn (15) 

where 

 Ks =  . (16) 

Proof. Now 

 қ 2 1/2 

nh(s) =  Ls(mk)   
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k=nҍ1 

from Definition 1 and Proposition 1, so Lemma 4 gives 

 қ 2k 
1/2 hnҍ1 

nh(s) Җh  wi,s қ = Ҟ1 ҍ h2  wi,s қ , 

kiɴ A 

and the result follows.  

3.5. Euler bounds 

We can now derive the Euler bound on the nth Taylor coefficient of the determinant: 

Proposition 2. Let A Ṓ N be finite, and D an admissible disc, with contraction ratio h = 

hA,D. If the transfer operator LA,s has determinant det(I ҍzLA,s) zn, then for all n җ 1,  

Knhn(n+1)/2 | . (17)   =1 

Proof. By Lemma 2, 

n 

| sij(LA,s), 

so Corollary 1 gives 

 | nɻ(s)μ Җ Ksn  hi1+...+in , 

i1<...<in 

and the result follows by repeated geometric summation (as first noted by Euler [9,  

Ch. 16]).  

Henceforth we use the notation 

 En(r) := nҍ i) = 1  ri1+...+in , 

  i=1(1 r i <...<in 

(18) 
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rn(n+1)/2 

and we define the righthand side of (19) (or equivalently of (17)) to be the Euler bound on the nth Taylor coefficient of the 

determinant. 

4. Computed approximation bounds 

For all n җ 1, the nth approximation bound 

 қ 2 1/2 

nh(s) =  LA,s(mk)   

k=nҍ1 

is, as noted in Proposition 1, an upper bound on the nth approximation number sn(LA,s). 

Each mk is just a normalised monomial (8), and the operator LA,s is available in closed form, so that 

L(Ti(z) ҍ c)k 

A,sk(z + i)2s , 

and we may use numerical integration to compute each Hardy norm
 
 LA,s(mk)  as 

 1 2 

  L  2  (Ti( (ɹt)) ҍ c)k  

 A,s(mk) =k( (ɹt) + i)2s dt, (20) 

 
A 

where (ɹt) = c + e2ˉƛǘ. 

so that (17) can be written as 

| nɻ(s)μ Җ Ks
nEn(h), 

(19) 
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canEvaluation bound this of by  h then(s )suminvolves of an  exactlythe tail  computedsum k
қ

= longn
қ

kҍ=1N  L+1finiteA,s L( 

A,ssummk()m 
 2

k,)kN  and=
2
nusingҍ 1in L practice A,s(14)(m. Morek)  we2,   for some N n, and a rigorous upper bound on precisely, 

we have the following definition: 

Definition 3. Given n, N ɴ  N, with n Җ N, define the lower and upper computed approximation bounds, nh,N,ҍ(s) and nh,N,+(s), 

respectively, by 

1/2 
N 

 nh,N,ҍ(s) =  LA,s(mk) 2 , (21) 

k=nҍ1 

and 

 2 1/2 

h2(N+1) 

 ở 2  ҍ ỠỢ 

 nh,N,+(s) = nh,N,ҍ(s) + wi,s қ 1 h2 . (22) 

i Aɴ 

Evidently the lower computed approximation bound nh,N,ҍ(s) is a lower bound for nh(s), in view of the positivity of the 

summands in (9) and (21), while Lemma 5 below establishes that the upper computed approximation bound nh,N,+(s) is an upper 

bound  

forgiven  h nby(s ).finite Moreover, sums and, both as  halreadyn,N,+(s )noted,and  thhen,N, summandsҍ(s) are readily  LA,s( 

mcomputable:k) 2 are computable they are   

to arbitrary precision. 

Lemma 5. Let s
 

 ɴR. For all n, N ɴ  N, with n
 
Җ N, 

 nh,N,ҍ(s) Җ hn(s) Җ hn,N,+(s). (23) 

Proof. The inequality nh,N,ҍ(s) Җ hn(s) is immediate from the definitions. To prove that nh(s)
 
Җ hn,N,+(s) note that 

 2 N 2 қ 2 

nh(s) =   LA,s(mk)  +   LA,s(mk)  , 

 k=nҍ1 k=N+1 

which together with (14) gives 
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 N 2 
2(N+1) 

 2 2 h 

 nh(s) Җ   [A,s(mk)  +  wi,s қ 1 ҍ h2 , 

 k=nҍ1 i Aɴ 

and the result follows.  

