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ABSTRACT 
In recent times, the importance of mobile robot has increased rapidly. Accordingly, Navigation for mobile robot are in needed 

allow the robot to localize and move in free collision path with the least cost depend on application (time, energy).  The 

objective of this paper is to present a state of the art survey of some techniques of localization and path planning for mobile 

robot. Localization techniques of mobile robot is made with explanation advantages, disadvantages and implementation for each 

of it. After that different path planning algorithms was explained. These study was developed in order to use some of these 

algorithms, in the near future, as a second stage after reducing the state space and demonstrate the extent to which of these 

algorithms are applied in stm32 microcontrollers embedded within the robots. 

Keywords: - MR, Autonomous mobile, Automated guided vehicles(AGV),Automated guided vehicles (AGV),Unmanned Aerial 

Vehicle(UAV), Autonomous  Vehicle(AUV),Remote Operate Vehicle (ROV), Path planning, localization. 

I.     INTRODUCTION 

Autonomous mobile robot -These are more autonomous 

robots, developed by optimizing sensors and providing 

intelligent robot control. The sensors are capable of perceiving 

the details of more complex situations, but to cope with these 

situations, the robot's behavior control must be extremely 

flexible and adaptive.  

II.    NAVIGATION IN MOBILE ROBOTS 

Mobile robots often operate in an unknown and 

unstructured environment, and the robot needs to locate itself, 

plan a path to a goal, build and interpret a map of the 

environment, and then control its movement in that 

environment. Thus, the concept of navigation includes several 

tasks [2] as shown in the Fig.  1. 

Perception: the robot must interpret its sensors to extract 

meaningful data. Localization means that robot must 

determine its position in the environment. Cognition means 

that robot must decide how to act to achieve its goals. Motion 

control means that robot must modulate its motor outputs to 

achieve the desired trajectory[2]. 

 

 

Fig.  1 Disciplines of system systems 

 

A. SELF-LOCALIZATION 

Self-localization answers the robot's question, where am 

I?  Relative to the map. The aim of the operation is to 

determine the location of the robot and its direction, for 

example, a ground-cleaning robot needs to know that it has 

covered the entire floor without repeating the cleaning process 

for the same place or losing its location (lost). 

The main difference between the operator and the mobile 

robot is the estimation of the location, in other words, the 

operator has a fixed base and by measuring the positions of 

the robot's joints and knowing its kinematic model can 

determine the position of the operator while the mobile robot 

moves as an integrated unit within the environment and there 

is no direct way to measure its position and direction. Hence, 

the general solution is to estimate the position and direction of 

the robot through velocity integration[8]. 

The map of the environment within which the robot will 

move may be predefined, and here the path of the robot is 

planned in advance. We have a relatively stable structure and 

robust operation is achieved (industrial applications). In the 

event that the planning of the path is dynamic so that the 

features of the surrounding environment are sensed, the robot 

first determines its location and then plans the movement 

through the areas available for movement, this type is suitable 

when the work space and tasks are frequently changing[8]. 

The techniques used[3][6] in localization are divided ,as 

shown as in Fig. 2. 
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Fig.  2 Self localization techniques 

❖ Relative localization. 

This is performed by odometry or internal navigation 

robot. Odometer uses encoders to measure wheel/rotation 

and/or steering angle. Inertial navigation uses gyroscopes / 

accelerometers to measure the rate of rotation and the angular 

acceleration, as show in Fig.  3.  

 

Fig.  3 Relative localization 

❖ Active beacons  

Robot compute absolute position by measuring the 

direction of incidence of three or more transmitted beacons. 

The transmitters use light or radio frequencies and are placed 

at known positions in the environment. 

As we have already said, several simultaneous beacons 

send sonar signals at different frequencies at the same time 

intervals. If we receive the signal from 2 3, the robot can 

determine its location by calculating the difference in the 

arrival time of the signals[6]. 

Distances are computed by measuring travel time of 

radio waves from the beacon to the sensor[8]. 

Using two beacons can narrow down the robot position 

to two possibilities, the arrival of the signals at the same time 

means the robot is in the middle, but if the signal arrived from 

the left before, this means that it is closer to the left side with 

distance proportional to the time difference. 

This method determines the location and not the 

direction, the direction is determined by a change in position 

(difference between two successive sites), which is used in 

GPS. 

The use of GPS is possible just in outdoor, but in many 

cases it is not possible to use it due to limitations in the 

robot’s environment or it is not desirable to prevent the 

autonomy of the robot, instead in Indoor we use global sensor 

with sonar, laser, radio beacons[6]. GPS is unacceptable for 

localizing mobile robots(desk MR, human scale MR, body-

navigating Nano robots  because first  GPS provide  accuracy 

to within several meters, second GPS can’t function indoor in 

obstructed areas and are thus limited in their workspace[2]. 

localization implies more than knowing one’s absolute 

position in the Earth’s reference frame. 

