
International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 3, May - Jun 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 14

A Study of NLP Methods for Converting Natural Language into

Programming Language
Alind D. Naik [1], Prof Dr. J. A. Laxminarayana [2]

Department of Computer Science and Engineering

, Goa College of Engineering

 Goa University - India

ABSTRACT
The implementation of automated solution requires time and some knowledge about the system and its working. Many

researchers have proposed the automated solutions to save time but they require the input from user. The interaction with

different applications may be a tedious task for a user as different applications will require different user inputs. The simplest

way for these automations is to support natural language input. The main problem is to choose optimal language processing

model. Without an optimal language processing model, there can be no learning and processing the natural language input from

the user. We explore SyntaxNet, which is an approach for natural language processing, that can be used for converting a natural

language into a programing language.

Keywords :— NLP, natural language processing model, Parsey McparseFace, NLP to Programing language, dependency parser,

Treebank, Transition base dependency parser.

I. INTRODUCTION

Natural language processing (NLP) is a domain which is

concerned with understanding and processing natural

languages. With NLP we can use natural language as an

interface between human and machines. Natural language

such as English is a very complex language and it is difficult

for natural language processing algorithms to process it. Now

there is ample amount of data available to build a data driven

model, so that we get a more precise NLP model.

For understanding linguistics and natural language

processing, dependency based grammar has played an

important role. Dependency based grammar is highly

motivated by the efficiency that results from more constrained

parsing problem for these type of representation and the

usefulness of bi-lexical relations in ambiguity problems in a

language [1].

In this paper we discuss the use of SyntaxNet based model

which is a data driven model that is trained on large datasets.

These datasets are also known as Treebank. This model uses

transition based dependency parsing to parse a natural

language sentence and produce a dependency parse tree which

gives the semantic meaning and the structure of a sentence.

This dependency tree can be used in various applications of

natural language processing [2]. In this paper we show how

SyntaxNet models can be used to parse natural language input

and how the output of this model can be processed.

II. TRANSITION BASED DEPENDENCY

PARSER

Transition based dependency parser carries out a word by

word linear scan over the input sentence to build a

dependency parse tree [12]. At every iteration parser

maintains a partial parse tree created by examining the part of

sentence. For maintaining this partial parse tree parser uses a

stack to store the words which are currently being processed.

Parser also keeps a buffer to store the words of the sentence

that are not processed. The parser than carry on to apply

transitions to the words remaining in the buffer till all the

words in buffer are processed and buffer get empty. The

output of dependency parser after processing entire sentence is

a complete dependency parse tree.

The initial step of the parsing process is to have the

sentence tokenised and loaded on the buffer. The initial step

creates an empty ROOT node on the stack. The parser uses

three transitions that are applied to each word processed. The

left arrow marks the second word on the stack is a dependent

of the top word on the stack, and then removes the second

word from the stack if the stack contains at least two words.

The right arrow mark the top word on the stack is a dependent

of the second word on the stack, and pops the first word from

the stack if the stack contains at least two words and the shift

transition removes a word from the buffer and pushes it onto

the stack provided that buffer is not empty.

With these three types of transitions, a parser can generate

dependency parse tree for any given English sentence. With

each transition parser also specifies the type of the

relationship between the head and dependent being described.

The parser decides among transitions at each state using a

neural network classifier which uses trained dataset (Treebank

III) containing dependency parse tree for every sentence it can

encounter. The parser current parse tree of already parsed

words are provided as input along with the new word to the

classifier, so parser then chooses among the possible

transitions to take for the new word. These representations

describe various features of the current stack and buffer

contents in the parser state [2].

Example of dependency parse tree for the input “Alice saw

Bob in the alley.” can be seen below.

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 3, May - Jun 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 15

Fig. 2.1 Dependency parse tree

III. TREEBANK

Human beings around the globe have drawn in the syntactic

structures of sentences of various languages as dependency

graphs and these are referred to as Treebank. People spend

years working on creating CFG (Context free grammar) for

specific language but no one really uses them whereas

Treebank is a valuable resource of linguistic. Examples of

Treebank are Penn Treebank which contains standard POS

tagging[3], the English “Treebank Union” multi-domain

corpus containing data from the OntoNotes corpus[4] and the

English Web Treebank [5].

