
International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 1, Jan-Feb 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 19

Multi-Streaming Behavior in Protocol Independent Transport API
Sangram Keshari Nayak [1], Sarojananda Mishra [2]

[1], [2] Department of Computer Science and Engineering, Indira Gandhi Institute of Technology,

 Sarang - India

ABSTRACT

Rapid growth of Internet leads to development of many innovative applications. A lot of research has been carried out in

introducing new concepts in the existing transport protocol. One of the innovative transport layer service is SCTP multi-

streaming. But there is a chance of high risk of failure of using specific protocol in the application development and OS

development scenario. Some researchers[1] have initiated to introduce the implementation of transport layer protocol as services

in a protocol independent way. They proposed common API that only offers the services as requirement. In this paper first we

discussed the advantages and disadvantages of TCP, SCTP and existing solutions proposed by[1]. Second we demonstrated their

approach and identified the benefits for SCTP multi-streaming. In the current development scenario BSD sockets API provides

system calls that are not tied to any specific protocol. Hence we demonstrated the abstractions provided by socket API that can

be treated as services. We have identified various network characteristics and protocol parameters that have been implemented in

a protocol independent way.

Keywords: SCTP, TCP, UDP, UMTS, RTT, PI_API, DCCP, UDP-Lite.

I. INTRODUCTION

Currently a lot of applications have been developed in

the current networking scenario. Lots of research has been

carried out to develop network protocols to meet the

application needs. Major protocols used in this regard are

TCP[2] and UDP[3] which are standardized by Internet

Engineering Task Force (IETF). Continuous work and

research have been carried out over time New features are

also added to the existing protocols to satisfy the

requirements. But little importance is given for deployment

of new protocols in the application development, operating

system (OS) and in middle-boxes.

Application developers are the first group that tries to

get best performance out of the program with minimal

programming effort. They never try a chance to deploy

new protocol until unless the work is seen as good chance

of success. There might be some risk associated with it

having the chance of failure. Hence application developers

might not take interest towards deployment of new

protocol. A few would be interested to invest extra effort

with the good probability of using new thing with an

intention of getting some benefit out of it.

Second group is operating system (OS) developers those

try to minimize the risk and deliver best performance under

some known risk constraints. This hinders them to use new

protocols although having some beneficial features.

Third group is middle-box designers those try to focus

on security and eliminate vulnerability. As a policy to

block unwanted and unnecessary applications that might be

having potential security risk. This prohibits deployment of

new protocols and another reason is also the intention to

deliver good performance to the Internet service provides.

Stream Control Transmission Protocol (SCTP)[5] is a

unicast general purpose reliable connection oriented

transport layer protocol, which is standardised by IETF,

which provides ordered delivery of data.

Although TCP and UDP are the most widely used

protocol, neither of them provide network fault tolerance

capabilities. TCP faces the problem of head of line

blocking. Due to independent messaging and order

preservation property, it encounters head of line blocking.

This may lead to control timers to expire and set up

failures.

TCP also lacks path level redundancy supports. Since

development of SCTP was motivated in finding a better

transport mechanism for telephony signalling, it was

evolved to more general use to satisfy need of applications

which require a message oriented protocol. This is a

requirement for using SCTP protocol, which have TCP like

mechanism and additional features, that not present in TCP

or UDP. SCTP provides sequencing, flow control,

reliability and full duplex data transfer like TCP. However

SCTP[11] provides some enhanced set of capabilities that

are not available in TCP, which makes applications more

susceptible to loss. Like UDP, SCTP supports framing of

data and data transport is message oriented. SCTP is

session oriented and communicates by establishing the

connection between two endpoints, called an association.

SCTP association can represent multiple IP addresses and

ports at two endpoints, where as a TCP connection is

bound to one IP address. SCTP supports two types of

sockets[7][10]. These are one-to-one style and one-to-many

style sockets. Since design objective of SCTP being to

adapt TCP applications with little effort, here one-to-one

style socket provides the function. Similar to UDP one-to-

many style a single socket can communicate with multiple

SCTP associations. SCTP also supports multiple logical

streams within one association. Each stream is independent

and provides sequential message delivery. So there might

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 1, Jan-Feb 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 20

occur a loss of one stream and does not affect other

streams. It is useful in a way that overcomes the limitations

of TCP and burrows beneficial features of UDP. Unlike

other transport protocols, it offers advantages like multi-

homing and multi-streaming capabilities.