Remark 4. The upper bound nh,N,+(s) will  be used in the sequel, as a tool in providing rigorous estimates on Hausdorff 

dimension. In practice N will  be chosen so that the values nh,N,ҍ(s) and nh,N,+(s) are close enough together that the inequality 

(23) determines nh(s) with precision far higher than that of the desired Hausdorff dimension estimate; in particular, N will  be 

such that the difference nh,N,+(s) ҍhn,N,ҍ(s) = O(hN) is extremely small relative to the size of nh(s). 

Combining (15) with (23) immediately gives the exponential bound 

 nh,N,ҍ(s) Җ Kshn for all n Җ N , (24) 

though the analogous bound for nh,N,+(s) (which will  be more useful to us in the sequel) requires some extra care: 

Lemma 6. Let s
 

 ɴR. For all n, N ɴ  N, with n
 
Җ N, 

 nh,N,+(s) Җ Ks(1 + h2(N+2ҍn))1/2hn . (25) 

Proof. Combining (24) with (22) gives 

 2 1/2 

Җ ở n 2      h2(ҍN+1) ỠỢ h n,N,+(s)(Ksh 

) +wi,s қ 1 h2 , 

but (16) gives 

2 

i Aɴ1 ҍ whi,s2  қ = Ks2h2 , 

so 

1/2 

 nh,N,+(s) 
Җ 

(Kshn)2 + Ks2h2(N+2) , 

and the result follows.  
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The utility  of (25) stems from the fact that in practice N ҍ n will  be large, and that for sufficiently small values of n the 

following more direct analogue of (24) can be used: Corollary 2. Let s
 

 ɴR. Suppose N, Q
 

 ɴN, with Q
 
Җ N. If 

1/2 

J = JQ,N,s := Ks 1 + h2(N+2ҍQ) 

then 

(26) 

 nh,N,+(s) Җ Jhn for all 1 Җ n Җ Q. 
(27) 

Proof. Immediate from Lemma 6
. 
 

Remark 5. In practice Q will  be of some modest size, dictated by the computational resources at our disposal; specifically, it 

will  be chosen slightly larger than the largest P ɴ  N for which it is feasible to compute all periodic points of period Җ P (e.g. in 

§6, when estimating the dimension of the set E2 = E{1,2}, we explicitly compute all periodic points up to period P = 25, and in 

the proof of Theorem 1 we choose Q = 28). The value N will  be chosen to be significantly larger than Q (e.g. in the proof of 

Theorem 1 we choose N = 600). Since N +2 ҍQ is large, hN+2ҍQ will  be extremely small, and J = JQ,N,s will  be extremely close to 

Ks; ideally this closeness ensures that the two constants JQ,N,s and Ks are indistinguishable to the chosen level of working precision 

(e.g. in the proof of Theorem 1, N + 2 ҍ Q = 574 and h Ғ 0.511284, so hN+2ҍQ Ғ 5.9 × 10ҍ168, whereas computations are performed 

to 150 decimal digit precision). 

5. Computed Taylor bounds 

In order to use the computed approximation bounds to provide a rigorous upper bound on the Taylor coefficients of the 

determinant det(I ҍzLA,s), we now fix  a further natural number M, satisfying M Җ N. For any such M, it is convenient to define 

the sequence ( nh,N,
M 

+(s))қn=1 to be the one whose nth term equals nh,N,+(s) until n = M, and whose subsequent terms are given 

by the exponential upper bound on sn(LA,s) and nh(s) (cf. (15)): 

M nh,N,+(s) for 1 Җ n Җ a Σ ʰn,N,+(s) :=Kshn for n > M . (28) 

This allows us to make the following definition: 

Definition 4. Let s  ɴR. For n, M, N ɴ  N with n Җ M Җ N, the Taylor ōƻǳƴŘ ʲn,N,
M 

+(s) is defined by 

n 

 n̡,N,M +(s) := 1  n  h iMj,N,+(s), (29) 

i <...<i j=1 

where the sum is over those i = (i1, ..., in)  ɴNn which satisfy i1 < i2 < ... < in. 

