
International Journal of Computer Science Trends and Technology (IJCST) – Volume 8 Issue 4, Jul-Aug 2020

ISSN: 2347-8578 www.ijcstjournal.org Page 1

Providing a Dynamic Model to Achieve Quality of Service in

Software Defined Networking

Afraa Mohammad [1], Ahmad Saker Ahmad [2]

Department of System and Computer Networks Engineering Tishreen University

Latakia – Syria

ABSTRACT
Software Defined Networking (SDN) is considered one of the most common techniques in the world of networks. It is

characterized by flexibility and ease in network management and the ability of continuous development because it separates the

control layer from the data layer. The controller is the most important component in SDN. It is located in the control layer, and it

is responsible for the programming and management of the network. One of the important issues that must be worked on in the

world of networks is the Quality of Service (QoS), which ensures the best performance in data routing. QoS specially handles

some data and routes it in the best path. Providing the necessary bandwidth for data transmission plays the biggest role in

achieving the requirements of QoS. It guarantees that no congestion or loss of some packets occurs. In this paper, we introduce a

dynamic mechanism that classifies packets into several classes according to priorities and then searches for the best path that

provides the necessary bandwidth and low packet loss rate. This mechanism ensures QoS requirements. In achieving this

mechanism, we relied on the concepts of differential services and traffic engineering. We implemented it using the RYU

controller. The results showed that the proposal provides an effective mechanism in achieving QoS in SDN networks.

Keywords: — Software Defined Networking, Quality of Service, Priority, Traffic Engineering, RYU controller.

I. INTRODUCTION

Software Defined Networking (SDN) architecture consists

of three layers (application layer, control layer, and data layer),

through this architecture the control layer is separated from

the data layer, unlike traditional networks. This separation

facilitates the ability to expand the network and add new

elements with high flexibility. The controller is the most

important component of SDN. It is located in the control layer.

It has a global view of all network topologies. Through it, we

can program the applications that we want. The controller is

responsible for all routing decisions in the network, and the

function of infrastructure devices is limited to implementing

the decisions of the controller. It communicates with the data

layer through the OpenFlow protocol, which organizes the

communication between the controller and data layer devices

[1]. SDN has a high flexibility in developing the network and

achieving the best performance, including achieving QoS,

which is considered an important research field. The

importance of QoS stands out with the increased use of

multimedia applications that are sensitive to the requirements

of QoS.

QoS organizes and controls the bandwidth to determine which

flows must pass the network first. To achieve QoS, the

following criteria must be considered: bandwidth (BW), delay,

jitter, and packet loss rate [2]. SDN has provided solutions to

many problems facing networks including QoS by providing

the appropriate bandwidth [3]. Bandwidth plays a primary role

in achieving QoS and improves network performance in

general [4].

II. THE IMPORTANCE OF RESEARCH AND ITS

OBJECTIVES

The importance of the research comes through introducing

a new mechanism in achieving QoS in SDN by using the

concept of differential services (DiffServ) and traffic

engineering (TE) to choose the most appropriate path that has

the best available bandwidth and lowest packet loss rate

according to a dynamic method by taking advantage of

controller features and OpenFlow protocol.

This research aims to achieve QoS in the best way that

improves the process of forwarding packets in the most

appropriate path according to the nature of the data, the state

of the network, and the available paths.

III. RESEARCH METHODOLOGY

The research was done by using Mininet simulator which is

commonly used in building SDN networks, in addition to

using Miniedit tool to build the network topology.

We implemented the applications using the RYU controller,

which is an open-source controller programmed in the Python

language. We also used Iperf tool to measure the bandwidth

and jitter.

IV. OPENFLOW PROTOCOL

OpenFlow is considered the most important protocol in SDN.

It organizes the communication between the controller and the

data layer devices. The basic idea of the operation of

OpenFlow is shown in Fig.1 [5]. When a new flow reaches the

switch, it is matched with the set of rules or entries in the flow

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 8 Issue 4, Jul-Aug 2020

ISSN: 2347-8578 www.ijcstjournal.org Page 2

table. Then this flow is handled according to the following

cases:

• In the case of matching, the packet is handled according to

the existing rule and then the data in the statistics column is

modified.

• In the absence of a match, this packet will be forwarded

completely or its header to the controller to take the

appropriate decision.

• After the decision has been made, the controller sends it to

the switch and updates its flow table.