❖ Homing beacons. 

Using light emitting homing beacons instead of sonar 

beacons. With two light beacons with different colors, the 

robot can determine its position and orientation at the 

intersection of the lines from the beacons at the measured 

angle. [6] . 

 In order to know orientation, the robot has either to 

perform a 360° rotation, or to possess an omnidirectional 

vision system that allows it to determine the angle of a 

recognized light beacon. Since we do not know the robot’s 

distance from either of the beacons, all we know is the angle 

difference under which the robot sees the beacons (here: 

165°– 45° = 120 as shown as Fig.  4.a. 

Knowing only two beacon angles is not sufficient for 

localization as shown as in Fig.  4-b. If the robot in addition 

knows its global orientation, for example by using an on-

board compass, localization is possible as shown as in Fig.  4-

c. When using three light.  

Beacons, localization is also possible without additional 

orientation knowledge as shown as in Fig.  4-d. 

 

Fig.  4 Homing beacons(a: angle difference , b:use two beacons for 

localization ,c: using an on-board compass ,d:use 3 beacons for localization  ) 

❖ Recognition of artificial landmark 

 Artificial signs are placed in specific places in the 

environment and these marks must be highly detectable in 

appearance even in poor environmental conditions. 

❖ Recognition of natural landmark 

Distinctive features of the environment are identified, 

and these signs are predetermined. This method is less 

reliable than using industrial landmarks. 

❖ model matching 

The absolute location is estimated by comparing the 

Sensor information with the robot's environment map. 

Floor-based localization techniques are often replaced by 

laser-based methods. Automated guided vehicles (AGV) in 

industrial environments use various navigation/guidance 

technologies: magnetic tape, wire, magnetic spot, laser, and 

natural.  

Laser triangulation methods, in which a spinning laser 

senses range and azimuth to wall-mounted reflectors, provide 

accurate localization information and don't need to follow 
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specific lines on the floor.  Laser guidance technology uses 

multiple, fixed reference points (reflective strips) located 

within the operating area that can be detected by a laser head 

mounted on the vehicle as the facility is mapped in advance, 

paths can be easily changed and expanded as shown as in    

Fig. 5.  

1. Map building and map interpretation 

The robot’s environment representation can range from a 

continuous geometric description to a decomposition-based 

geometric map or even a topological map[2]. 

Before path planning, the environment needs to be 

presented in a unified mathematical manner that is suitable for 

processing in path searching algorithms.[1] 

B. Traffic control. 

 

There are different ways for map representation for 

environment[9][2] as shown in Fig. 6. 

A map representation should satisfy several basics:[2] 

o Map accuracy must match the precision 

the robot needs to achieve its goal. 

o The accuracy of the map and the type of 

features represented must correspond to the accuracy 

and type of data received from the sensors. 

o Map complexity directly affects 

computational complexity of reasoning about mapping, 

localization, and navigation. 

 

 

 

 

 

Fig.  5 Methods to build and interpret maps

 

 

A. Continuous representation 

In a continuous representation of the map the map is 

represented as a set of lines that converge lines in the real 

world as shown in Fig. 7[2] 

  It is characterized by the fact that it accurately gives the 

characteristics of the environment in a connected space in 

terms of the composition of the environment and the location 

of the robot within it, this is done by using a filter that 

removes all the non-linear data.  

A disadvantage of this method is that the generated map 

is computationally expensive. The total storage needed in the 

map is proportional to the density of objects in the 

environment, so combination exactness of a continuous 

representation with the compactness of the closed-world 

assumption can represent sparse environment by a low-

memory map.  This means that one assumes that the 

representation will specify all environmental objects in the 

map, and that any area in the map that is devoid of objects has 

no objects in the corresponding portion of the environment. 

Thus, the total storage needed in the map is proportional to the 

density of objects in the environment. 

 

 

Fig.  6 CONTINUOUS map representation 

B. Cell Decomposition 

Divide the environment into a number of connected 

regions. The shape of the region or cell can be vertical strip 

cells, array of rectangular grid, or unequal size rectangular 

grid[4]. It transforms real environment into discrete by 

selecting features from the environment and neglecting others, 
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thus map representation can potentially be minimized, but at 

the same time it causes a loss of fidelity between the map and 

the real world [2]. 

An environment partitioned to cells can be presented 

with a state transition graph where states are certain points 

inside the cells and connections among the states are possible 

only between neighbor cells [1] 

Problem in cell decomposition required a lot of memory 

to analyze the workspace and gave rise to high computational 

complexities[13]. 

❖ Accurate/ Exact cell decomposition 

This method achieves decomposition by selecting 

boundaries between discrete cells based on geometric 

criticality[2]. 
An example of accurate decomposition to cells is vertical 

decomposition, shown in Fig. 7.  

