
International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 1, Jan-Feb 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 33

Survey on Navigation Principles of Autonomous Mobile Robot

Mohammed Hammoud [1], Kinda Aboukassem [2]

[1], [2] M.Sc., Department of Computer and Control Engineering, University of Tishreen - Syria

ABSTRACT
In recent times, the importance of mobile robot has increased rapidly. Accordingly, Navigation for mobile robot are in needed

allow the robot to localize and move in free collision path with the least cost depend on application (time, energy). The

objective of this paper is to present a state of the art survey of some techniques of localization and path planning for mobile

robot. Localization techniques of mobile robot is made with explanation advantages, disadvantages and implementation for each

of it. After that different path planning algorithms was explained. These study was developed in order to use some of these

algorithms, in the near future, as a second stage after reducing the state space and demonstrate the extent to which of these

algorithms are applied in stm32 microcontrollers embedded within the robots.

Keywords: - MR, Autonomous mobile, Automated guided vehicles(AGV),Automated guided vehicles (AGV),Unmanned Aerial

Vehicle(UAV), Autonomous Vehicle(AUV),Remote Operate Vehicle (ROV), Path planning, localization.

I. INTRODUCTION

Autonomous mobile robot -These are more autonomous

robots, developed by optimizing sensors and providing

intelligent robot control. The sensors are capable of perceiving

the details of more complex situations, but to cope with these

situations, the robot's behavior control must be extremely

flexible and adaptive.

II. NAVIGATION IN MOBILE ROBOTS

Mobile robots often operate in an unknown and

unstructured environment, and the robot needs to locate itself,

plan a path to a goal, build and interpret a map of the

environment, and then control its movement in that

environment. Thus, the concept of navigation includes several

tasks [2] as shown in the Fig. 1.

Perception: the robot must interpret its sensors to extract

meaningful data. Localization means that robot must

determine its position in the environment. Cognition means

that robot must decide how to act to achieve its goals. Motion

control means that robot must modulate its motor outputs to

achieve the desired trajectory[2].

Fig. 1 Disciplines of system systems

A. SELF-LOCALIZATION

Self-localization answers the robot's question, where am

I? Relative to the map. The aim of the operation is to

determine the location of the robot and its direction, for

example, a ground-cleaning robot needs to know that it has

covered the entire floor without repeating the cleaning process

for the same place or losing its location (lost).

The main difference between the operator and the mobile

robot is the estimation of the location, in other words, the

operator has a fixed base and by measuring the positions of

the robot's joints and knowing its kinematic model can

determine the position of the operator while the mobile robot

moves as an integrated unit within the environment and there

is no direct way to measure its position and direction. Hence,

the general solution is to estimate the position and direction of

the robot through velocity integration[8].

The map of the environment within which the robot will

move may be predefined, and here the path of the robot is

planned in advance. We have a relatively stable structure and

robust operation is achieved (industrial applications). In the

event that the planning of the path is dynamic so that the

features of the surrounding environment are sensed, the robot

first determines its location and then plans the movement

through the areas available for movement, this type is suitable

when the work space and tasks are frequently changing[8].

The techniques used[3][6] in localization are divided ,as

shown as in Fig. 2.

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 1, Jan-Feb 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 34

Fig. 2 Self localization techniques

❖ Relative localization.

This is performed by odometry or internal navigation

robot. Odometer uses encoders to measure wheel/rotation

and/or steering angle. Inertial navigation uses gyroscopes /

accelerometers to measure the rate of rotation and the angular

acceleration, as show in Fig. 3.

Fig. 3 Relative localization

❖ Active beacons

Robot compute absolute position by measuring the

direction of incidence of three or more transmitted beacons.

The transmitters use light or radio frequencies and are placed

at known positions in the environment.

As we have already said, several simultaneous beacons

send sonar signals at different frequencies at the same time

intervals. If we receive the signal from 2 3, the robot can

determine its location by calculating the difference in the

arrival time of the signals[6].

Distances are computed by measuring travel time of

radio waves from the beacon to the sensor[8].

Using two beacons can narrow down the robot position

to two possibilities, the arrival of the signals at the same time

means the robot is in the middle, but if the signal arrived from

the left before, this means that it is closer to the left side with

distance proportional to the time difference.

This method determines the location and not the

direction, the direction is determined by a change in position

(difference between two successive sites), which is used in

GPS.

The use of GPS is possible just in outdoor, but in many

cases it is not possible to use it due to limitations in the

robot’s environment or it is not desirable to prevent the

autonomy of the robot, instead in Indoor we use global sensor

with sonar, laser, radio beacons[6]. GPS is unacceptable for

localizing mobile robots(desk MR, human scale MR, body-

navigating Nano robots because first GPS provide accuracy

to within several meters, second GPS can’t function indoor in

obstructed areas and are thus limited in their workspace[2].

localization implies more than knowing one’s absolute

position in the Earth’s reference frame.

❖ Homing beacons.

Using light emitting homing beacons instead of sonar

beacons. With two light beacons with different colors, the

robot can determine its position and orientation at the

intersection of the lines from the beacons at the measured

angle. [6] .

 In order to know orientation, the robot has either to

perform a 360° rotation, or to possess an omnidirectional

vision system that allows it to determine the angle of a

recognized light beacon. Since we do not know the robot’s

distance from either of the beacons, all we know is the angle

difference under which the robot sees the beacons (here:

165°– 45° = 120 as shown as Fig. 4.a.