• This mechanism is done by exchanging several messages

between the controller and the switch.

Fig. 1 OpenFlow mechanism

V. OPENFLOW MESSAGES

The communication between the controller and the switch

is established by exchanging several messages, the most

important are [6],[7]:

1- OFPT_HELLO: It is a welcome message when the

communication between the controller and the switch is

established, and it is exchanged in both directions. It includes

the protocol version (OpenFlow protocol version).

2- OFPT_ECHO_REQUEST: It is exchanged in both

directions to check the validity of the connection.

3- OFPT_FEATURES_REQUEST: It is sent from the

controller to the switch and through it, the controller inquires

about the state of the switch and its features.

4- OFPT_FEATURES_REPLY: It represents the

response from the switch to the controller message

(OFPT_FEATURES_REPLY).
 After the communication between the switch and the

controller is established, several messages are sent to organize

flows and deal with them. The most important of these

messages are [8],[9]:
1- OFPT_PACKET_IN: If a specific packet is received

on one of the switch ports, but there is no matching rule for

this flow, then the switch will send this packet to the

controller to make the appropriate decision to deal with it.

2- ADD-MODIFY-DELETE: It represents (add-

modify-delete) for the rules within the flow table. It is sent

from the controller to the switch.

3- STATE_REQUEST: The controller sends it to the switch

to know the status of the switch ports. The switch

responses with the message STATE_REPLY.

4- BARRIER_REQUEST: The controller sends it to the

switch to ensure that the switch has handled all requests

received before this message.

5- OFPT_ERROR: It is sent by the switch in case

something goes wrong so the controller knows about it.

6- SET_CONFIG: The controller sends it to the switch to

confirm the expiration date of the stored rules in the flow

table.

VI. QUALITY OF SERVICE IN SDN

Quality of Service (QoS) is one of the basic concepts that

characterizes the performance of any technology. It shows

how some data is specially handled, such as multimedia

applications that are assigned a high priority in data

transmission.

To achieve QoS, attention must be paid to the following

criteria: delay, bandwidth, packet loss rate, and jitter.

Quality of Service is achieved through several techniques,

including giving traffic a specific pattern so that the

bandwidth does not exceed a predetermined value, and also

includes the Resource Reservation Protocol (RSVP), Service

Level Agreement (SLA), Integrated Services (IntServ) and

Differentiated Services (DiffServ) [10].

Each of these techniques has its way to achieve QoS most

properly, according to the state of the network.

A. QoS models

Packets are handled according to three models [11]:

1- Best Effort: In this case, packets are not classified,

and they have the same priority and there is no special

treatment for any type of data. This model does not achieve

the basic requirements of QoS.

2- Integrated Services (IntServ): In this model,

resources are reserved in advance for a specific flow and these

resources remain dedicated to this flow along the path without

regard to the type of packets.

3- Differentiated Services (DiffServ): It is considered

one of the most important models of QoS. Flows are

categorized into several classes according to what the flows

need from bandwidth, delay, etc., and prioritize the classes

over the other. That is, it provides a better service for some

packets than the service provided for other packets.

For example, multimedia applications are given high priority

to other applications. In this model, we do not need to

previously reserve resources.

Internet Engineering Task Force (IETF) has defined three

types of QoS [12]:

- Best Effort (BE).

- Assured Forwarding (AF).

- Expedited Forwarding (EF).

B. Assured forwarding (AF)

It defines 12 classes of service. In this model, the marking

of packets is done according to their classes to achieve QoS

on this type. For this purpose, there is a field which is a type

of service (ToS) in IP header with a length of 8 bits.

Six of these eight bits are used to define the class of service

and represent the length of the differentiated service code

point (DSCP) field and the remaining bits are used for coding

purposes [13].

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 8 Issue 4, Jul-Aug 2020

ISSN: 2347-8578 www.ijcstjournal.org Page 3

AF defines two concepts:

1- Queuing System: It includes four separate queues,

each one has its resources.

2- Drop Priority: Within each of the previous four

queues, there are three probabilities (low, medium, and high)

related to the drop of packets. When congestion occurs, the

packets with the highest drop priority will be dropped. Thus

the previous two concepts define 12 classes of service.

AF values are represented as AFxy where x refers to the queue

and y refers to the drop priority.

For example, if there are packets with values of AF11, AF12,

AF 13, that means they have the same value of x and thus all

of them will go in the same queue.