The next section describes some unique features of

SCTP like multi-homing and multi-streaming[8] .

II. SCTP FEATURES

It has some unique features like multi-homing and multi-

streaming. The intention of multi-streaming is to decrease

the impact of head-of-line blocking. A stream in SCTP is

unidirectional and multiple streams can constitute one

association.

A. General Properties

Like TCP, SCTP is connection oriented protocol

meaning that an association must be established before data

sending. SCTP is multi-homed[9]. This means an

association can involve several IP addresses at each end,

where as TCP an handle only one IP address at a time at

each end. For this several paths can be made to transfer of

packets. Benefits of using different alternate paths is that

one path will be used for transfer and others responsible for

re-transmission or path failures. Within the association,

logical streams exist and stream is unidirectional, that

means stream can specified in both directions. SCTP

endpoint specifies number of streams it would receive.

Thus endpoints can have different number of streams ready

to receive on. So one SCTP association haves at least one

stream in each direction.

SCTP[10] has congestion control functionality, which is

similar to TCP. But this functionality is different from

TCP.

III. TRANSPORT TUSSLE

Although SCTP have a number of advantages over TCP,

there exists a tussle between three parties involved in the

development process. One is the application developers,

which have the goal of getting best performance from the

application. Second group being the OS developers, those

have the focus of minimizing risk of new technology. Third

group are the developers of middle boxes e.g. firewalls.

This group have the focus on the security issues and

maintainability. Thus there is a tussle among these groups

in adopting new protocols like SCTP. So there is need of a

new Application Programming Interface (API), could help

of easier adoption of new protocols. So these arguments

have the conclusion that a new transport API is needed that

will work in a protocol independent way, called as Protocol

Independent Application Programming Interface (PI_API).

Thus it is interesting to think in the light of using API in a

protocol independent way.

IV. MOTIVATION

APIs of TCP, UDP, SCTP are quite complex and

applications require name of the protocol. Assuming that

these protocols get deployed as common transfer protocols,

the application programmers face different choices from a

set of protocols. SCTP faces partial reliability. Thus

although DCCP[4] provides this, it has also different forms

of congestion control. So there will be a choice of DCCP or

SCTP for application programmers. DCCP has ACK

congestion control but SCTP has partial reliability. Another

option is UDP-Lite[6], which has better control over

congestion control. The constraints behind these protocol

are that these are not widely available in client server

applications. Thus from these choice of protocols and

features, the application programmers should decide one of

these to be used.

DCCP does not have a standardised API yet. SCTP is

the second alternative to be used, but this is also quite

complex. So gradual development of simplified access to

these protocols came under progress. The application

programmers may have a choice of getting services as per

choice and does not have a decision between TCP and

SCTP.

API is a difficult and endless task as the design space is

large and requires quite knowledge of understanding. So

the possible solution is to use the abstractions of existing

API. It is possible to use best required services from

available services. This will simplify the API and make

easier to be done. Out of possible choices of services, it is

also possible to add or remove the functions. Removal of

services may be done from simplicity point of view or not

required. We make a summary of listing all services and

prepare the services that will be required. So these

functionality should be placed underneath API. In the next

section we have a discussion of API available and also the

considerable works in this related area.

V. RELATED WORKS

Socket API has been extended for SCTP[5]. XTI is

another API provides was designed for ISO/OSI model. It

provides abstractions towards use of transport protocol in

an independent way. These APIs are quite complex and

does not provide simplified abstractions to the users.

Socket API is one of the good choice among the available

APIs. Socket API truly supports currently available

transport protocols. Socket API is the simplest API and

easily configurable with little knowledge of programming.

These APIs discussed are rather complex and socket API

is the good choice to start. So it is possible to simplify the

abstractions provided by socket API to make our current

requirement.