Knowing only two beacon angles is not sufficient for

localization as shown as in Fig. 4-b. If the robot in addition

knows its global orientation, for example by using an on-

board compass, localization is possible as shown as in Fig. 4-

c. When using three light.

Beacons, localization is also possible without additional

orientation knowledge as shown as in Fig. 4-d.

Fig. 4 Homing beacons(a: angle difference , b:use two beacons for

localization ,c: using an on-board compass ,d:use 3 beacons for localization)

❖ Recognition of artificial landmark

 Artificial signs are placed in specific places in the

environment and these marks must be highly detectable in

appearance even in poor environmental conditions.

❖ Recognition of natural landmark

Distinctive features of the environment are identified,

and these signs are predetermined. This method is less

reliable than using industrial landmarks.

❖ model matching

The absolute location is estimated by comparing the

Sensor information with the robot's environment map.

Floor-based localization techniques are often replaced by

laser-based methods. Automated guided vehicles (AGV) in

industrial environments use various navigation/guidance

technologies: magnetic tape, wire, magnetic spot, laser, and

natural.

Laser triangulation methods, in which a spinning laser

senses range and azimuth to wall-mounted reflectors, provide

accurate localization information and don't need to follow

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 1, Jan-Feb 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 35

specific lines on the floor. Laser guidance technology uses

multiple, fixed reference points (reflective strips) located

within the operating area that can be detected by a laser head

mounted on the vehicle as the facility is mapped in advance,

paths can be easily changed and expanded as shown as in

Fig. 5.

1. Map building and map interpretation

The robot’s environment representation can range from a

continuous geometric description to a decomposition-based

geometric map or even a topological map[2].

Before path planning, the environment needs to be

presented in a unified mathematical manner that is suitable for

processing in path searching algorithms.[1]

B. Traffic control.

There are different ways for map representation for

environment[9][2] as shown in Fig. 6.

A map representation should satisfy several basics:[2]

o Map accuracy must match the precision

the robot needs to achieve its goal.

o The accuracy of the map and the type of

features represented must correspond to the accuracy

and type of data received from the sensors.

o Map complexity directly affects

computational complexity of reasoning about mapping,

localization, and navigation.

Fig. 5 Methods to build and interpret maps

A. Continuous representation

In a continuous representation of the map the map is

represented as a set of lines that converge lines in the real

world as shown in Fig. 7[2]

 It is characterized by the fact that it accurately gives the

characteristics of the environment in a connected space in

terms of the composition of the environment and the location

of the robot within it, this is done by using a filter that

removes all the non-linear data.

A disadvantage of this method is that the generated map

is computationally expensive. The total storage needed in the

map is proportional to the density of objects in the

environment, so combination exactness of a continuous

representation with the compactness of the closed-world

assumption can represent sparse environment by a low-

memory map. This means that one assumes that the

representation will specify all environmental objects in the

map, and that any area in the map that is devoid of objects has

no objects in the corresponding portion of the environment.

Thus, the total storage needed in the map is proportional to the

density of objects in the environment.

Fig. 6 CONTINUOUS map representation

B. Cell Decomposition

Divide the environment into a number of connected

regions. The shape of the region or cell can be vertical strip

cells, array of rectangular grid, or unequal size rectangular

grid[4]. It transforms real environment into discrete by

selecting features from the environment and neglecting others,

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 1, Jan-Feb 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 36

thus map representation can potentially be minimized, but at

the same time it causes a loss of fidelity between the map and

the real world [2].

An environment partitioned to cells can be presented

with a state transition graph where states are certain points

inside the cells and connections among the states are possible

only between neighbor cells [1]

Problem in cell decomposition required a lot of memory

to analyze the workspace and gave rise to high computational

complexities[13].

❖ Accurate/ Exact cell decomposition

This method achieves decomposition by selecting

boundaries between discrete cells based on geometric

criticality[2].
An example of accurate decomposition to cells is vertical

decomposition, shown in Fig. 7.

This decomposition can be obtained by using an

imaginary vertical line traveling from the left environment

border to the right border.

Assumption behind exact decomposition is that the

particular position of a robot within each area of free space

does not matter. What matters is the robot’s ability to traverse

from each area of free space to the adjacent areas [2].

Exact decomposition is not always suitable. If the

gathering of this information (obstacles of the private

environment and free space) is costly or even unknown, then

such an approach is not feasible [2].

Fig. 7 An example of an exact decomposition

❖ Fixed cell decomposition

Fixed decomposition, in which the world is tessellated,

transforming the continuous real environment into a discrete

approximation for the map.

This approach stems from its inexact nature. It is

possible for narrow passageways to be lost during such a

transformation, as shown in Fig. 8; this means that fixed

decomposition is sound but not complete. Yet another

approach is adaptive cell decomposition, as presented in Fig.

8.

Fixed decomposition is extremely popular in mobile

robotics; it is perhaps the single most common map

representation technique currently utilized. [2]

Fig. 8 Fixed localization

❖ Adaptive / approximate cell decomposition

In approximate cell decomposition[3], the resulting cells

may be free, completely occupied or mixed, or have reached

an arbitrary resolution threshold.

One possible way to apply it is to use the occupancy grid

method. A possible occupancy grid can be obtained by

assigning to each of the cells a value that relates to the

probability of this cell’s occupation. The decomposition

threshold defines the minimum required probability for a cell

in the occupancy grid to be deemed occupied.