While packets with values of AF 21, AF22, AF23 will go in

another queue which is different from the previous queue.

Within each queue, i.e. the same x and different values for y

like (AF21, AF22, AF23) that means they have different drop

priority values, so each packet will be handled in a different

way to avoid congestion [13].

C. Expedited forwarding (EF)

It provides forwarding of packets that are highly sensitive

to delay, jitter, and packet loss rate, so it is especially used in

transmission VOIP packets because they require less delay,

less jitter, and fewer loss rates. It has one value for DSCP

which is DSCP = (101110)2 = (46)10 [14].

VII. TRAFFIC ENGINEERING (TE)

Traffic Engineering (TE) is an important network

application that provides packet measurement and

management in the network. It selects the best routing paths

according to the requirements of QoS. TE includes traffic

measurement and traffic management.

Traffic measurement is responsible for monitoring and

analyzing traffic, including[15],[16]:

- Network topology parameters: They represent the number of

nodes in the network and how they are distributed, bandwidth,

port statistics, and other information related to the network

topology.

- Network traffic parameters: They include the number of

packets that pass through the network through a specific port.

- Network performance parameters: They include delay,

available bandwidth, packet loss rate, and throughput.

While traffic management includes different applications

such as QoS, load balancing, energy-saving, and other

applications. Depending on the state of the network, and

through the information gathered from TE, and by analyzing

the flow statistics, we can predict the incoming packets later

and thus avoid network congestion, which improves the

effectiveness of the network.

SDN provides flexibility in the implementation of TE within it

due to:

- The controller and its ability to monitor the network

topology continuously, and follow the changes that occur in it,

through the Link Layer Discovery Protocol (LLDP) [17].

- In general, there are two types of packets in SDN:

- Data traffic packets: They represent the exchanged

data between switches.

- Control traffic packets: They represent the exchanged

data between the controller and switch through the

OpenFlow protocol.

VIII. DEFAULT ROUTING ALGORITHM IN SDN

The default routing algorithm in SDN is the shortest path

routing algorithm (Dijkstra). The path with the least number

of hops between nodes is chosen [18]. This algorithm is not

concerned with other requirements for choosing a path, such

as the available bandwidth between the nodes, the delay that

may occur in the network, and whether the chosen path is

busy or not. So we compare our proposal with a default

algorithm to measure its effectiveness in achieving QoS.

IX. MECHANISM OF THE PROPOSAL

Our proposal depends on implementing of DiffServ and TE

to select the best path that guarantees QoS requirements. The

steps of our mechanism are:

1- We achieve the concept of differential services by

creating queues and assigning them to each class of packets to

be transferred in the network. This is done by defining classes

and giving each class a different priority from the other

classes. When a packet arrives at the controller (the switch

sends it to the controller), it detects the class of these packets

and selects the packet that has a high priority in transmission,

and places it in the appropriate queue.

Through this step, we will be able to choose the packets that

must be sent first because they have a high priority over the

rest of the packets, and put each packet from a queue to be

ready for transmission.

2- Traffic engineering is applied through monitoring the

network and analyzing the flows. It is considered one of the

important steps that help in choosing the best path to forward

packets. It is necessary to collect the statistics for each of the

switch ports which are used in transmission and reception, in

addition to the statistics of each flow that is sent in the

network.

To do this, we implement a special application to monitor the

network using the RYU controller. This application must also

check the state of connection between switches in the

network, and this is done through the use of a special event to

monitor the state of switches.

Switch monitoring application is implemented to obtain

statistics periodically in the network, ensuring that changes

that may occur in the network are monitored.

The monitoring application sends OFPFLOWStatsRequest to

the switches to get the statistics of the flows, and the response

arrives according to the OFPFLOWStatsReply message, and

to get the port statistics, OFPPORTStatsRequest is sent, and

the response arrives through OFPPORTStatsReply message.

By implementing this application, we get all of these stats:

(rx_pkts: number of received packets, tx_pkts: number of

transmitted packets, rx_Bytes: number of received bytes,

tx_Bytes: number of transmitted bytes, tx_error: transmission

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 8 Issue 4, Jul-Aug 2020

ISSN: 2347-8578 www.ijcstjournal.org Page 4

errors, rx_error: errors of receive). We will use these stats to

calculate the available bandwidth and packet loss rate.