This decomposition can be obtained by using an 

imaginary vertical line traveling from the left environment 

border to the right border. 

Assumption behind exact decomposition is that the 

particular position of a robot within each area of free space 

does not matter. What matters is the robot’s ability to traverse 

from each area of free space to the adjacent areas [2]. 

Exact decomposition is not always suitable. If the 

gathering of this information (obstacles of the private 

environment and free space) is costly or even unknown, then 

such an approach is not feasible [2]. 

 

Fig.  7 An example of an exact decomposition 

❖ Fixed cell decomposition 

Fixed decomposition, in which the world is tessellated, 

transforming the continuous real environment into a discrete 

approximation for the map. 

This approach stems from its inexact nature. It is 

possible for narrow passageways to be lost during such a 

transformation, as shown in Fig.  8; this means that fixed 

decomposition is sound but not complete. Yet another 

approach is adaptive cell decomposition, as presented in Fig.  

8. 

Fixed decomposition is extremely popular in mobile 

robotics; it is perhaps the single most common map 

representation technique currently utilized. [2] 

 

 

Fig.  8 Fixed localization 

 

 

 

❖ Adaptive / approximate cell decomposition 

In approximate cell decomposition[3], the resulting cells 

may be free, completely occupied or mixed, or have reached 

an arbitrary resolution threshold.  

One possible way to apply it is to use the occupancy grid 

method. A possible occupancy grid can be obtained by 

assigning to each of the cells a value that relates to the 

probability of this cell’s occupation. The decomposition 

threshold defines the minimum required probability for a cell 

in the occupancy grid to be deemed occupied.  

The idea of “approximate” is to fuse neighboring free 

cells into larger cells to allow a fast path determination.  

In 2D workspaces, approximate cell decomposition 

operation consists in recursively subdividing each cell that 

contains a mix of free and obstructed space into cells. Because 

of that, this method is known as quadtree method. 

 The recursion is stopped if when each cell is found to 

contain entirely free or obstructed space or the maximum 

desired resolution is reached. The height of the decomposition 

is the maximum allowable level of recursion, and specifies the 

resolution of the decomposition. 

Fig.  109shows an application example of the 

approximate cell decomposition method. The workspace 

contains 3 obstacles and the robot has to move from S to G. 

The result of approximate decomposition is a drastic reduction 

of the number of cells to be considered. In an example, a high 

resolution map that contains 250,000 cells, with a crude 

decomposition of height 4 was reduced to just 109 cells [37]. 

A problem that has to be faced here is to determine cell 
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adjacency (i.e., to find which cells share a common border or 

edge with another one). Actually, many techniques are 

available to solve the adjacency problem. One of them is to 

use tesseral (or quad tesseral) addressing which has the ability 

to map every part of a 2D (or nD) spatial domain into 1D 

sequence, and when stored with attributes in a database, each 

address can perform as a single key to data. To generate 

tesseral addresses, the positive quadrant of 2D-Cartesian space 

is quartered to give parent tiles with labeling as shown in 

Figure 11.9A. This process can be continued with new tesseral 

addresses generated by always appending to the right of the 

parent addresses, until a desired depth is reached. Another 

solution to global path planning, via decomposition, is to use 

local node refinement, path nodes refinement, and curve 

parametric interpolation. A quad tesseral address can be stored 

in a quadtree structure. For example, the address of can be 

stored by the quadtree structure of as shown in Fig.  9 

If any big rectangle contains obstacles or boundary, then 

it is divided into 4 small rectangular, all the larger grid is 

executed this operation, the operation is repeated until it 

reaches the solution boundaries. This structure is called 

quadtree shown[15] 

 

 

Fig.  9 quadtree structure 

 

Fig.  10 quadtree method 

❖ Topological cell decomposition 

The topl method is method of reducing dimensions, and 

the path plaologicanning problem in high dimensional 

geometry space is transformed into the discriminant problem 

of connectivity in low dimension[15]. This method avoids 

direct measurement of the engineering properties of the 

environment and focuses on the environmental characteristics 

most relevant to a robot (may be are not important but useful 

for localization) [2]. The environment is represented in the 

form of nodes and transitions between them. The nodes 

represent areas of the environment (they can be of different 

sizes) based on certain features that help to identify them 

when entering and exiting the node, and the transitions 

represent the contiguity between the areas. [2] 

Compared to the cell decomposition approach, this 

method only needs less model building time and less storage 

space, the complexity of the topological method only depends 

on the number of obstacles, it can achieve fast path planning.  

Topology method is suitable for the environment with 

obvious characteristics and sparse obstacles; otherwise, it is 

difficult to carry out reliable navigation control. Topology 

method of environment information is not easy to maintain, 

when the number of obstacle is increased or decreased, the 

network is hard to modify, because the process of establishing 

the topology network itself is quite complex[15].  