VI. DESIGN

Considerable work has been done by jorer[1]. As per

their design specification protocol features or services

provided by SCTP, DCCP, UDP-Lite are discussed. The

capabilities of these protocols have been studied. SCTP

features are compared with TCP and UDP also. For DCCP

the features are given in RFC 4340[4] and UDP-Lite is

given in RFC 3828[6]. So the approach starts with a list of

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 1, Jan-Feb 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 21

services that all the three protocols provide and some of the

services are removed as not required. Some of the included

and excluded services are discussed here.

A. Included Services

1) Connection Oriented:

Since protocols have different connection establishment

procedures, this feature is investigated and compared for all

the three protocols.

2) Flow control:

 TCP and SCTP simply supports flow control.

3) Congestion control:

 All the protocols support congestion control

mechanism by different procedures.

4) Application Protocol Data Unit (PDU) Handling:

 It is useful for transmission overhead. Higher

latency enables this feature but SCTP implementation

requires different procedures.

5) Error Detection:

 Protocols provide full or partial error detection

feature. This is possible by different mechanisms. Error

detection is done by checksum applied to entire packet or

partial specifying range of checksums.

6) Reliability:

 TCP supports total reliability where as SCTP

provides partial reliability mechanism.

7) Delivery type:

 Two types of delivery types are used in protocols.

One is message based and another is stream based.

8) Multi-homing:

 Multi-homing is not supported by protocols other

than SCTP.

9) Multi-streaming:

 Multi-streaming feature is only supported by

SCTP.

B. Excluded services

1) Full duplex:

 All the transport protocols support this feature.

Hence this is not a feature to be compared for the

protocols.

2) ECN capable:

 It is the feature included in congestion control. So

this is not further investigated.

3) Selective ACK:

 It is also included in congestion control. So this

feature is not a comparable feature.

4) Path MTU Delivery(PMTUD):

 PMTU delivery can be used with any layer.

Current Linux implementation does not allow a sender to

send longer datagrams. So it can not be used as service

among protocols.

5) Protection against SYN flood attack:

 Protection against this attack is an important

feature. So all the protocols used this feature and can not be

denied as a required service. So this feature is not a

distinguishable feature for transport user.

6) Allows half closed connection:

 This is an important core level protocol feature.

So it is not taken taken into consideration.

7) Reachability check:

 This is required for multi-homed protocols to

check the endpoint reachability. Since this is included in

multi-homing, this is not taken a distinguishable feature.

8) Time wait state:

 This is a protocol internal mechanism. So this is

not taken as a service.

 The services described above is compared and

required to have a choice of services rather than choosing a

protocol. So by handling protocol from application,

performance can be gradually be imported by merely

changing the transport system underneath the API or OS.

VII. IMPLEMENTATION

We have chosen the socket API for our implementation

and we have taken the adaptation of native functions

related to the SCTP socket. Here we need to incorporate

multi-streaming feature.

A. Socket adaptation

 Our choice of socket is based on connection

oriented socket API [12]. The user is required to pass the

service as parameter in stead of six parameters in the native

socket function. The creation of a socket looks like int

socket(int domain, int service). All the service

characteristics are retrieved through getsocket(). Moreover

the setsocket() function is used to set the parameters of

configurable features. Multi-streaming feature is

incorporated by function that is identical to API identical to

current transport APIs.

B. Socket options

 All the service characteristics are revised and set

by functions setsockopt() and getcockopt(). The setsocket()

function sets the configurable parameters. All the socket

options are used by the protocol independent socket API

are set with level argument PI_API. So for protocol

independent a service is renamed with prefix as PI.

 All the service characteristics are retrieved

through getsocket() function. Moreover setsocket()

function contains configurable features. Although the

options affect the behavior of the API, all the options of

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 1, Jan-Feb 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 22

socket level (SOL_SOCKET) are still accessible. Here the

API is simplified and it offers two different send/receive

mechanisms in stead of four different methods in the

standardised socket API[12]. The send/receive functions

are shown in figure – 1.