The idea of “approximate” is to fuse neighboring free

cells into larger cells to allow a fast path determination.

In 2D workspaces, approximate cell decomposition

operation consists in recursively subdividing each cell that

contains a mix of free and obstructed space into cells. Because

of that, this method is known as quadtree method.

 The recursion is stopped if when each cell is found to

contain entirely free or obstructed space or the maximum

desired resolution is reached. The height of the decomposition

is the maximum allowable level of recursion, and specifies the

resolution of the decomposition.

Fig. 109shows an application example of the

approximate cell decomposition method. The workspace

contains 3 obstacles and the robot has to move from S to G.

The result of approximate decomposition is a drastic reduction

of the number of cells to be considered. In an example, a high

resolution map that contains 250,000 cells, with a crude

decomposition of height 4 was reduced to just 109 cells [37].

A problem that has to be faced here is to determine cell

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 1, Jan-Feb 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 37

adjacency (i.e., to find which cells share a common border or

edge with another one). Actually, many techniques are

available to solve the adjacency problem. One of them is to

use tesseral (or quad tesseral) addressing which has the ability

to map every part of a 2D (or nD) spatial domain into 1D

sequence, and when stored with attributes in a database, each

address can perform as a single key to data. To generate

tesseral addresses, the positive quadrant of 2D-Cartesian space

is quartered to give parent tiles with labeling as shown in

Figure 11.9A. This process can be continued with new tesseral

addresses generated by always appending to the right of the

parent addresses, until a desired depth is reached. Another

solution to global path planning, via decomposition, is to use

local node refinement, path nodes refinement, and curve

parametric interpolation. A quad tesseral address can be stored

in a quadtree structure. For example, the address of can be

stored by the quadtree structure of as shown in Fig. 9

If any big rectangle contains obstacles or boundary, then

it is divided into 4 small rectangular, all the larger grid is

executed this operation, the operation is repeated until it

reaches the solution boundaries. This structure is called

quadtree shown[15]

Fig. 9 quadtree structure

Fig. 10 quadtree method

❖ Topological cell decomposition

The topl method is method of reducing dimensions, and

the path plaologicanning problem in high dimensional

geometry space is transformed into the discriminant problem

of connectivity in low dimension[15]. This method avoids

direct measurement of the engineering properties of the

environment and focuses on the environmental characteristics

most relevant to a robot (may be are not important but useful

for localization) [2]. The environment is represented in the

form of nodes and transitions between them. The nodes

represent areas of the environment (they can be of different

sizes) based on certain features that help to identify them

when entering and exiting the node, and the transitions

represent the contiguity between the areas. [2]

Compared to the cell decomposition approach, this

method only needs less model building time and less storage

space, the complexity of the topological method only depends

on the number of obstacles, it can achieve fast path planning.

Topology method is suitable for the environment with

obvious characteristics and sparse obstacles; otherwise, it is

difficult to carry out reliable navigation control. Topology

method of environment information is not easy to maintain,

when the number of obstacle is increased or decreased, the

network is hard to modify, because the process of establishing

the topology network itself is quite complex[15].

Fig. 11shows a topological representation of a set in an

office in indoor environment. In this case, the robot must have

an intersection detector (sonar and vision) to find intersections

between halls and between halls and rooms. Nodes capture

geometric space and arcs in represent connectivity.

Fig. 11 Topological decomposition of a cell for building a map.

C. Roadmaps

A roadmap is a map that contains roads, consists of lines,

curves, and their points of intersection, gives possible

connections between points in the free space[1].

Path planning is connecting between the start point and

the goal point with an existing road connection in the map to

find a connecting sequence of roads. A roadmap depends on

environment geometry. The challenge is to find a minimum

number of roads that enable a mobile robot to access any free

part of the environment.

❖ Visibility Graph.

A visibility graph consists of all possible connections

among any two vertices that lie entirely in the free space of

the environment.

The start point and the goal point are treated as vertices.

Connections are also made between neighboring vertices of

the same polygon. An example of a visibility graph is given in

Fig. 12Visibility graphs are simple to use but the number of

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 1, Jan-Feb 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 38

road connections increases with the number of obstacles,

which can result in higher complexity and therefore lower

efficiency. A visibility graph can be simplified by removing

redundant connections that can be replaced by existing shorter

connections.

Fig. 12 Visibility graph for map representation..

❖ Voronoi Graph

A Voronoi graph consists of road sections that have the

largest distance from the obstacles. This also means that the

road between any two obstacles has equal distance to both

obstacles. [12][11].

It partitions the plane into n regions whose

borders define the roadmap. As shown in Fig. 14, the

plane environment consisting of obstacles of any shape

(square, straight line, etc.). Space is partitioned to regions

where each region has exactly one generating obstacle.

Any point in a certain region is closer to the generating

obstacle than to any other obstacle. Borders between the

regions define the roadmap. Driving on such a road

minimizes the risk of colliding with obstacles, which can

be desired when the robot pose is known with some

uncertainty (due to measurement noise or control).

Fig. 13 Voronoi graph for map representation.

This approach maximizes robot distance to the obstacles.