As the name suggests, the Taylor bound ) bounds the nth Taylor coefficient of the determinant det(I ҍ zLA,s) = 1 + 

n
қ

=1 ɻ n(s)zn: 
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Lemma 7. Let s  ɴR. For n, M, N ɴ  N with n Җ M Җ N, 

 | nɻ(s)μ Җ n̡,N,
M 

+(s). (30) 

Proof. Combining (15), (23) and (28) gives 

 sn(LA,s) Җ hn,N,
M 

+(s) for all 1 Җ n Җ M Җ N , 

and combining this with Lemma 2 gives  

Note that ) is precisely the nth power series coefficient for the infinite product  

a  computationally accessible approximation to n̡,N,
M 

+(s). We expect that n̡,N,
M 

+(s) is ), and that the sum 

in (29) is an infinite one; thus we will  seek  

well approximated by the nth power series coefficient for the finite product
 M

i=1(1 + ih,N,
M 

+(s)z) =  Mi=1(1 + ih,N,+(s)z), namely 

the value n̡,N,
M,ҍ

+(s) defined as follows:  

Definition 5. Let s
 

 ɴR. For n, M, N ɴ  N with n
 
Җ M Җ N, the lower computed Taylor bound ) is defined as 

n 

  . (31) 
i 

Remark 6. 

(i) The fact that n̡,N,
M,ҍ

+(s) is defined in terms of upper computed approximation bounds ihj,N,+(s), together with the finiteness 

of the sum (and product) in (31), ensures that n̡,N,
M,ҍ

+(s) can be computed (to arbitrary precision). (ii) Clearly, an equivalent 

definition of n̡,N,
M,ҍ

+(s) is 

n 

 ihMj,N,+(s). (32) 

The lower computed Taylor bound ) is obviously smaller than the Taylor bound n̡,N,
M 

+(s), though in view of (30) 

we require an upper computed Taylor bound (introduced in Definition 6 below) that is larger than n̡,N,
M 

+(s). The following 

result estimates the difference 
ʲ

n,N,
M 

+(s) ҍ
ʲ

n,N,
M,ҍ

+(s), and subsequently (see Definition 6) provides the inspiration for the 

definition of the upper computed Taylor bound: 

Lemma 8. Let s  ɴR. Given Q, M, N ɴ  N with Q Җ M Җ N, and J = JQ,N,s defined by  

(26), 

nҍ1 

Mn 

n̡,N,Jfor all 1 Җ n Җ Q. (33) 
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Proof. Let n be such that 1 Җ n Җ Q. The set In := {i = (i1, ..., in)  ɴNn : i1 < ... < in} can be partitioned as In = nl=0 In(l), where the I  

are defined by 

 n(l) 
ứỬ
Ừ{i = (i111,...,innn)  ɴInnn : M < iln 1

} 
l+1 

 I = Ử{i = (i ,...,i )  ɴI : i Җ M < i } 

ỬỬừ{i = (i ,...,i )  ɴI : i Җ M} 

Define 

n 

if l = 0, if 1 Җ l Җ n 

ҍ 1, if l = n. 

 ih
M

j,N,+(s) for each 0 Җ l Җ n, 

so that in particular 

 n̡,N,M,(n+)(s) = ̡ n,N,M,ҍ+(s). (34) 

 With this notation, and since In = nl=0 In(l), we can express n̡,N,
M 

+(s) as 

 n n 

 n̡,N,M . (35) 

Combining (34) and (35) gives  

 nҍ1 M,(l) 

 n̡,N,M +(s) ҍ ̡ n,N,M,ҍ+(s) =  ̡ n,N,+(s). 

l=0 

(36) 

In order to bound each n̡,N,
M,(l

+
) (s) in (36) we use the fact that Jhi for all  

1 Җ i Җ Q (see Corollary 2) to obtain  

n l 

ij,N,+ Җl+1 n  ij,N,+ M (s) Jnҍlhi +...+i h M (s), (37) 
j=1 

and introducing ʽ = ( 1̔, ..., n̔ҍl)
 

 ɴInҍl with il+k = ̔ k + M for 1 Җ k Җ n ҍ l, we can re-express the righthand side of (37) to obtain 

l  Mj ỠỡỢờở  (nҍl)Mh 1̔+...+ n̔ҍlỠỢ , l 

ih ,N,+(s)h 

 ở =1l 
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and therefore 

 . (38) 

Now combining (36) and (38) gives the required bound  

Remark 7. In practice the l = n ҍ 1 term on the righthand side of (33) tends to be the dominant one, as M is chosen large enough 

so that hM is extremely small. 