Fig. 1 Example of an unacceptable low-resolution image

They are identical to current versions of standardized

socket API.

It is to mention that the socket() call has been altered to

meet the PI_API requirements. All other functions remain

same as the single UNIX System Specifications[13].

Previously authors introduced the prefix pi for all the

functions to distinguish PI_API calls and normal socket

calls.

C. Implementation scenario

 The application scenario is set up by two hosts.

The proposed application is compared with existing socket

API and the application is based on client server model.

The client produces four parallel streams with original TCP

connection. The TCP protocol is partially replaced by one

multi-streaming association of SCTP. For performing tests

to compare TCP and SCTP , we used two hosts that run

Ubuntu[15] version 14.04 as different nodes.

1) TCP to SCTP Protocol Translation Software:

 The need of protocol translation software is

needed to enable TCP applications to support SCTP. One

of the tool is a available in Linux is withsctp[16]. It is a

user space terminal application that works under Linux and

included in lksctp-tools package. These tools are already

included in our kernel version 3.4.10 and available on both

server and client nodes.

2) Network emulation:

 In our experiment in addition to server and client

computer, another third computer is regarded as

intermediate node and acts as Ubuntu router. This

computer uses netem as network emulator, which is an

integral part of Linux operating system. Network emulator

is used to simulate properties of network. Emulator

software is applied to the intermediate node to generate

constant path delay. The reason for emulation is that

practical measurements would be meaningless without

applying delay in network paths. The emulation of higher

path delay require router queue adaption, otherwise packets

will be lost and show a different network behaviour.

3) Iperf as performance measurement tool:

 Iperf[14] is a terminal tool available in Linux as

network performance measurement tool. Initial

performance measurement was done by using iperf.

Although iperf is used as a measurement tool for TCP and

UDP, SCTP support is carried out by using iperf in

combination of withsctp software. The working of withsctp

is to exchange the TCP packet with SCTP packet.

 Experiments were done using latest stable version

of protocol stack implementation. The details of hardware

and software uses is listed in table-I and table II.

iperf[14] with current timestamps of its machine and

placed in socket buffer as message queue. Then messages

are transmitted over the network to the server application.

User input data for each send() socket system call by using

the server code.

VIII. PERFORMANCE AND DISCUSSION

In this section we discuss the comparative measurements

for TCP and SCTP with same work

TABLE I

HARDWARE CONFIGURATION

Switch Netgear Prosafe 5 port fast Ethernet

switch

Network

interface A

Qualcomm Atheros Lite-On

Communications Inc Device

Network

interface B

Qualcomm Atheros Lite-On

Communications Inc Device

Ethernet

controller

Realtek Semiconductor Co., Ltd.

RTL8111/8168/8411 PCI Express

Gigabit Ethernet Controller

TABLE II

SOFTWARE SPECIFICATION

Operating system Ubuntu 14.04

Kernel version 3.4.10

Network emulator Netem kernel

component(already enabled)

LKSCTP versions Lksctp-tools 1.0.9

Network measurement tool Iperf [14] 2.0.5

flow for both protocols. Experiments were carried out with

standard test case. The network test bed for practical

measurements are dependent on prevailing network

condition and appropriate protocol adaptation is applied for

good performance. Table-III summarizes necessary

network emulation parameters. Higher bandwidth may be

provided, but 100Mbps is emulated using this test as per a

practical standard value.

TABLE III

EMULATION PARAMETERS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 1, Jan-Feb 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 23

Network details Specific values

IP version IPV4

Network bandwidth 100Mbit

Path delay 100ms

Additional delay 10ms

Next Random value 25%

Delay link 35ms

Figure-2 shows bandwidth utilization for four parallel

TCP streams and one SCTP association having four

streams. It shows bandwidth values for different Round

Trip Time(RTT). In this test scenario both TCP and SCTP

performs quite similarly. Although variation occurs in

bandwidth utilization, TCP has an average bandwidth

utilization to 4.16 Mbits/s and corresponding value of

SCTP multi-stream as 4.18 Mbits/s. Although variation

occurs for bandwidth utilization, it is comparable with

TCP. So we can accept that our PI_API program code

works well.