However, the obtained path length is far from being the

optimal (shortest) one. A robot with distance sensors (such as

an ultrasonic or laser range finder) can apply a control to drive

equally away from all the surrounding obstacles, which means

that it follows roads from the Voronoi graph. Although robots

using only touch or vicinity sensors cannot follow Voronoi

roads because they may have problems with localization, they

can easily follow roads in the visibility graph.

❖ Triangulation

This Approach splits the environment into triangular

cells. One possible algorithm is the Delaunay

triangulation[12], which is a dual presentation of the Voronoi

graph. In a Delaunay graph, the center of each triangle (center

of the circumscribed circle) coincides with each vertex of the

Voronoi polygon. An example of the latter is given in Fig. 14

Fig. 14 Triangulation for building a map.

2. PATH PLANNING

Finding visible collision free path that will drive the

robot from the start to the goal configuration. Which action is

chosen in the current state and which state will be next

depending on the used path planning algorithm and used

criteria. The algorithm chooses the next most suitable state

from the set of all possible states that can be visited from the

current state. This decision is made according to some criteria

function, usually defined with one of the distance measures,

such as the shortest Euclidean distance to the goal state.[1]

Path planning not only save a lot of time but also reduce

the wear and capital investment of mobile robot[4]

 Between certain start and goal states, there may be one

or more paths, or there is no path at all that connects the states.

Usually there are several feasible paths (i.e., paths that do not

collide with obstacles).

❖ Critical

 Used in the evaluation of planning algorithms [1] [15]

[4] [11]: completeness: is the algorithm guaranteed to find a

solution when there is one, and to correctly report failure

when there is not?

• Cost Optimality: Does it find a solution with the

lowest path cost of all solutions?

• Time Complexity: How long does it take to find a

solution? This can be measured in seconds, or more

abstractly by the number of states and actions

considered.

• Space Complexity: How much memory is needed to

perform the search?

• Path length: Through these criteria, the main goal is

to have the shortest path as possible. In order to

obtain the total path length, all sub length from the

source point to destination point will be total up as

the following formula: Path length =

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 1, Jan-Feb 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 39

❖

❖ n represent the number of nodes from the

source point to its target.

• Number of examined cells.

• Symmetry of examined.
• Path’s smooth: the path must be smooth without

sharp turns, in other words Smoothness objective

tries to have a straight path as possible and this will

help to reduce energy minimal because turns in a

straight way uses a lot less memory than a curvy path.

Path smoothness can be calculated through the

following equation:

• Pathsmoothness =

• n: number of angles formed from starting position to

target destination, : value of angle for 1≤i≤ n. the

graphical explanation of this objective with n =4, is

shown in Fig. 15

Fig. 15 Path’s smoothness explanation

• Number of turning of robot.

• The path should be as far as possible from the

obstacles; the path must consider motion

constraints (e.g., no holonomic constraints, where

at the current time not all driving directions are

possible).

❖ PATH PLANNING ALGORITHMS

A. Global vs local path planning

 In global navigation, the mobile robot knows the

location of obstacles, type of environment and its target point

[4] , in other words Global path planning can be performed

only if the environment (obstacles, etc.) is static and perfectly

known to the robot(environment is assumed to be a priori

known[3]). In this case, the path planning algorithm produces

a complete path from the start point to the goal point before

the robot starts its motion[3].

 Global navigation is based on classical approaches such

as cell decomposition, roadmap algorithm and AFP[4].

In local navigation, is more challenging where the

location of the obstacles is dynamic. [4]. Local navigational

approaches are more intelligence since during movement the

robot need to interact with the dynamic environment, taking

data from local sensors and execute plan autonomously[4][3].

A. Graph based algorithms (Uninformed Search

Strategies)

An uninformed search algorithm is given no clue about

how close a state is to the goal(s)[11].

❖ Breadth-first search)BFS)

The root node is expanded first, then all the successors of

the root node are expanded next, then their successors, and so

on. As shown in Fig. 16.a [11]

Fig. 16 Depth first search, b: Breadth first search.

❖ Depth-First Search (DFS).

 Depth-first search Always expands the deepest node in

the frontier first[30], in other words In contrast to breadth-

first search, depth-first search expands each node up to the

deepest level of the graph (until the current node has no

further successors). As those nodes are expanded, their branch

is removed from the graph and the search backtracks by

expanding the next neighboring node of the start node until its

deepest level and so on, as shown in Error! Reference

source not found.b. An inconvenience of this algorithm is

that it may revisit previously visited nodes or enter redundant

paths. However, these situations may be easily avoided

through an efficient implementation. A significant advantage

of depth-first over breadth-first is space complexity. In fact,

depth-first needs to store only a single path from the start node

to the goal node along with all the remaining unexpanded

neighboring nodes for each node on the path. Once each node

has been expanded and all its children nodes have been

explored, it can be removed from memory.[2]

 The depth-first search is not complete. In the case of an

infinite graph (with infinite branch that does not end), it can

get trapped in one branch of the graph; or in the case of a loop

branch (loop in finite graph depth), it can get stuck in cycles.

To avoid this problem, the search can be limited to a certain

depth only, but then the solution can have a higher depth than

the maximum depth limitation.

 The algorithm is also not optimal because the found

path is not necessarily the shortest one also. This method has

low memory usage as it only stores the path from the start

node to the current node and intermediate nodes that have not

been explored yet. When some nodes and all of their

successors are explored, this node no longer needs to be stored

in the memory.[1]

❖ Iterative Deepening Depth-First Search

(IDDFS).