Fig.  11shows a topological representation of a set in an 

office in indoor environment. In this case, the robot must have 

an intersection detector (sonar and vision) to find intersections 

between halls and between halls and rooms. Nodes capture 

geometric space and arcs in represent connectivity. 

 

Fig.  11 Topological decomposition of a cell for building a map. 

C.   Roadmaps 

A roadmap is a map that contains roads, consists of lines, 

curves, and their points of intersection, gives possible 

connections between points in the free space[1].  

Path planning is connecting between the start point and 

the goal point with an existing road connection in the map to 

find a connecting sequence of roads. A roadmap depends on 

environment geometry. The challenge is to find a minimum 

number of roads that enable a mobile robot to access any free 

part of the environment. 

❖ Visibility Graph. 

A visibility graph consists of all possible connections 

among any two vertices that lie entirely in the free space of 

the environment. 

The start point and the goal point are treated as vertices. 

Connections are also made between neighboring vertices of 

the same polygon. An example of a visibility graph is given in 

Fig.  12Visibility graphs are simple to use but the number of 
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road connections increases with the number of obstacles, 

which can result in higher complexity and therefore lower 

efficiency. A visibility graph can be simplified by removing 

redundant connections that can be replaced by existing shorter 

connections. 

 

Fig.  12 Visibility graph for map representation.. 

❖ Voronoi Graph 

A Voronoi graph consists of road sections that have the 

largest distance from the obstacles. This also means that the 

road between any two obstacles has equal distance to both 

obstacles. [12][11]. 

It partitions the plane into n regions whose 

borders define the roadmap. As shown in Fig. 14, the 

plane environment consisting of obstacles of any shape 

(square, straight line, etc.). Space is partitioned to regions 

where each region has exactly one generating obstacle. 

Any point in a certain region is closer to the generating 

obstacle than to any other obstacle. Borders between the 

regions define the roadmap. Driving on such a road 

minimizes the risk of colliding with obstacles, which can 

be desired when the robot pose is known with some 

uncertainty (due to measurement noise or control). 

 
Fig.  13 Voronoi graph for map representation. 

This approach maximizes robot distance to the obstacles. 

However, the obtained path length is far from being the 

optimal (shortest) one. A robot with distance sensors (such as 

an ultrasonic or laser range finder) can apply a control to drive 

equally away from all the surrounding obstacles, which means 

that it follows roads from the Voronoi graph. Although robots 

using only touch or vicinity sensors cannot follow Voronoi 

roads because they may have problems with localization, they 

can easily follow roads in the visibility graph. 

❖ Triangulation 

This Approach splits the environment into triangular 

cells. One possible algorithm is the Delaunay 

triangulation[12], which is a dual presentation of the Voronoi 

graph. In a Delaunay graph, the center of each triangle (center 

of the circumscribed circle) coincides with each vertex of the 

Voronoi polygon. An example of the latter is given in Fig.  14 

 

Fig.  14 Triangulation for building a map. 

2. PATH PLANNING 

Finding visible collision free path that will drive the 

robot from the start to the goal configuration. Which action is 

chosen in the current state and which state will be next 

depending on the used path planning algorithm and used 

criteria. The algorithm chooses the next most suitable state 

from the set of all possible states that can be visited from the 

current state. This decision is made according to some criteria 

function, usually defined with one of the distance measures, 

such as the shortest Euclidean distance to the goal state.[1] 

Path planning not only save a lot of time but also reduce 

the wear and capital investment of mobile robot[4] 

 Between certain start and goal states, there may be one 

or more paths, or there is no path at all that connects the states. 

Usually there are several feasible paths (i.e., paths that do not 

collide with obstacles).  

❖ Critical 

 Used in the evaluation of planning algorithms [1] [15] 

[4] [11]: completeness: is the algorithm guaranteed to find a 

solution when there is one, and to correctly report failure 

when there is not? 

• Cost Optimality: Does it find a solution with the 

lowest path cost of all solutions? 

• Time Complexity: How long does it take to find a 

solution? This can be measured in seconds, or more 

abstractly by the number of states and actions 

considered. 

• Space Complexity: How much memory is needed to 

perform the search? 

• Path length: Through these criteria, the main goal is 

to have the shortest path as possible. In order to 

obtain the total path length, all sub length from the 

source point to destination point will be total up as 

the following formula: Path length =  
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❖ 

 

❖ n represent the number of nodes from the 

source point to its target. 

• Number of examined cells. 

• Symmetry of examined. 
• Path’s smooth: the path must be smooth without 

sharp turns, in other words Smoothness objective 

tries to have a straight path as possible and this will 

help to reduce energy minimal because turns in a 

straight way uses a lot less memory than a curvy path. 