 Comparison result in figure-3 shows that

throughput values with corresponding round trip

Fig. 2 Bandwidth utilization of SCTP vs TCP

time under 100ms bandwidth. Summary data obtained is

given in table-IV. Value of RTT is

Fig. 3 Throughput vs RTT

obtained by taking random element depending 25% of the

last one. The result obtained shows throughput decreases

considerably for our PI_API multi-streaming as compared

to four TCP parallel streams. Although behaviour of SCTP

multi-streaming is quite unnatural, the decrease in value is

due to larger transfer time. TCP parallel stream behaviour

is slightly decreasing with transfer time. It is therefore

considerable gain in performance of SCTP multi-streaming

over TCP parallel stream, which is clear from the graphs.

We examined transfer time for uniform loss rates of 0,

0.01, 0.03, 0.06, 0.1. Table - V, VI, VII, VII, IX

summarizes different transfer time obtained for both TCP

streams and SCTP multi-stream for transferring 1MB,

5MB, 10MB, 25MB files for each simulated loss rates.

TABLE IV

MAXIMUM AND MINIMUM THHROUGHPUT

Maximum throughput for TCP 0.017

Minimum throughput for TCP 0.011

Minimum throughput for SCTP 0.603

Minimum throughput for SCTP 0.194

TABLE V

FILE TRANSFER, 1MBITS/S /35MS DELAY LINK

WITHOUT LOSS

File size Transfer time (Sec)

TCP SCTP

1MB 2 1.7

5MB 9.4 9.9

10MB 18.5 20.8

25MB 47.3 50.3

TABLE VI

FILE TRANSFER, 1MBITS/S /35MS DELAY LINK

WITH 1% LOSS

File size Transfer time (Sec)

TCP SCTP

1MB 2 1.7

5MB 9.3 9.9

10MB 19.4 19.8

25MB 45.3 23.9

TABLE VII

FILE TRANSFER, 1MBITS/S /35MS DELAY LINK

WITH 3% LOSS

File size Transfer time (Sec)

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 1, Jan-Feb 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 24

TCP SCTP

1MB 1.9 1.7

5MB 9.4 9.9

10MB 18.4 20.6

25MB 47.5 50

TABLE VIII

FILE TRANSFER: 1MBITS/S /35MS DELAY LINK

WITH 6% LOSS

File size Transfer time (Sec)

TCP SCTP

1MB 1.9 1.7

5MB 9.3 10

10MB 19.4 19.8

25MB 46.5 50

TABLE IX

FILE TRANSFER: 1MBITS/S /35MS DELAY LINK

WITH 10% LOSS

File size Transfer time (Sec)

TCP SCTP

1MB 1.9 1.7

5MB 9.3 9.9

10MB 19.4 19.7

25MB 45.4 49.9

Corresponding graphs obtained for file transfer and

shown in figure-4, 5, 6, 7, 8. The graphs yield major

observations about file transfer time over a TCP connection

verses SCTP association. First in situations without any

network loss is applied and consequent file transfer time

obtained for various loss rates. Although some unexpected

behaviour of SCTP observed in figure-5, graphs in figure

4, 6, 7 and figure-8 show similar behaviour in transfer

time. This is apparent to accept that our PI_API for multi-

streaming using socket that works in a similar fashion with

TCP.

Fig. 4 Transfer Time vs. File si ze over 1 Mbps/35ms

and loss rate 0%

Fig. 5 Transfer Time vs. File size over 1 Mbps/35ms and

loss rate 1%

Fig. 6 Transfer Time vs. File size over 1 Mbps/35ms and

loss rate 3%

Fig. 7 Transfer Time vs. File size over 1 Mbps/35ms and

loss rate 6%

0 5 10 15 20 25 30

0

10

20

30

40

50

60

sctp

tcp

File Size (Mb)

T
ra

n
s
fe

r
 t
im

e
 (

s
e

c
)