This algorithm combines advantages of the breadth-first

search and depth- first search algorithms. It iteratively

increases the search depth limit and explores nodes using the

depth-first search algorithm until the solution is found.[1]

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 1, Jan-Feb 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 40

Its memory requirements are modest: O(bd) when there

is a solution, or O(bm) on finite state spaces with no solution

and The time complexity is O(bd) when there is a solution, or

O(bm) when there is none.

Like breadth-first search, iterative deepening is optimal

for problems where all actions have the same cost, and is

complete on finite acyclic state spaces, or on any finite state

space when we check nodes for cycles all the way up the

path[11].

First, the depth-first search is performed for the nodes

that are zero steps away from the starting node. If the solution

is not found, the search in the depth is repeated for nodes that

are up to one step away from the starting one and so on, as

shown in Fig. 17. This algorithm is complete (the solution is

found if it exists), and it has small memory usage and is

optimal if the cost of all transitions are equal or if transition

costs increase with the node depth. If all the nodes have

approximately the same rate of branching, then the repeated

calculation of nodes is also not a big computational burden

because the majority of the nodes are in the bottom of the tree,

and those nodes are visited only once or a few times.

Fig. 17 Iterative Deepening Depth-First Search (IDDFS)

❖ A*.

A* is best-first search that uses the evaluation

function[11]:

f(n) = g(n) + h(n)

where g(n) is the path cost from the initial state to node

and h(n) is the estimated cost of n, the shortest path from to a

goal state, so we have f(n) = estimated cost of the best path

that continues from n to a goal.

As we said, it includes additional information or

heuristic. Heuristic is the cost estimate of the path from the

current node to the goal that is for the part of the graph tree

that has not been explored yet. This enables the algorithm to

distinguish between more or less promising nodes, and

consequentially it can find the solution more efficiently[1]

For each node, the algorithm computes the heuristic

function that is the cost estimate for the path from this node to

the goal, and it is called cost-to-goal. This heuristic function

can be Euclidean distance or Manhattan distance (sum of

vertical and horizontal moves) from the current node to the

goal node. The heuristic can be computed also by some other

appropriate function.

The A∗ algorithm is guaranteed to find the optimal path

in graph if the heuristic for calculation of the cost-to-goal is

admissible (or optimistic), which means that the estimated

cost-to-goal is smaller or equal to true cost-to-goal.

The A∗ algorithm is a complete algorithm because it

finds the path if it exists, and as already mentioned, it is

optimal if the heuristic is admissible (optimistic). Its drawback

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 1, Jan-Feb 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 41

is large memory usage. If all costs-to-goal are set to zero, the

A∗ operation equals Dijkstra’s algorithm. In Fig. a

comparison of Dijkstra’s and A∗ algorithm performance.

Average time complexity is O(k·logkv) for v nodes with

branching factor k, but can be quadratic in worst case.[6]

AS shown in Fig. 18, Node values are lower bound

distances to goal b (e.g. linear distances) Arc values are

distances between neighbouring nodes[4, p. 210]

Fig. 18 Algorithm A∗.

The quality of the lower bound goal distance from each

node greatly influences the timing complexity of the algorithm.

The closer the given lower bound is to the true distance, the

shorter the execution time.

❖ Dijkstra’s Algorithm.

Algorithm for computing all shortest paths from a given

starting node to all the other nodes in a fully connected graph.

Time complexity for naive implementation is O(e + v2), and

can be reduced to O(e + v·log v), for e edges and v nodes.

Distances between neighboring nodes are given as

edge(n,m).[6]

This algorithm needs Relative distance information

between all nodes; distances must not be negative.

Start “ready set” with start node. In loop select node with

shortest distance in every step, then compute distances to all

of its neighbors and store path predecessors. Add current node

to “ready set”; loop finishes when all nodes are included, this

algorithm shown in Fig .20Error! Reference source

not found. [7]

❖ Greedy best-first.

This is the informed algorithm. The open list is sorted in

the increasing cost-to-goal. Therefore, the search in each

iteration is extended to the open node that is closest to the goal

(has the smallest cost-to-goal) assuming it will reach the goal

quickly. The found path is not guaranteed to be optimal as

shown in Fig. 19. The algorithm only considers cost from the

current node to the goal and ignores the cost required to come

to the current node; therefore, the overall path may become

longer than the optimum one. Because the algorithm is not

optimal it is also not necessary that the heuristic is admissible

as it is important in A∗[1].

Comparison of greedy best-first search (above) and A∗

(below) algorithm.

Fig. 19 Greedy best-first.

❖ .D* algorithm.

represents an incremental re planning version of A* in

other words algorithm reuse previous search effort in

subsequent search[2].

At first robot had provided with a crude map of the

environment (i.e. obtained from an aerial image). Path

planning is done by employing A*. After executing this path

for a while, the robot observes some changes in the

environment with its onboard sensors. Subsequent to updating

the map, a new solution path needs to be computed. Instead of

generating a new solution from scratch (as A* would do), only

states affected by the added (or removed) obstacle cells are

recomputed. Because changes to the map are most often

observed locally (due to proprioceptive sensors), the planning

problem is usually reversed; node expansion begins from the

robot goal state. In this way, large parts of the previous

solution remain valid for the new computation. Compared to

A* this may decrease search time by a factor of one to two

orders of magnitude.