Path smoothness can be calculated through the 

following equation: 

• Pathsmoothness =  

• n: number of angles formed from starting position to 

target destination, : value of angle for 1≤i≤ n. the 

graphical explanation of this objective with n =4, is 

shown in Fig.  15 

 

Fig.  15 Path’s smoothness explanation 

• Number of turning of robot. 

• The path should be as far as possible from the 

obstacles; the path must consider motion 

constraints (e.g., no holonomic constraints, where 

at the current time not all driving directions are 

possible). 

 
❖ PATH PLANNING ALGORITHMS 

A. Global vs local path planning 

 In global navigation, the mobile robot knows the 

location of obstacles, type of environment and its target point 

[4] , in other words Global path planning can be performed 

only if the environment (obstacles, etc.) is static and perfectly 

known to the robot(environment is assumed to be a priori 

known[3]). In this case, the path planning algorithm produces 

a complete path from the start point to the goal point before 

the robot starts its motion[3]. 

 Global navigation is based on classical approaches such 

as cell decomposition, roadmap algorithm and AFP[4]. 

In local navigation, is more challenging where the 

location of the obstacles is dynamic. [4]. Local navigational 

approaches are more intelligence since during movement the 

robot need to interact with the dynamic environment, taking 

data from local sensors and execute plan autonomously[4][3]. 

A. Graph based algorithms (Uninformed Search 

Strategies) 

An uninformed search algorithm is given no clue about 

how close a state is to the goal(s)[11]. 

❖ Breadth-first search)BFS) 

The root node is expanded first, then all the successors of 

the root node are expanded next, then their successors, and so 

on. As shown in Fig.  16.a [11]  

 

Fig.  16 Depth first search, b: Breadth first search. 

❖ Depth-First Search (DFS). 

 Depth-first search Always expands the deepest node in 

the frontier first[30], in other words In contrast to breadth-

first search, depth-first search expands each node up to the 

deepest level of the graph (until the current node has no 

further successors). As those nodes are expanded, their branch 

is removed from the graph and the search backtracks by 

expanding the next neighboring node of the start node until its 

deepest level and so on, as shown in Error! Reference 

source not found.b. An inconvenience of this algorithm is 

that it may revisit previously visited nodes or enter redundant 

paths. However, these situations may be easily avoided 

through an efficient implementation. A significant advantage 

of depth-first over breadth-first is space complexity. In fact, 

depth-first needs to store only a single path from the start node 

to the goal node along with all the remaining unexpanded 

neighboring nodes for each node on the path. Once each node 

has been expanded and all its children nodes have been 

explored, it can be removed from memory.[2] 

 The depth-first search is not complete. In the case of an 

infinite graph (with infinite branch that does not end), it can 

get trapped in one branch of the graph; or in the case of a loop 

branch (loop in finite graph depth), it can get stuck in cycles. 

To avoid this problem, the search can be limited to a certain 

depth only, but then the solution can have a higher depth than 

the maximum depth limitation. 

 The algorithm is also not optimal because the found 

path is not necessarily the shortest one also. This method has 

low memory usage as it only stores the path from the start 

node to the current node and intermediate nodes that have not 

been explored yet. When some nodes and all of their 

successors are explored, this node no longer needs to be stored 

in the memory.[1]  

 

❖ Iterative Deepening Depth-First Search 

(IDDFS). 

This algorithm combines advantages of the breadth-first 

search and depth- first search algorithms. It iteratively 

increases the search depth limit and explores nodes using the 

depth-first search algorithm until the solution is found.[1] 
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Its memory requirements are modest: O(bd) when there 

is a solution, or O(bm) on finite state spaces with no solution 

and The time complexity is O(bd) when there is a solution, or 

O(bm) when there is none. 

Like breadth-first search, iterative deepening is optimal 

for problems where all actions have the same cost, and is 

complete on finite acyclic state spaces, or on any finite state 

space when we check nodes for cycles all the way up the 

path[11]. 

First, the depth-first search is performed for the nodes 

that are zero steps away from the starting node. If the solution 

is not found, the search in the depth is repeated for nodes that 

are up to one step away from the starting one and so on, as 

shown in Fig.  17. This algorithm is complete (the solution is 

found if it exists), and it has small memory usage and is 

optimal if the cost of all transitions are equal or if transition 

costs increase with the node depth. If all the nodes have 

approximately the same rate of branching, then the repeated 

calculation of nodes is also not a big computational burden 

because the majority of the nodes are in the bottom of the tree, 

and those nodes are visited only once or a few times. 

 

 

 

 

 

 

 

 

 

 

 

Fig.  17 Iterative Deepening Depth-First Search (IDDFS) 

❖ A*. 

A* is best-first search that uses the evaluation 

function[11]: 

f(n) = g(n) + h(n) 

where g(n) is the path cost from the initial state to node 

and h(n) is the estimated cost of n, the shortest path from to a 

goal state, so we have f(n) = estimated cost of the best path 

that continues from n to a goal. 