3- After selecting the packet to be sent and within any

queue, it is necessary to specify which path achieves QoS, and

for this, we take the following steps:

a) Each link in the network has a predefined bandwidth

(BW). When a packet is sent on this path and by monitoring

the network, we can know the load on this link through:

load= rx_pkts + tx_pkts (1)

That means the load on the link is equal to the number of

received and transmitted packets through this link.

b) We define the available bandwidth on this link which is

(BW2) through:

 BW2= default BW - load (2)

c) After calculating the available bandwidth for each link,

we decide to choose the most appropriate path that achieves

the best consumption for the bandwidth and provides the

transmission of packets without congestion or delay. This is

done by comparing the available bandwidth with the packet

requirements of the needed bandwidth for transmission. The

available bandwidth must be equal or greater to the required

bandwidth.

d) To make the final decision about transmission, we must

know the packet loss rate on this path between the source and

destination which is calculated as:

Packet Loss Rate(S,D)= (tx_pkts - rs_pkts)/tx_pkt (3)

Where S refers to source and D refers to destination.

Through (3), we can choose the path that achieves the lowest

packet loss rate. From steps (c) and (d), we make the decision

to choose the most appropriate path for transmission, which

has the best available bandwidth and the lowest packet loss

rate.

e) If this path does not provide the requirements, a new

path must be chosen, so the statistics are recalculated again,

and then each of the equations (1,2,3) is recalculated until we

find the best path.

4- This mechanism is implemented in the controller

according to the following steps:

a) When a packet reaches the switch and there is no rule for

it, it is forwarded to the controller by using the

OFPT_PACKET_IN message.

b) The controller checks the packet and determines the

class by the existing DSCP value, i.e. the packet classification

and puts it in the appropriate queue (which was previously

defined).

c) Depending on the chosen path according to both the best

available bandwidth and the lowest packet loss rate, and

taking into account the type of service to, the proposed

algorithm selects the best path to forward the packets

d)The controller sends a FLOW_MODIFY or

FLOW_ADD message to modify or add a new row to the flow

table for each switch along the chosen path that includes the

flow properties and the required action.

e) Packets are sent using a PACKET_OUT message to the

switch to be forwarded in the network.

f) The proposal is compared to the default routing

mechanism in SDN which is the shortest path routing

algorithm (Dijkstra).

g) This proposal should be implemented with every new

packet to be forwarded in the network.

X. EXPERIMENT AND RESULTS

We used Mininet simulator, and we built a network using

the Miniedit tool. Our network consists of RYU controller, 4

switches (S1, S2, S3, S4), the bandwidth for each link

between the switches is 25 Mbps, and 10 hosts (h1, h2, h3, h4,

h5, h6, h7, h8, h9, h10) which are distributed according to the

topology as shown in Fig. 2.

Fig. 2 Network topology

We also used iperf tool to measure bandwidth and jitter. To

evaluate our proposal, we want to transfer 3 different classes

of packets (EF, AF, BE) from h3 to h9 according to the

parameters as shown in Table I.

TABLE I

SCENARIO PARAMETERS

We used three classes of packets: The first class is

expedited forwarding (EF) which is the most sensitive to

delay and requires a specific bandwidth. It has a value

(DSCP= 46). We want to transfer 24Mbps of this class. The

second class is assured forwarding (AF) whose data is also

sensitive to delay and bandwidth, and it has a value

(DSCP=26). We want to transfer 5 Mbps of this class. The last

class is (BE) which is best effort model and does not require

any special treatment. It has a value (DSCP= 0). We want to

transfer 1Mbps of this class.

Period of

transmission

Size Class DSCP

value

Source Destination

10 sec 24

Mbps

EF 46 h3 h9

10 sec 5

Mbps

AF 26 h3 h9

10 sec 1

Mbps

BE 0 h3 h9

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 8 Issue 4, Jul-Aug 2020

ISSN: 2347-8578 www.ijcstjournal.org Page 5

According to our proposal, we must first define three

queues for the three classes of packets according to the

specifications as shown in Table II. For each queue, we define

its ID, as well as the minimum and maximum rates, and we

assign each class to a queue.

TABLE II

QUEUE SPECIFICATIONS

Queue

ID

Class Max rate Min rate

Queue 1 EF 25 Mbps 23 Mbps

Queue 2 AF 25 Mbps 5 Mbps

Queue 3 BE 25 Mbps 1 Mbps

A. Measuring bandwidth for EF packets

We want to transfer 24 Mbps of EF packets according to

the scenario parameters as shown in Table I. We obtained the

results as shown in Fig. 3.