 Fig. 20 Dijkstra’s Algorithm

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 1, Jan-Feb 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 42

❖ Comparing uninformed search algorithms

Is the branching factor; is the maximum depth of

the search tree; is b m d the depth of the shallowest

solution, or is when there is no solution; is the depth limit.

[11]

3. Randomized graph search.

 When faced with complex problems of planning a

path of large dimensions (such as the tasks of manipulating

robotic arms or requests for folding and joining molecules to

place drugs, etc.), it becomes impossible to solve them

comprehensively in a reasonable time. Reverting to heuristic

search methods is often impossible due to the lack of a

corresponding heuristic function, and the reduction of the

problem dimension often fails due to the speed and

acceleration constraints imposed on the model, which should

not be violated for security reasons. In such situations,

randomized search becomes useful because it abandons the

optimality of the solution to compute the solution faster [2].

❖ Rapidly Exploring Random Trees (RRTs).

RRTs typically grow a graph online during the search

process and thus a priori only require an obstacle map but no

graph decomposition[15].

A Rapidly-exploring Random Tree (RRT) is designed

for efficiently searching nonconvex high-dimensional spaces.

RRTs are constructed incrementally in a way that quickly

reduces the expected distance of a randomly chosen point to

the tree. RRTs are particularly suited for path planning

problems that involve obstacles and differential constraints

(nonholonomic or kinodynamic)[16].

RRT only require an obstacle map but no graph

decomposition.

The algorithm begins with an initial tree (which might be

empty) and then successively adds nodes, connected via edges,

until a termination condition is triggered. During each

step[14], as shown in Fig. 21
• select a random configuration xrand in the free

space.

• the tree node that is closest to xrand is computed,

denoted as xnear.

• Connect xnear and xrand.

• A new node xnew from xnear is generated with

a certain step size ρ.

• If there is no collision with the obstacle during

the expansion from xnear to xnew, this new

node xnew is added to the random tree to

generate a random tree.

• When a child node in a random tree contains a

target point xgoal, a path from the initial point

xrand to the target point xgoal can be generated

in the random tree. Conversely, if a collision

occurs, then we discard the expansion.

Fig. 21 Rapidly Exploring Random Trees (RRTs).

An RRT alone is insufficient to solve a planning

problem. Thus, it can be considered as a component that can

be incorporated into the development of a variety of different

planning algorithms[16].

❖ The bidirectional RRT.

This algorithm as shown in Fig. 22 defines two random

trees in the free space, which select the starting point and the

ending point as the random root node, respectively, expanding

in the opposite direction[15]. The expansion is ended until the

two trees meet. That is to say, the search path is found. When

the random tree with the starting point as the root node

searches for the free space to establish the random tree, the

random tree with the ending point as the root node is also

established. The two random trees generate a new node by

turns and detect whether the Euclidean distance between the

new node and the other random tree node is less than the set

threshold. When the distance between two nodes is less than

the set threshold, the two nodes are connected, that is, the two

random trees are merged into one random tree to generate a

path.

Fig. 22 The bidirectional Rapidly Exploring Random Trees

❖ Probabilistic roadmap (PRM).

 This method used for path searching between more start

points and more goal points.

The algorithm has two steps:
Learning phase where a roadmap or undirected graph of

the free space is constructed.

Connecting the current start and goal point to the graph

and some graph path searching algorithm is used to find the

optimum path.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 1, Jan-Feb 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 43

B. wave algorithm (LI algorithm)

Algorithm for finding the shortest path on a planar graph.

Belongs to algorithms based on Breadth First Search methods.

It is mainly used in computer tracing (wiring) of printed

circuit boards, connecting conductors on the surface of

microcircuits. Another application of the wave algorithm is

finding the shortest distance on a map in computer strategy

games.

From the initial element, the wave propagates in 4

directions as shown as in Fig. 23. The element to which the

wave came forms a wave front. In the figures, numbers

indicate the numbers of the wave fronts.

Fig. 23 Lee algorithm working

Each element in the front of the first wave is the source

of a secondary wave as shown as in Fig. 24. The elements of

the second wave front generate a wave from the third front,

etc. The process continues until the end element is reached.

Build the path itself. It is built according to the following

rules:

Movement takes place when building the track according

to the priorities chosen.

When going from the terminal element to the initial

number of the wave front (the trajectory coordinate) it must

decrease.

 Operation of the algorithm includes three stages:

initialization, wave propagation, and path recovery.

Fig. 24 Lee algorithm working.

The advantages of the wave algorithm are that it can be

used to find a track in any maze and with any number of

forbidden elements (walls). The only drawback of this

algorithm is that the Wave propagates in all directions, so the

algorithm is slow and requires a lot of memory.

C. Obstacle avoidance Algorithms

The status of an obstacle may be static (when its position

and orientation relative to a known fixed coordinate frame is

invariant in time), or dynamic (when either its position), or

orientation or both change relative to the fixed coordinate

frame change.
The nature of an obstacle is described via its

configuration that may be convex shaped, concave shaped, or

both.

There are many algorithms used for Obstacle avoidance

like Bug algorithm, Potential field methods, Vector field

histogram, Dynamic window approaches, Nearness diagram,

Bubble land technique, Curvature velocity techniques,

Schleged, Gradient.

❖ Bugs algorithm

Local planning algorithm, In the bug algorithm, the main

concept is to track the contour of the obstacles found in the

robot’s path and circumnavigate it[13].