As we said, it includes additional information or 

heuristic. Heuristic is the cost estimate of the path from the 

current node to the goal that is for the part of the graph tree 

that has not been explored yet. This enables the algorithm to 

distinguish between more or less promising nodes, and 

consequentially it can find the solution more efficiently[1] 

For each node, the algorithm computes the heuristic 

function that is the cost estimate for the path from this node to 

the goal, and it is called cost-to-goal. This heuristic function 

can be Euclidean distance or Manhattan distance (sum of 

vertical and horizontal moves) from the current node to the 

goal node. The heuristic can be computed also by some other 

appropriate function. 

The A∗ algorithm is guaranteed to find the optimal path 

in graph if the heuristic for calculation of the cost-to-goal is 

admissible (or optimistic), which means that the estimated 

cost-to-goal is smaller or equal to true cost-to-goal. 

The A∗ algorithm is a complete algorithm because it 

finds the path if it exists, and as already mentioned, it is 

optimal if the heuristic is admissible (optimistic). Its drawback 
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is large memory usage. If all costs-to-goal are set to zero, the 

A∗ operation equals Dijkstra’s algorithm. In Fig. a 

comparison of Dijkstra’s and A∗ algorithm performance. 

Average time complexity is O(k·logkv) for v nodes with 

branching factor k, but can be quadratic in worst case.[6] 

AS shown in Fig.  18, Node values are lower bound 

distances to goal b (e.g. linear distances) Arc values are 

distances between neighbouring nodes[4, p. 210] 

 

Fig.  18 Algorithm A∗. 

The quality of the lower bound goal distance from each 

node greatly influences the timing complexity of the algorithm. 

The closer the given lower bound is to the true distance, the 

shorter the execution time. 

❖ Dijkstra’s Algorithm. 

Algorithm for computing all shortest paths from a given 

starting node to all the other nodes in a fully connected graph. 

Time complexity for naive implementation is O(e + v2), and 

can be reduced to O(e + v·log v), for e edges and v nodes. 

Distances between neighboring nodes are given as 

edge(n,m).[6] 

This algorithm needs Relative distance information 

between all nodes; distances must not be negative. 

Start “ready set” with start node. In loop select node with 

shortest distance in every step, then compute distances to all 

of its neighbors and store path predecessors. Add current node 

to “ready set”; loop finishes when all nodes are included, this 

algorithm shown in Fig .20Error! Reference source 

not found. [7] 

❖ Greedy best-first. 

This is the informed algorithm. The open list is sorted in 

the increasing cost-to-goal. Therefore, the search in each 

iteration is extended to the open node that is closest to the goal 

(has the smallest cost-to-goal) assuming it will reach the goal 

quickly. The found path is not guaranteed to be optimal as 

shown in Fig.  19. The algorithm only considers cost from the 

current node to the goal and ignores the cost required to come 

to the current node; therefore, the overall path may become 

longer than the optimum one. Because the algorithm is not 

optimal it is also not necessary that the heuristic is admissible 

as it is important in A∗[1]. 

Comparison of greedy best-first search (above) and A∗ 

(below) algorithm. 

 
Fig.  19 Greedy best-first. 

❖ .D* algorithm. 

represents an incremental re planning version of A* in 

other words algorithm reuse previous search effort in 

subsequent search[2]. 

At first robot had provided with a crude map of the 

environment (i.e. obtained from an aerial image). Path 

planning is done by employing A*. After executing this path 

for a while, the robot observes some changes in the 

environment with its onboard sensors. Subsequent to updating 

the map, a new solution path needs to be computed. Instead of 

generating a new solution from scratch (as A* would do), only 

states affected by the added (or removed) obstacle cells are 

recomputed. Because changes to the map are most often 

observed locally (due to proprioceptive sensors), the planning 

problem is usually reversed; node expansion begins from the 

robot goal state. In this way, large parts of the previous 

solution remain valid for the new computation. Compared to 

A* this may decrease search time by a factor of one to two 

orders of magnitude. 

 

                                       Fig.  20 Dijkstra’s Algorithm 
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❖ Comparing uninformed search algorithms 

Is the branching factor; is the maximum depth of 

the search tree; is b m d the depth of the shallowest 

solution, or is when there is no solution; is the depth limit. 

[11] 

3. Randomized graph search. 

 When faced with complex problems of planning a 

path of large dimensions (such as the tasks of manipulating 

robotic arms or requests for folding and joining molecules to 

place drugs, etc.), it becomes impossible to solve them 

comprehensively in a reasonable time. Reverting to heuristic 

search methods is often impossible due to the lack of a 

corresponding heuristic function, and the reduction of the 

problem dimension often fails due to the speed and 

acceleration constraints imposed on the model, which should 

not be violated for security reasons. In such situations, 

randomized search becomes useful because it abandons the 

optimality of the solution to compute the solution faster [2]. 