Definition 6. Let s  ɴR. For n, Q, M, 
N 

 ɴN with n Җ Q Җ 
M 
Җ N, define the upper computed Taylor bound ) by 

nҍ1 

 n̡,N,M,++(s) := ̡ n,N,M,ҍ+(s) +  JQ,N,snҍl l̡,N,M,ҍ+(s)hM(nҍl)Enҍl(h). 

l=0 

From Lemma 8 it then follows that the upper computed Taylor bound n̡,N,
M,+

+(s) is indeed larger than the Taylor bound 

ʲ
n,N,

M 
+(s): 

Corollary 3. Let s  ɴR. If Q, M, 
N 

 ɴN with Q Җ 
M 
Җ N, then 

 n̡,N,
M  for all 1 Җ n Җ Q. 

Proof. Immediate from Lemma 8 and Definition 6.  

Finally, we deduce that the nth Taylor coefficient nɻ(s) of the determinant det(I ҍ zLA,s) can be bounded in modulus by the 

upper computed Taylor bound n̡,N,
M,+

+(s) (a quantity we can compute to arbitrary precision): 

Proposition 3. Let s  ɴR. If Q, M, 
N 

 ɴN with Q Җ 
M 
Җ N, then 

 |  for all 1 Җ n Җ Q. 

Proof. Lemma 7 gives
 
| nɻ(s)|

 
Җ ̡n,N,

M 
+(s), and Corollary 3 gives n̡,N,

M ), so the result follows.  

Remark 8. In §6, for the computations in the proof of Theorem 1, we choose N = 600, M = 400, and Q = 28, using Proposition 

3 to obtain the upper bound on | nɻ(s)| for P + 1 = 26 Җ n Җ 28, having explicitly evaluated nɻ(s) for 1 Җ n Җ 25 using periodic 

points of period up to P = 25. 
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6. The Hausdorff dimension of E2 

Here we consider the set E2, corresponding to the choice A = {1, 2}. We shall suppress the set A from our notation, writing 

Ls instead of LA,s. 

The approximation sN to dim(E2), based on periodic points of period up to N, is the zero (in the interval (0, 1)) of the function 

DN defined by (4); these approximations are tabulated in Table 1 for 18 Җ n Җ 25. We note that the 24th and 25th approximations 

to dim(E2) share the first 129 decimal digits 

0.5312805062772051416244686473684717854930591090183987798883978039 

27529535643831345918109570181185239880428057243075187633422389339 though the rate of convergence gives 

confidence that the first 139 digits 

0.531280506277205141624468647368471785493059109018398779888397803927529 

5356438313459181095701811852398804280572430751876334223893394808223090 

of s25 are in fact correct digits of dim(E2). 

It turns out that we can rigorously justify around three quarters of these decimal digits, proving that the first 100 digits are 

correct. In fact we prove slightly more than that, by setting sҍ to be the value 
Table 1 

Approximations sn Ғ dim(E D2).; each sn is a zero of a truncation Dn (formed using only periodic points of period Җ n) of the function 

n sn 

18 0.531280506277205141624468647368471785493059109018398779888397803927529535645 

596972005085668529391352118806494054592120629038239974478243258576620540205 

19 0.531280506277205141624468647368471785493059109018398779888397803927529535643 

831345931151408384198942403518425963034455124305471103063941900681921725781 
20 0.531280506277205141624468647368471785493059109018398779888397803927529535643 

831345918109570144457186603287266737112934351614056377793361034907544181115 
21 0.531280506277205141624468647368471785493059109018398779888397803927529535643 

831345918109570181185239840988322512589524907498366765561230541095944497891 
22 0.531280506277205141624468647368471785493059109018398779888397803927529535643 

831345918109570181185239880428057259226147992212780800516214656456345194120 
23 0.531280506277205141624468647368471785493059109018398779888397803927529535643 

831345918109570181185239880428057243075187635944921448427780108909724612227 
24 0.531280506277205141624468647368471785493059109018398779888397803927529535643 

831345918109570181185239880428057243075187633422389339330546198723829886067 
25 0.531280506277205141624468647368471785493059109018398779888397803927529535643 

831345918109570181185239880428057243075187633422389339480822309014454563836 

sҍ = 0.531280506277205141624468647368471785493059109018398 

77988839780392752953564383134591810957018118523987, 

and setting s+ = sҍ + 2/10101 to be the value 

s+ = 0.531280506277205141624468647368471785493059109018398 

77988839780392752953564383134591810957018118523989. 