The Algorithm assume only local knowledge and do not

need a map of the environment and they are suitable in

situations where an environment map is unknown or it is

changing rapidly and also when the mobile platform has very

limited computational power[1].

These algorithms operation consists of two simple

behaviors: motion in a straight line toward the goal and

obstacle boundary following.

The advantages in these algorithms that they require low

memory usage but the obtained path is usually far from being

optimal.

▪ Bug0 Algorithm.
 This algorithm operate two basic behaviors[1]:

o Move toward the goal until an obstacle is

detected or the goal is reached.

o If an obstacle is detected, then turn left (or right,

but always in the same direction) and follow the

contour’s obstacle until motion in a straight line

toward the goal is again possible.

As shown in Fig. 25.a.

 Bug0 algorithm successfully finds a path to the goal in

the environment on the left while it is unsuccessful in the

environment on the right.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 1, Jan-Feb 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 44

a

B

c

Fig. 25 BUG algorithms (a.bug0 , b,d .bug1, c,e.bug2)

▪ Bug1 Algorithm.
In contrast to Bug0, Bug1 uses more memory and

requires several more computations. In each iteration it needs

to calculate Euclidean distance to the goal and remember the

closest point on the obstacle circumference to the goal [1].

Bug1 operations are shown in Fig. 25.d.

o Move on the straight line toward the goal

until an obstacle is hit or the goal is reached.

o If an obstacle is detected, then turn left and

follow the entire contour of the obstacle and compute

the Euclidean distance to the goal. When the point

where the obstacle was initially detected is reached

again, follow the contour of the obstacle in the direction

that is shortest to the point on the contour that is closest

to the goal. Then resume moving toward the goal in a

straight line. For example Fig. 25.a

The generated path is not optimal and is in the worst

case for 3 2 of the length of all obstacle contours longer than

the Euclidean distance from the start to the goal configuration.

It detects the obstacle once and therefore never circles

among the same obstacles, because of for each obstacle that is

detected on its path from the start to the goal; the algorithm

finds only one entry point and one leaving point from the

obstacle contour.

When the algorithm detects the same obstacle more than

once it knows that either the start or the goal point is captured

inside the obstacle and the path searching can be terminated

Fig. 25.c.

▪ Bug2 Algorithm.
The Bug2 algorithm always tries to move on the main

line that is defined as a straight line connecting the start point

and the goal point[1]. Bug2 operations are shown in Fig. 25.f.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 1, Jan-Feb 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 45

▪ Comparison Bug1 and Bug2.

o Bug1 is the more thorough search

algorithm, because it evaluates all the possibilities

before making a decision.

o Bug2 is the greedy algorithm, because it

selects the first option that looks promising.

o In most cases, the Bug2 algorithm is more

efficient than Bug1 but, the operation of the Bug1 is

easier to predict, but Bug1 but it does not guarantee that

the robot detects certain obstacles only once, in other

words, robot can encircle the same obstacle more than

once; therefore, unnecessary circling can occur until it

reaches the goal.

❖ Potential Field Method

The idea of imaginary forces acting on a robot has been

suggested by Khatib[18]. It is global map generation

algorithm with virtual forces, Algorithm needs Start and goal

position, positions of all obstacles and walls [6]

Fig. 26 Potential Field Method

This method is very attractive because of its simplicity

and elegance[3]. This method assumes an artificial force field

consists of attractive and repulsive force in the environment.

The goal will produce attractive force that attract the mobile

robot to move towards it. While, the obstacles generate a

repulsive force and is pointing out from the obstacles. These

imaginary forces attract the robot towards the goal by

avoiding all obstacles.[13] as shown in Fig. 26. The

algorithm enables real-time operations of a mobile robot in a

complex environment[8].

The problem in this algorithm that the robot can get

stuck in local minima. In this case the robot has reached a spot

with zero force (or a level potential), where repelling and

attracting forces cancel each other out. So the robot will stop

and never reach the goal.[6][13]

❖ Vector field histogram

This is a real-time obstacle avoidance method for mobile

robots and permits the detection of unknown obstacles and

avoids collisions while simultaneously steering the mobile

robot toward the target[5].

The algorithm computes obstacle-free steering directions

for a robot based on range sensor readings[20].Range sensor

readings are used to intermediate data structure about the local

obstacle distribution, called polar histogram which is an array

of, say, 72 angular sectors to identify obstacle location and

proximity. Based on the specified parameters and thresholds,

these histograms are converted to binary histograms to

indicate valid steering directions for the robot[20].

To take into account the robot changing position and the

new sensor readings, the polar histogram is totally updated

and rebuilt every, say, 30 ms (sampling period)[3].

The method Fig .27involves two steps)[5][3]:

o Reduce the histogram grid is to one-

dimensional polar histogram which is built around the

robot’s instantaneous location. Each sector in the polar

histogram involves a value that represents the polar

obstacle density (POD) in this direction.

o The robot moves in the direction, which

have low POD.

To achieve these steps, a window (called active window)

moves with the robot, overlying a square region of cells (e.g.,

33*33) in the histograms.

We must know that active cells are cells that, each time,

lie on the moving window. The cell that lies on the sonar axis

and corresponds to the measured distance d found by each

range reading is incremented and increases the certainty value

(CV).