Fig. 3 Bandwidth consumption for EF packets

Fig. 3 shows that the value of the bandwidth consumption

for EF packets with the implementation of our proposal

maintained very close values of 24Mbps and did not decrease

from the value of 23Mbps. That means they remained within

the defined values for queue 1 as in Table II.

While with the Dijkstra algorithm it reached 20 Mbps and

then it started to decrease to 10 Mbps.
The reason for this is when the marked packet with EF

reaches the controller, it detects its class and places it in the

appropriate queue for it which is queue1. EF packets take

priority over the rest of the other packets because DSCP = 46.

According to our proposal, the path (s2-s1-s4), which is

suitable for transmission of the EF packet, whose size

according to Table I is 24 Mbps. The same path will also be

chosen by Dijkstra except that it suffers from congestion due

to the presence of other packets to be transferred. This

explains that the value of BW when using Dijkstra was low,

and continued to decrease during the transmission period

10sec.

B. Measuring bandwidth for AF packets

We obtained the results as shown in Fig. 4 during

transmission 5 Mbps of AF packets according to the scenario

parameters as shown in Table I.

Fig. 4 Bandwidth consumption for AF packets

Fig. 4 shows that the value of the bandwidth for AF, with

the implementation of our proposal, maintained very close to

5Mbps and did not decrease from this value. That means they

remained within the defined values for queue 2 as in Table II.

While with Dijkstra algorithm, it reached 5 Mbps, and then it

started to decrease to 1 Mbps. The reason for this is that the

AF packets whose DSCP= 26 have a lower priority than EF so

they are next in the transmission process and are placed in

queue 2. According to Dijkstra algorithm, the path (s2-s1-s4)

will be chosen to transmit packets from h3 to h9, but this path

suffers from congestion due to the previously transported EF

packets which mean that there is congestion on this path.

When implementing our proposal, AF packets will go to

another path (s2-s3-s4), because it achieves a good and

sufficient bandwidth, and also the rate of discarded packets is

currently equal to zero because there is no previous traffic on

this path. Thus our proposal chooses (s2-s3-s4), which

effectively improves bandwidth consumption.

C. Measuring bandwidth for BE packets

We obtained the results as shown in Fig. 5 during the

transmission of 1 Mbps of BE packets according to the

scenario parameters shown in Table I.

Fig. 5 Bandwidth consumption for BE packets

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 8 Issue 4, Jul-Aug 2020

ISSN: 2347-8578 www.ijcstjournal.org Page 6

Fig. 5 shows that the value of the bandwidth for BE packets,

with the implementation of our proposal, maintained very

close of 1 Mbps and did not decrease from this value, i.e. they

remained within the defined values for queue 3 as in Table II.

While with Dijkstra algorithm its greatest value was 0.4 Mbps

and then it started decreasing to 0.2 Mbps. The reason for this

is that the BE packets are considered to be the lowest priority

and are placed in the BE queue. Therefore, the controller

chooses them after sending EF and AF packets.

According to Table I, the size of this packet is 1Mbps and the

appropriate path must be chosen for it. We find that our

proposal chooses the path (s2-s3-s4) because it guarantees

sufficient bandwidth for it, and achieves a small packet loss

rate according to the statistics that the switch sends to the

controller via OpenFlow protocol.

Depending on Dijkstra algorithm, the path (s2-s1-s4) will be

chosen to forward packets from h3 to h9, but this path suffers

from congestion due to the transmission of previously AF and

EF packets which means that there is congestion on this path.

D. Comparison of bandwidth consumption between the

three classes (EF, AF, BE)

Fig. 6 shows the results of comparing the bandwidth

consumption when transmitting packets of the three classes

(EF,AF,BE). We find from Fig. 6 that the value of the

consumed bandwidth for each of the classes is almost constant

when using our proposal where the value of the bandwidth of

the EF packets is approximately 24 Mbps during the

transmission time of 10 sec, and the value of the bandwidth of

the AF packets is approximately 5 Mbps during the

transmission period 10 sec, the bandwidth value for BE

packets is approximately 1 Mbps over 10 sec.