We then claim: 

Theorem 1. The Hausdorff dimension of E2 lies in the interval (sҍ, s+). 

Proof. We will  show that D(sҍ) and D(s+) take opposite signs, and deduce that dim(EA), as the zero of D, lies between sҍ and s+. 

Let D Ṓ C be the open disc centred at c, of radius , where c is the largest real root of the polynomial 
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128c7 + 768c6 + 1296c5 ҍ 192c4 ҍ 1764c3 ҍ 108c2 + 819c ҍ 216, 

so that c Ғ 0.758687144013554292899790137015621955739402945444266741967051997691009, and 

 = ҍ Ҟҍ , (39) c + 6c + 5c2 + 12c3 + 4c4 

2c 

 

Fig. 1. Inner disc D (dashed) contains images T1(D), T2(D) of the outer disc D, in the rigorous bound on the dimension of E2. 

so that 

 Ғ 0.957589818521375342814351002388265920293251603461349541441037951859499. 

The relation (39) ensures that T1(c ҍ ) and T ) are equidistant from c, and this  

common distance is denoted by  ), so that (Fig. 1) 

 Ғ 0.48960063348666271539624547964205669003751747416510762619582637319401. 

The specific choice of c is to ensure that the contraction ratio h = / is minimised, taking the value 

 

h =  Ғ 0.51128429314616176482942956363790038479511374855036 

 

304746799036536341. 

Having computed the points of period up to P = 25 we can form the functions s Ҧ ɻn(s) for 1 Җ n Җ 25, and evaluate these at 

s = sҍ (cf. Table 2) to give 

25 

D25(sҍ) = 1 +  ɻ n(sҍ) = (ҍ1.584605810787991617286291643870...) × 10ҍ101 < 0, 
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n=1 

(40) 

and at s = s+ to give 
Table 2 

1Exact +  (to tɻhes givenzn for precision) E2 transfer Taylor operator coefficients Ls with  ɻsn (=s)sҍfor. the determinant det(I ҍ zLs) = 

 

 

 8

 1 
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25 

D25(s+) = 1 +  ɻ n(s+) = (1.454514082498475271478438451769...) × 10ҍ101 > 0. 

n=1 

(41) 

We now aim to show that the approximation D25 is close enough to D for (40) and (41) to imply, respectively, the negativity 

of D(sҍ) and the positivity of D(s+). In other  

the individual Taylor coefficients nɻ(s), for n җ 26 = P + 1. It will  turn out that for words, we seek to bound the tail  ʵ 

(s), and this will  be achieved by bounding  

n
 
җ 29 the cruder Euler bound on nɻ(s) is sufficient, while for 26

 
Җ n

 
Җ 28 we will  use the Taylor bounds described in §5. More 

precisely, for P +1 = 26 Җ n Җ 28 = Q we will  use the upper computed Taylor bound n̡,N,
M,+

+(s) for suitable M, N ɴ  N. 

Henceforth let Q = 28, M = 400, N = 600 (so that in particular Q Җ M Җ N, as was assumed throughout §5) and consider the 

case s = sҍ. 

Table 3 

H2(D) norms L radiuss(mk) for E2 transfer operator Ls with s = 
sҍ, and disc D centred at c Ғ 0.758687, of  

 

 

 

We first evaluate the H2(D) norms of the monomial images
 
Ls(mk) for 0

 
Җ k Җ N = 600. These norms are decreasing in k; Table 

3 contains the first few evaluations, for 0 Җ 
k 
Җ 10, while for k = 600 we have 

 Ls(m600)  = (2.297607298251023508986187604945746...) × 10ҍ176 . 