Fig .27 Vector field histogram

The VFH method is a local path planner, i.e., it does not

attempt to find an optimal path (an optimal path can only be

found if complete environmental information is given).

Furthermore, a VFH-controlled robot may get “trapped” in

dead-end situations (as is the case with other local path

planners). When trapped, mobile robots usually exhibit what

has been called “cyclic behavior.

❖ Wandering Standpoint Algorithm

This algorithm is Local path planning algorithm and

need Local distance sensor.

Principle working is: Try to reach goal from start in

direct line. When encountering an obstacle, measure

avoidance angle for turning left and for turning right, turn to

smaller angle. Continue with boundary-following around the

object, until goal direction is clear again[6].

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 1, Jan-Feb 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 46

AS show in Fig. 28, the goal is not directly reachable

from the start point. Therefore, the robot switch to boundary-

following mode until, at point 1, also the goal is not directly

reachable. It repeats boundary-following (point 2, 3, 4, 5) until

the goal is directly reachable in a straight line without further

obstacles (point 6).

Fig. 28 Wandering Standpoint Algorithm

The disadvantage is that this algorithm can lead to an

endless loop for extreme obstacle placements. In this case, the

robot keeps driving, but never reaches the goal.

CONCLUSION
This paper presented the basic principles of the mobile

robot and several aspects of localization for mobile robot and

different path planning algorithms. The advantages and

disadvantages of each of them are explained and their

potential applications. In the near future is planned to use

some of these algorithms to reduce the state space as a first

stage for path planning and demonstrate the extent to which

these algorithms are applied in stm32 microcontrollers

embedded within the robots.

REFERENCES
[1] Oktaviani.J, Introduction to Autonomous Mobile

Robots, Second., vol. 51, no. 1. 2018.

[2] S. Edition, Robotics for ouy, Second. Springer

International Publishing AG.

[3] S. G. Tzafestas, Introduction to Mobile Robot Control,

First. Elsevier, 2013.

[4] T. Bräunl, Embedded Robotics. 2003.

[5] I. Š. G. Klanˇcar, A. Zdešar, S. Blažiˇc, Wheeled

Mobile Robotics. Elsevier, 2017.

[6] S. Florczyk, Robot Vision: Video-Based Indoor

Exploration with Autonomous and Mobile Robots.

2005.

[7] N. Adzhar, Y. Yusof, and M. A. Ahmad, “A review

on autonomous mobile robot path planning

algorithms,” Adv. Sci. Technol. Eng. Syst., vol. 5, no.

3, pp. 236–240, 2020.

[8] F. Rubio, F. Valero, and C. Llopis-Albert, “A review

of mobile robots: Concepts, methods, theoretical

framework, and applications,” Int. J. Adv. Robot. Syst.,

vol. 16, no. 2, pp. 1–22, 2019.

[9] H. Y. Zhang, W. M. Lin, and A. X. Chen, “Path

planning for the mobile robot: A review,” Symmetry

(Basel)., vol. 10, no. 10, 2018.

[10] W. Pokojski and P. Pokojska, “Voronoi diagrams –

inventor, method, applications,” Polish Cartogr. Rev.,

vol. 50, no. 3, pp. 141–150, 2018.

[11] “Voronoi graph and Delaunay Triangulation Visually

Explained | by Dino Cajic | Dev Genius | Medium.”

[Online]. Available: https://medium.com/dev-

genius/voronoi-graph-and-delaunay-triangulation-

visually-explained-1df842640c55. [Accessed: 08-

Nov-2020].

[12] “Delaunay Triangulation. How to divide a set of

scattered points… | by Nabil MADALI | Towards

Data Science.” [Online]. Available:

https://towardsdatascience.com/delaunay-

triangulation-228a86d1ddad. [Accessed: 08-Nov-

2020].

[13] S. R. and P. Norvig, Artificial Intelligence A Modern

Approach 2nd Ed., vol. 53, no. 9. 2019.

[14] S. Dasgupta, C. H. Papadimitriou, and U. . V.

Vazirani, “Algorithms, Dynamic programming,” pp.

161–162, 2006.

[15] “Research : Rapidly-Exploring Random Trees (RRTs)

Algorithm.” [Online]. Available:

http://www.kuffner.org/james/plan/algorithm.php.

[Accessed: 09-Nov-2020].

[16] “RRT Page: About RRTs.” [Online]. Available:

http://msl.cs.uiuc.edu/rrt/about.html. [Accessed: 09-

Nov-2020].

[17] Y. Shi, Q. Li, S. Bu, J. Yang, and L. Zhu, “Research

on Intelligent Vehicle Path Planning Based on

Rapidly-Exploring Random Tree,” Math. Probl. Eng.,

vol. 2020, 2020.

[18] O. Khatib, “Real-Time Obstacle Avoidance for

Manipulators and Mobile Robots.,” Int. J. Rob. Res.,

vol. 5, no. 1, pp. 90–98, 1986.

[19] J. Borenstein and Y. Koren, “The Vector Field

Histogram—Fast Obstacle Avoidance for Mobile

Robots,” IEEE Trans. Robot. Autom., vol. 7, no. 3, pp.

278–288, 1991.

[20] “Vector Field Histogram - MATLAB & Simulink.”

[Online]. Available:

https://www.mathworks.com/help/nav/ug/vector-field-

histograms.html. [Accessed: 10-Nov-2020].

http://www.ijcstjournal.org/