Fig. 6 Bandwidth consumption for (EF,AF,BE) packets

We notice from these results that our proposal achieved the

best use of bandwidth because it finds the best routing path

according to the requirements of each class, after calculating

the available bandwidth and the packet loss rate for each

available path. While with Dijkstra algorithm and without the

use of the concept of priorities, we find that all packets will be

sent in the same path and without priority in transmission, so

the best use of the bandwidth is not used because it directs the

three packets in the same path, which causes network

congestion. Therefore, the value of the consumed bandwidth

for each class will decrease with increasing transmission

period as shown in Fig. 6.

E. Measuring jitter for EF packets

Fig. 7 shows the results of the jitter comparison when

transmission EF packets.

Fig. 7 Jitter for EF packets

Fig. 7 shows that jitter values are approximately constant

with a value of 10 msec when transmitting EF packets with

the implementation of our proposal. While with Dijkstra, it

has varying values starting from 32 msec up to 50msec, and

the reason is that our proposal forwards the packets in the path

that ensures the appropriate bandwidth for EF packets without

causing congestion on this path. Therefore, the packets arrive

without a significant delay, which means the jitter value

decreases. While with Dijkstra the packets of all classes go in

the same path which means congestion. Therefore, packets

will suffer from delay which causes an increase of jitter value.

That means the effectiveness of our proposal in achieving

QoS for EF packets.

F. Measuring jitter for AF packets

Fig. 8 shows the results of the jitter comparison when

transmission AF packets.

Fig. 8 Jitter for AF packets

By implementing our proposal, jitter maintained an almost

constant rate of 8.5 msec when transmission AF packets.

While with Dijkstra, it has different values starting from

25msec up to 41 msec. The reason is that our proposal

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 8 Issue 4, Jul-Aug 2020

ISSN: 2347-8578 www.ijcstjournal.org Page 7

forwards the packets in the path that ensures the appropriate

bandwidth of AF packets without causing congestion on this

path, after placing them in queue 2. As a result, the packets

arrive without significant delay, which means a low value of

jitter. While with Dijkstra the packets of all classes go in the

same path causing congestion, delay and jitter.

G. Measuring jitter for BE packets

Fig. 9 shows the results of the jitter comparison when

transmission BE packets.

Fig. 9 Jitter for BE packets

We find from Fig. 9 that the values of jitter during the

transmission of the last class of packets, which is BE, are

close to 1.5 msec when implementing our proposal. While

with Dijkstra it has different values starting with the 15 msec

up to 24 msec and this is due to the forwarding packets in a

path that ensures sufficient bandwidth for these packets

without congestion on it. Therefore, there is no significant

delay on this path, which means that the value of the jitter

decreases. While with Dijkstra, the packets of all classes go in

the same path which means congestion and delay which

causes increasing in the value of the jitter.

H. Comparing jitter values between the three classes

We find from Fig. 10 that our proposal has achieved a low

value of the jitter for the three classes compared to Dijkstra

algorithm and this is because that each class has sent in the

appropriate queue for it, and then choosing the best path.

While the congestion that occurs when using Dijkstra causes a

delay in the arrival of the packets to the destination and thus

increases the value of jitter for each class as shown in Fig. 10.

Fig. 10 Jitter values for (EF,AF,BE) packets

Our proposal introduced good values for jitter compared to

Dijkstra algorithm. EF and AF packets have close values for

jitter, which are low and suitable for transmission. While BE

packets do not require any special treatment, so jitter is not

considered important during the transmission of these packets,

but our proposal gave a low value of jitter. While when using

Dijkstra as shown in Fig. 10 jitter has reached high values,

especially for EF, which greatly affects the transmission of

these packets, specifically it requires high QoS. We find that

assigning a priority to packets and placing them in the

appropriate queue and then searching for the best path causes

the implementation of QoS in the best way.

XI. CONCLUSION

We introduced in this paper a dynamic mechanism to

achieve QoS in SDN, by applying traffic engineering in

addition to classifying packets based on the concept of

differentiated services (DiffServ). This mechanism selects the

best path that has the best bandwidth and the lowest packet

loss rate. This paper enables the best use of bandwidth in a

dynamic mechanism that guarantees the pre-classified flow

requirements for the bandwidth which avoids the congestion

in the network and reduces the jitter.

We can implement the proposal by using another controller

like FloodLight, or in a distributed SDN environment that

contains more than one controller, and we can also develop

this proposal by using genetic algorithms.

ACKNOWLEDGMENT

The authors wish to acknowledge the Faculty of

Information Engineering at Tishreen University for their

support of this research.