Using these norms  Ls(mk)  we then evaluate, for 1 Җ n Җ M = 400, the upper computed approximation 

bounds 

nh,N,+(s) = h n,600,+(s) defined (cf. (22)) by 

 N 2 
2 

2(N+1) 
1/2 

2     h ҍ 
Ỡ 

nh,N,+(s) = ở   Ls(mk)  +  wi,s қ 1

 h2 Ợ . 
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 k=nҍ1 i=1 

These bounds are decreasing in n; Table 4 contains the first few evaluations, for  

1 Җ n Җ 10, while for n = 400 we have 

4h00,600,+(s) = (3.806826780744825698066314723072781...) × 
10ҍ147 . 

The upper computed approximation bounds nh,600,+(s) are then used to form the upper computed Taylor bounds n̡,N,M,++(s) 

= ̡ n,N,M,ҍ+(s) + nl=0ҍ1 JQ,N,snҍl ̡ l,N,M,ҍ+(s) hM(nҍl) × 

Enҍl(h), where  
Table 4 

UpperN = 600 computed, and disc approximation D centred at  cbounds Ғ 0.758687 nh,N,, of+( sradius) for  E 2Ғtransfer0.957589. operator Ls with s = sҍ,  

 

 

n 

  h ij,600,+(s), 
i 

which for 26
 
Җ n

 
Җ 28 = Q are 

2̡6
M,

,N,
+ 

+(s) = (7.0935010683530957339350457686786431427508...) × 10ҍ103Σ ʲ27M,,N,+ +(s) = 

(7.0379118021870691622913562125699156503586...) × 10ҍ111Σ ʲ28
M,

,N,
+ 

+(s) = 

(3.5360715444914082167026977943200738452867...) × 10ҍ119, so in particular Proposition 3 gives 

 28 28 

× . (42) 

n 

It remains to derive the Euler bounds on the Taylor coefficients nɻ(s) for n җ 29. For s > 0, the functions w1,s(z) = 1/ (z + 1)2s 

and w2,s(z) = 1/ (z + 2)2s have maximum modulus on D when z = c ҍ , so 

  w1,s қ s and  w2,s қ  . (43) 

A computation using (43) gives 
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 w1,s қ Җ 1.2657276413750668025007241047661655434034644495987711959332997 

(44) 

and 

 w2,s қ Җ 0.5351507690357290789991731014616306223833750046974228167583536, (45) 

Table 5 

Euler bounds Ks
nEn(h) (on the nth Taylor coefficient of the determinant for the E2 transfer operator Ls) with s = sҍ. 

× 

thus 

 w1,s қ+ w2,s қ Җ 1.8008784104107958814998972062277961657868394542961940127, 

(46) 

and therefore Ks ) is bounded by 

 Ks Җ 4.098460062897625162727128104751085223751087056801141844. (47) 

Now
 
| nɻ(s)|

 
Җ Ks

nEn(h), and we readily compute (see also Table 5) that 

Ks
29E29(h) < 3.991837779947559 × 10ҍ109 , 

Ks
30E30(h) < 2.976234382308237 × 10ҍ117 , 

and we easily bound 

қ  қ KsnE (h × ҍ109 . (48) 

 n ) < 4 10 
 n =29 

Combining (48) with (42) gives, for s = sҍ, 

 қ  × ҍ
103 . (49) 

 ɻ n(s) < 7.2 10 

n=26 

n KsnEn(h) 

26 
27 
28 
29 
30 
31 
32 

1.7205402918728479471042338789554711763326940740466743 × 10ҍ86 

9.5978010692386084808038394023982841330869065861226330 × 10ҍ94 

2.737417814947540988901740511033648063467122791471394 × 10ҍ101 

3.991837779947558814663544901589857709951099663953540 × 10ҍ109 

2.976234382308236859886112971018657684658758908913873 × 10ҍ117 

1.134550484615336330129091070266090192517568093692057 × 10ҍ125 

2.211276104496105402944501365002379392554065222342807 10ҍ134 
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Combining (49) with (40) then gives 

 D . (50) 

It remains to show that D(s+) is positive. In view of (41), for this it is sufficient to show that 
|

 =26 

nɻ(s)| < 10 for s = s+. In fact the stronger inequality (49) (which we have proved for s = sҍ) can also be established for s = s+, 

using the same general method as for s = sҍ, since the intermediate computed values for the norms  Ls(mk) ,  