❖ Rapidly Exploring Random Trees (RRTs). 

RRTs typically grow a graph online during the search 

process and thus a priori only require an obstacle map but no 

graph decomposition[15].  

A Rapidly-exploring Random Tree (RRT) is designed 

for efficiently searching nonconvex high-dimensional spaces. 

RRTs are constructed incrementally in a way that quickly 

reduces the expected distance of a randomly chosen point to 

the tree. RRTs are particularly suited for path planning 

problems that involve obstacles and differential constraints 

(nonholonomic or kinodynamic)[16]. 

RRT only require an obstacle map but no graph 

decomposition. 

The algorithm begins with an initial tree (which might be 

empty) and then successively adds nodes, connected via edges, 

until a termination condition is triggered. During each 

step[14], as shown in Fig.  21 
• select a random configuration xrand in the free 

space. 

• the tree node that is closest to xrand is computed, 

denoted as xnear. 

• Connect  xnear and xrand. 

• A new node xnew from xnear is generated with 

a certain step size ρ. 

• If there is no collision with the obstacle during 

the expansion from xnear to xnew, this new 

node xnew is added to the random tree to 

generate a random tree. 

• When a child node in a random tree contains a 

target point xgoal, a path from the initial point 

xrand to the target point xgoal can be generated 

in the random tree. Conversely, if a collision 

occurs, then we discard the expansion. 

 
Fig.  21 Rapidly Exploring Random Trees (RRTs). 

An RRT alone is insufficient to solve a planning 

problem. Thus, it can be considered as a component that can 

be incorporated into the development of a variety of different 

planning algorithms[16]. 

❖ The bidirectional RRT. 

This algorithm as shown in Fig.  22 defines two random 

trees in the free space, which select the starting point and the 

ending point as the random root node, respectively, expanding 

in the opposite direction[15]. The expansion is ended until the 

two trees meet. That is to say, the search path is found. When 

the random tree with the starting point as the root node 

searches for the free space to establish the random tree, the 

random tree with the ending point as the root node is also 

established. The two random trees generate a new node by 

turns and detect whether the Euclidean distance between the 

new node and the other random tree node is less than the set 

threshold. When the distance between two nodes is less than 

the set threshold, the two nodes are connected, that is, the two 

random trees are merged into one random tree to generate a 

path. 

 

 

Fig.  22 The bidirectional Rapidly Exploring Random Trees 

❖ Probabilistic roadmap (PRM). 

 This method used for path searching between more start 

points and more goal points. 

The algorithm has two steps:   
Learning phase where a roadmap or undirected graph of 

the free space is constructed. 

Connecting the current start and goal point to the graph 

and some graph path searching algorithm is used to find the 

optimum path. 
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B.  wave algorithm (LI algorithm) 

Algorithm for finding the shortest path on a planar graph. 

Belongs to algorithms based on Breadth First Search methods. 

It is mainly used in computer tracing (wiring) of printed 

circuit boards, connecting conductors on the surface of 

microcircuits. Another application of the wave algorithm is 

finding the shortest distance on a map in computer strategy 

games. 

From the initial element, the wave propagates in 4 

directions as shown as in Fig.  23. The element to which the 

wave came forms a wave front. In the figures, numbers 

indicate the numbers of the wave fronts. 

 

Fig.  23 Lee algorithm working 

Each element in the front of the first wave is the source 

of a secondary wave as shown as in Fig.  24. The elements of 

the second wave front generate a wave from the third front, 

etc. The process continues until the end element is reached. 

Build the path itself. It is built according to the following 

rules: 

Movement takes place when building the track according 

to the priorities chosen. 

When going from the terminal element to the initial 

number of the wave front (the trajectory coordinate) it must 

decrease. 

 Operation of the algorithm includes three stages: 

initialization, wave propagation, and path recovery. 

 

 

Fig.  24 Lee algorithm working. 

The advantages of the wave algorithm are that it can be 

used to find a track in any maze and with any number of 

forbidden elements (walls). The only drawback of this 

algorithm is that the Wave propagates in all directions, so the 

algorithm is slow and requires a lot of memory. 

 

 

 

 

C. Obstacle avoidance Algorithms 

The status of an obstacle may be static (when its position 

and orientation relative to a known fixed coordinate frame is 

invariant in time), or dynamic (when either its position), or 

orientation or both change relative to the fixed coordinate 

frame change. 
The nature of an obstacle is described via its 

configuration that may be convex shaped, concave shaped, or 

both. 

There are many algorithms used for Obstacle avoidance 

like Bug algorithm, Potential field methods, Vector field 

histogram, Dynamic window approaches, Nearness diagram, 

Bubble land technique, Curvature velocity techniques, 

Schleged, Gradient. 