IV. SYNTAXNET

SyntaxNet [7] is a framework for transition based

dependency parser, it is the main component of many system

that uses natural language processing. It takes a sentence as an

input, it than tags each word in that sentence with a part-of-

speech (POS) tag that identifies the word's syntactic function,

it also identifies the syntactic relationships between words.

These relations are represented in the form of dependency

parse tree. This syntactic relationship between the words and

the position of these words in the dependency parse tree

provides enough information to understand the meaning of the

input sentence.

It is an open source framework which is available online1.

SyntaxNet can be downloaded and the model can be trained

with application specific Treebank dataset. SyntaxNet uses

universal dependency. The most complex trained SyntaxNet

models are also available as open source API.

In English language sentences can have multiple meanings

giving raise to ambiguity problem in language processing

model. To resolve the ambiguity problem in a language

SyntaxNet uses neural networks to take best decision. It does

so by processing the input sentence from left to right using

stack and buffer as discussed in section II. The dependencies

between words are added one after the other as each word in

the sentence is processed incrementally. At particular point in

processing, parser uses neural network scores for making

plausible decision to resolve ambiguity problem. For this

reason, it is uses beam search in the model. Instead of taking

the first best decision at every point, it keeps multiple

hypotheses for the processed sentence and chooses the best

upon processing the entire sentence. Hypotheses that have

higher rank are kept under consideration while remaining

hypotheses are discarded [7].

V. PARSEY MCPARSEFACE

Prasey McParseface3 is a model based on SyntaxNet which

is trained with the TensorFlow2 framework. Parsey

Mcparseface is trained on English corpus. This model accepts

English sentence as input and give dependency parse tree

along with part-of-speech tags as discussed in section II. [7]

have presented a simple and yet powerful model architecture

that Parsey McParseface uses, that produces best results for

POS tagging and dependency parsing. This model combines

the transition-based parsing algorithms and the modeling

power of neural networks. [7] demonstrated that feed-forward

network[8] without recurrence can outperform recurrent

models such as LSTMs(Long short-term memory) when they

are trained with global normalization transition based

processing while being significantly faster. Global

normalization helps the model overcome the label bias

problem from which locally normalized models suffer.

This model performed dependency parsing on the Wall

Street Journal and achieved the best ever published unlabeled

attachment score of 94.61%. Parsey McParseface is pre-

trained, state-of-the art English dependency parser, which is

tuned for a balance of speed, simplicity, and accuracy [7].

Parsey McParseFace model is available for developers on

Google’s Deep AI platform for free with limited access1.

Developers can directly copy the code and use the API key for

the access of this model. Paid version is also available with no

restriction on usage. It takes English sentence as input and

generates dependency parse tree. This dependency parse tree

contains the part-of-speech tag and bilingual dependency

labels. The output of the model is represented in the form of

JSON data structure [9]. This JSON data can be parsed to

extract the required information from the parse tree. The

example of parse tree generated by the parser on the input of

sentence “Alice saw Bob in the alley.” is shown in fig. 5.1.

Output of the Parsey McParseface is shown in above figure.

It is in Json(JavaScript Object Notation) that can be parsed to

extract the labels and dependency between the lables. The root

node is represented as ROOT which contain three data fields

index, token, tree, pos and label.

1. Index –the position of the token in sentence.

2. Token –the word from the sentence it referring to.

3. Tree – it is the sub-tree of the current node in

dependency tree.

4. POS – Part-of-speech tag

5. Label – gives the label for the word(like noun, verb,

determiner etc.)

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 3, May - Jun 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 16

[

 {

 "tree": {

 "ROOT": [

 {

 "index": 2,

 "token": "saw",

 "tree": {

 "punct": [

 {

 "index": 7,

 "token": ".",

 "pos": ".",

 "label": "."

 }

],

 "dobj": [

 {

 "index": 3,

 "token": "Bob",

 "pos": "NNP",

 "label": "NOUN"

 }

],

 "prep": [

 {

 "index": 4,

 "token": "in",

 "tree": {

 "pobj": [

 {

 "index": 6,

 "token": "alley",

 "tree": {

 "det": [

 {

 "index": 5,

 "token": "the",

 "pos": "DT",

 "label": "DET"

 }

]

 },

 "pos": "NN",

 "label": "NOUN"

 }

]

 },

 "pos": "IN",

 "label": "ADP"

 }

],

 "nsubj": [

 {

 "index": 1,

 "token": "Alice",

 "pos": "NNP",

 "label": "NOUN"

 }

]

 },

 "pos": "VBD",

 "label": "VERB"

 }

]

 },

 "sentence": "Alice saw Bob in the alley."