Table 6 

Upperand disc computed D centred Taylor at c  Ғbounds0.758687 , of radius) for  E Ғ2 0transfer.957589. operator Ls with s = sҍ, M = 400, N = 600,  

 

8712..10924195288715851308997962684496516540782177153876986826395013767082642019462375962430662506716612064307152569131758370772288306840900 
× 

10ҍҍ79 

× 10 

91023..663650269994059350891751457108890432732071400321264474469330002798155171165530321941301909639176345854820087927706592194812388623174 × 

1010ҍҍ1215 

111215..852432231426985677242256749394660424524281973738655903624698338156410594019029701157763137174999660406055719684315663742414740542830 ×
× 

1010ҍҍ1822 

131475..885051899585888435773423343552379506988548488916647635158418850050747100233562844459509048233665882356972216861732638504210303895791 ×
× 

1010ҍҍ2630 

151617

233...099041252743632552050904627419516338940376363311264696658378460074847903057092197973673777897871275775937411069875824271304861796633545294989

432407670621821723745739978197914980574557158230527004120 ××
× 

1010ҍҍҍ343944 

18 1.643668789004361742194939215063268183353658869302130234108066601797 × 10ҍ49 

2319202221

13248.....684346574656834154151019745874691411943090212034757600858330903379838399584352345469129330407144020664484419600898330810312866654442050690

5024050210838826714702353020109056553902868121864493586298115190278884881477531527924042953335489527056899399919467649026398902198304467012708946

65408875558427194881417102614891830624858080153 
×
×××× 1010101010ҍҍҍҍҍ5561748067 

24 9.342902106203197589981798759839115586201690686680609856085682409723 × 10ҍ88 

252627

377...619108237222286228053279698772494015265793565703855372730270709162093501068353095733935045768678643142750820213471851289238569496030379118021

8706916229135621256991565035863969280596747417493561373 
×
××10101010ҍҍҍ10311195 

http://www.ijcstjournal.org/


International Journal of Computer Science Trends and Technology (IJCST) ς Volume 6 Issue 3, May - June 2018 

 

ISSN: 2347-8578                          www.ijcstjournal.org                                                  Page 88 

 

   

28 3.53607154449140821670269779432007384528678228577107631018236474461 ×× 10ҍ119 

computed approximation bounds nh,N,+(s), computed 

Taylor bounds n̡,N,
M,+

+(s), and Euler bounds Ks
nEn(h), are 

sufficiently close to those for s = sҍ = s+ ҍ 2/10101.  

Combining (41) with inequality (49) for s = s+ gives the 

required positivity 

D .

 (51) 

The map s Ҧ D(s) is continuous and increasing, so the 

fact that D(sҍ) < 0 < D(s+) implies that its unique zero 

(which is equal to the dimension) is contained in 

 

Remark 9. If, as in Theorem 1, our aim is to rigorously 

justify 100 decimal places of the computed approximation 

sP to the Hausdorff dimension, then roughly speaking P 

should  

smaller than 10ҍ100 for s Ғ sP. Since | nɻ(s)| is bounded 

above by the upper computed be chosen so that the 

modulus of the tail ) can be shown to be 

somewhat  

Taylor bound ), the fact that 2̡6
M,

,N,
+ 

+(s) < 7.1 

×10ҍ103 (see Table 6) for suitably large M,N, together with 

the rapid decay (as a function of n) of these bounds, 

suggests that we may choose P = 25, i.e. that it suffices to 

explicitly locate the periodic points of period Җ 25. 

The choice of the value Q is relatively unimportant, as 

the upper computed Taylor bounds are only slightly more 

time consuming to compute than the (instantaneously 

computable) Euler bounds; in the proof of Theorem 1 we 

chose Q such that the Euler bounds Ks
nEn(h) were 

substantially smaller than 10ҍ100 for n > Q (our choice Q = 

28 has this property, as does any larger Q, and indeed the 

choice Q = 27 may also be feasible, cf. Table 5). 

The values M and N are chosen large enough to ensure 

that the bound (7) on | nɻ(s)| is rendered essentially as 

sharp as possible using our method (see Proposition 1) of 

bounding approximation numbers by approximation 

bounds; equally, the values M and N are of course chosen 

small enough to allow the n̡,N,
M,+

+(s) to be evaluated in 

reasonable time. 
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