0 5 10 15 20 25 30

0

10

20

30

40

50

sctp

tcp

File Size (Mb)

T
ra

n
s
fe

r
 t
im

e
 (

s
e

c
)

0 5 10 15 20 25 30

0

10

20

30

40

50

60

sctp

tcp

File Size (Mb)

T
ra

n
s
fe

r
 t
im

e
 (

s
e

c
)

0 5 10 15 20 25 30

0

10

20

30

40

50

60

sctp

tcp

File Size (Mb)

T
ra

n
s
fe

r
 t
im

e
 (

s
e

c
)

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 1, Jan-Feb 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 25

Fig. 8 Transfer Time vs. File size over 1 Mbps/35ms and

loss rate 10%

IX. CONCLUSION

We feel major observations from our experiments that

protocol translation is fairly feasible and works effectively

in common network applications and provides performance

that is equivalent what is possible using TCP.

REFERENCES

[1] S. Jorer, "A Protocol-Independent Internet Transport

API", 2010.

http://home.ifi.uio.no/michawe/teaching/dipls/stefan_j

oerer.pdf

[2] J. Postel. Transmission Control Protocol. RFC 793

(Standard), September 1981. Updated by RFCs 1122,

3168.

[3] J. Postel. User Datagram Protocol. RFC 768

(Standard), August 1980.

[4] E. Kohler, M. Handley, and S. Floyd. Datagram

Congestion Control Protocol (DCCP). RFC 4340

(Proposed Standard), March 2006

[5] R. Stewart, K. Poon, M. Tuexen, V. Yasevich, and P.

Lei. Sockets API Extensions for Stream Control

Transmission Protocol (SCTP).

[6] A. Larzon, M. Degermark, S. Pink, LE. Jonsson, and

G. Fairhurst, “The Lightweight User Datagram

Protocol (UDP-Lite),” RFC 3828(Proposed

Standard), Jul. 2004.

[7] Internet-Draft(work in progress),July 2010.

http://tools.ietf.org/html/draft-ietf-tsvwg-sctpsocket-

23.

[8] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H.

Schwarzbauer, T. Taylor, M. Kalla I. Rytina, L.

Zhang, and V. Paxson. The stream control

transmission protocol (SCTP). Available from

http://www.ietf.org/rfc/rfc2960.txt, October 2000.

[9] P. Conrad, G. Heinz, A. Caro, P. Amer, and J. Fiore.

SCTP in battleled networks. Proceedings MILCOM

2001, Washington, DC , October 2001.

[10] R. Stewart, K. Poon, M. Tuexen, V. Yasevich, and P.

Lei, “Sockets API Extensions for Stream Control

Transmission Protocol (SCTP),” Internet draft draft-

ietf-tsvwg-sctpsocket-25 (work in progress), January

2011.

[11] R. Stewart and P. Amer, “Why is SCTP needed given

TCP and UDP are widely available?” March 2010.

[Online]. Available:

http://www.isoc.org/briefings/017/

[12] “Networking Services, Issue 5 ” February 2010,

http://www.opengroup.org/bookstore/

catalog/c523.htm.

[13] Portable Operating System Interface (POSIX) Base

Specifications, Issue 7. The Open Group. Technical

Standard, December 2008.

http://www.opengroup.org/bookstore/catalog/c082.ht

m .

[14] IPERF. URL http://iperf.sourceforge.net/

[15] Ubuntu Linux. URL http://www.ubuntu.com

[16] The Linux Kernel Stream Control Transmission

Protocol Project - LKSCTP. URL

http://lksctp.sourceforge.net

0 5 10 15 20 25 30

0

10

20

30

40

50

60

sctp

tcp

File Size (Mb)

T
ra

n
s
fe

r
 t
im

e
 (

s
e

c
)

http://www.ijcstjournal.org/
http://home.ifi.uio.no/michawe/teaching/dipls/stefan_joerer.pdf
http://home.ifi.uio.no/michawe/teaching/dipls/stefan_joerer.pdf
http://www.isoc.org/briefings/017/
http://www.ubuntu.com/
http://lksctp.sourceforge.net/