REFERENCES

[1] D. Rana, S. Dhondiyal, and S. Chamoli, “Software

Defined Networking (SDN) Challenges, issues and

Solution,” International Journal of Computer Sciences and

Engineering (IJCSE), vol.7, Issue-1, Jan 2019.

[2] V. Koryachko, D. Perepelkin, M. Ivanchikova, V. Byshov,

and I. Tsyganov, “Analysis of QoS Metrics in Software

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 8 Issue 4, Jul-Aug 2020

ISSN: 2347-8578 www.ijcstjournal.org Page 8

Defined Networks,” 6th mediterranean conference on

embedded computing ,11-15 June 2017.

[3] P. Megyesi, A. Botta, G. Aceto, A. Pescapé, and S. Molnár,

“Challenges and solution for measuring available

bandwidth in software defined networks,” Elsevier, 2016.

[4] M. Win, Y. Ishibashi, and K. Mya, “Available Bandwidth

Based Application-aware Engineering in SDN,” 9th

International Workshop on Computer Science and

Engineering, 2019.

[5] W. Braun and M. Menth, “Software-Defined Networking

Using OpenFlow: Protocols, Applications and Architectural

Design Choices,” Future Internet, 2014.

[6] I. Godanj, K. Nenadić and K. Romić, “Simple Example of

Software Defined Network,” IEEE, 2016.

[7] F. Souad, M. MOUGHIT, and N. IDBOUFKER,

“OpenFlow Controllers Performance Evaluation,”

International Journal of Emerging Research in Management

& Technology, vol.5, Issue-5, May 2016.

[8] K. Suzuki, K. Sonoda, T. Tonouchi, and H. Shimonishi,

“A Survey on OpenFlow Technologies,” IEICE TRANS.

COMMUN., vol. E97–B, NO.2, FEBRUARY 2014.

[9] A. Ahmad and A. Mohammad, “A Study of OpenFlow

Protocol and POX Controller in Software Defined

Networks(SDN) Using Mininet,” Tishreen University

Journal for Research and Scientific Studies - Engineering

Sciences Series, vol. 41, No.1, 2019.

[10] C. Ghyar, M. Shahade, S. Bamb, and V. Mankar, “Basics

of Quality of Services (QoS),” IJSRST, vol. 4, Issue 7,

2018.

[11] A. Adedayo and B. Twala, “QoS Functionality in

Software Defined Network,” IEEE, 2017.

[12] S. Thukral and B. Chadha, “A Survey on QoS Behavior

in MPLS Networks,” International Journal of Advanced

Research in Computer and Communication Engineering,

vol. 4, Issue 3, March 2015.

[13] W. Odom and S. Hogg, CCNA Routing and switching

ICND2 200-105 Official Cert Guide, Cisco Press, USA,

1452, 2017.

[14] D. Aureli, A. Cianfrani, A. Diamanti, J. Vilchez, and S.

Secci, “Going Beyond DiffServ in IP Traffic

Classification,” IEEE/IFIP Network Operations and

Management Symposium (NOMS), Budapest, Hungary,

April 2020.

[15] Z. Shu, J. Wan, J. Lin, S. Wang, D. Li, S. Rho, and C.

Yang, “Traffic Engineering in Software-Defined

Networking: Measurement and Management,” IEEE, 2016.

[16] B. Jadhav, Z. Saquib, and S. Pawar, “ISSUES AND

PARAMETERS FOR IMPROVING QoS AND

PERFORMANCE IN SDN,” International Journal of

Advances in Electronics and Computer Science, vol. 4,

Issue-7, July 2017.

[17] P. Lopez, J. Gea, F. Martinez, J. Sanahuja, and A. Cruz,

“Host Discovery Solution: An Enhancement of Topology

Discovery in OpenFlow based SDN Networks,” 3th

International Joint Conference on e-Business and

Telecommunications (ICETE), 2016.

[18] A. Abdulaziz, E. Adedokun, and S. Yahya, “Improved

Extended Dijkstra’s Algorithm for Software Defined

Networks,” International Journal of Applied Information

Systems (IJAIS), vol. 12, No. 8, November 2017.

[19] Satish, Karuturi S R V, and M Swamy Das. "Multi-

Tier Authentication Scheme to Enhance Security in

Cloud Computing." IJRAR (International Journal of

Research and Analytical Reviews) 6, no. 2 (2019): 1-8,

2019.

http://www.ijcstjournal.org/