 }

]

Fig. 5.1 Output of Parsey McParseFace

The dependency between the children are given by the

labels such as “ROOT”, “punct”, “dobj”, “prep” and “nsub”

in fig. 5.1. These dependencies between the words are

described in dependency manual [10]. This dependency

manual contains approximately 50 grammatical relationships

between the words in English language. These dependencies

are binary relationship between the governor (parent node)

and the dependent (child node). In figure 5.1 the “saw” is the

parent node and the dependency label between “saw”(parent

node) and “Bob”(child node) is “dobj”. Similarly dependency

label for words “saw”(parent node) and “Alice”(child node) is

“nsub”. Where “dobj” is a directed object (saw, Bob), “nsub”

is a nominal subject (Alice, saw) , “prep” is a prepositional

modifier (saw, in), “pobj” is an object of preposition (in,

alley),and “saw” is the root[10].

A. Links and Bookmarks

1 github.com/tensorflow/models/tree/master/syntaxnet

2 www.tensorflow.org

3 deepai.org/ai-text-processing

VI. CONCLUSIONS

Parsey McParseFace is a model base SyntaxNet which is an

open source tool which is freely available. Parsey

McParseFace is a state-of-the art pre-trained model for

English dependency parsing. No additional training is needed

for this model and can be directly used to get dependency

parse tree for English Language. For other languages

developers can download the SyntaxNet framework and can

train the model with language specific Treebank. Since Parsey

is pre-trained it is simple to use and understand the linguistic

structure of English grammar. Output of these can be directly

used as an intermediate step while converting natural language

into programing language. SyntaxNet can be used for

sentiment analysis, text summarization and text tagging..

REFERENCES

[1] Bernd Bohnet and Joakim Nivre. 2012. A transition-

based system for joint part-of-speech tagging and labeled

non-projective dependency parsing. In Proceedings of

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 3, May - Jun 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 17

the 2012 Joint Conference on Empirical Methods in

Natural Language Processing and Computational Natural

Language Learning.

[2] Mrd. Ing. Alexandru Trifan, Mrd. Ing. Marilena

Angheluș, Ș.L. Dr. Ing. Rodica Constantinescu. Natural

Language Processing Model Compiling Natural

Language into Byte Code Informatics Engineering and

Computer Science, Faculty of Electronics,

Telecommunications and Technology of Information.

[3] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann

Marcinkiewicz. 1993. Building a large annotated corpus

of English: The Penn Treebank. Computational

Linguistics.

[4] Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance

Ramshaw, and Ralph Weischedel. 2006. Ontonotes: The

90% solution. In Proceedings of the Human Language

Technology Conference of the NAACL, Short Papers.

[5] Slav Petrov and Ryan McDonald. 2012. Overview of the

2012 shared task on parsing the web. Notes of the First

Workshop on Syntactic Analysis of Non-Canonical

Language (SANCL).

[6] Danqi Chen and Christopher D. Manning. 2014. A fast

and accurate dependency parser using neural networks.

In Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing.

[7] David Weiss, Aliaksei Severyn, Alessandro Presta,

Kuzman Ganchev, Slav Petrov and Michael Collins,

2017. Globally Normalized Transition-Based Neural

Networks Daniel Andor, Chris Alberti, Google Inc New

York, NY.

[8] David Weiss, Chris Alberti, Michael Collins, and Slav

Petrov. 2015. Structured training for neural network

transition-based parsing. In Proceedings of the 53rd

Annual Meeting of the Association for Computational

Linguistics.

[9] Felipe Pezoa, Juan L. Reutter, Fernando Suarez, Martín

Ugarte, Domagoj Vrgoč, 2016. Foundations of JSON

Schema. Proceedings of the 25th International

Conference on World Wide Web Pages 263-273

[10]. Marie-Catherine de Marneffe and Christopher D.

Manning, 2008. Stanford typed dependencies manual,

COLING 2008 Workshop on Cross-framework and

Cross-domain Parser Evaluation.

http://www.ijcstjournal.org/