❖ Bugs algorithm 

Local planning algorithm, In the bug algorithm, the main 

concept is to track the contour of the obstacles found in the 

robot’s path and circumnavigate it[13]. 

The Algorithm assume only local knowledge and do not 

need a map of the environment and they are suitable in 

situations where an environment map is unknown or it is 

changing rapidly and also when the mobile platform has very 

limited computational power[1]. 

These algorithms operation consists of two simple 

behaviors: motion in a straight line toward the goal and 

obstacle boundary following. 

The advantages in these algorithms that they require low 

memory usage but the obtained path is usually far from being 

optimal. 

▪ Bug0 Algorithm. 
 This algorithm operate  two basic behaviors[1]:  

o Move toward the goal until an obstacle is 

detected or the goal is reached.  

o If an obstacle is detected, then turn left (or right, 

but always in the same direction) and follow the 

contour’s obstacle until motion in a straight line 

toward the goal is again possible. 

As shown in Fig.  25.a.  

 Bug0 algorithm successfully finds a path to the goal in 

the environment on the left while it is unsuccessful in the 

environment on the right. 
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a 

B 

 

c 

 

 
Fig.  25 BUG algorithms (a.bug0 , b,d .bug1, c,e.bug2) 

 

▪ Bug1 Algorithm. 
In contrast to Bug0, Bug1 uses more memory and 

requires several more computations. In each iteration it needs 

to calculate Euclidean distance to the goal and remember the 

closest point on the obstacle circumference to the goal [1].  

Bug1 operations are shown in Fig.  25.d. 

o Move on the straight line toward the goal 

until an obstacle is hit or the goal is reached. 

o If an obstacle is detected, then turn left and 

follow the entire contour of the obstacle and compute 

the Euclidean distance to the goal. When the point 

where the obstacle was initially detected is reached 

again, follow the contour of the obstacle in the direction 

that is shortest to the point on the contour that is closest 

to the goal. Then resume moving toward the goal in a 

straight line. For example Fig.  25.a 

The generated path is not optimal and is in the worst 

case for 3 2 of the length of all obstacle contours longer than 

the Euclidean distance from the start to the goal configuration. 

It detects the obstacle once and therefore never circles 

among the same obstacles, because of for each obstacle that is 

detected on its path from the start to the goal; the algorithm 

finds only one entry point and one leaving point from the 

obstacle contour.  

When the algorithm detects the same obstacle more than 

once it knows that either the start or the goal point is captured 

inside the obstacle and the path searching can be terminated 

Fig.  25.c. 

▪ Bug2 Algorithm. 
The Bug2 algorithm always tries to move on the main 

line that is defined as a straight line connecting the start point 

and the goal point[1]. Bug2 operations are shown in Fig.  25.f. 
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▪ Comparison Bug1 and Bug2. 

o Bug1 is the more thorough search 

algorithm, because it evaluates all the possibilities 

before making a decision. 

o Bug2 is the greedy algorithm, because it 

selects the first option that looks promising. 

o In most cases, the Bug2 algorithm is more 

efficient than Bug1 but, the operation of the Bug1 is 

easier to predict, but Bug1 but it does not guarantee that 

the robot detects certain obstacles only once, in other 

words, robot can encircle the same obstacle more than 

once; therefore, unnecessary circling can occur until it 

reaches the goal. 

❖ Potential Field Method 

The idea of imaginary forces acting on a robot has been 

suggested by Khatib[18]. It is global map generation 

algorithm with virtual forces, Algorithm needs Start and goal 

position, positions of all obstacles and walls [6] 

 

 

Fig.  26 Potential Field Method 

This method is very attractive because of its simplicity 

and elegance[3]. This method assumes an artificial force field 

consists of attractive and repulsive force in the environment. 

The goal will produce attractive force that attract the mobile 

robot to move towards it. While, the obstacles generate a 

repulsive force and is pointing out from the obstacles. These 

imaginary forces attract the robot towards the goal by 

avoiding all obstacles.[13] as shown in Fig.  26. The 

algorithm enables real-time operations of a mobile robot in a 

complex environment[8]. 

The problem in this algorithm that the robot can get 

stuck in local minima. In this case the robot has reached a spot 

with zero force (or a level potential), where repelling and 

attracting forces cancel each other out. So the robot will stop 

and never reach the goal.[6][13] 

❖ Vector field histogram 

This is a real-time obstacle avoidance method for mobile 

robots and permits the detection of unknown obstacles and 

avoids collisions while simultaneously steering the mobile 

robot toward the target[5]. 

The algorithm computes obstacle-free steering directions 

for a robot based on range sensor readings[20].Range sensor 

readings are used to intermediate data structure about the local 

obstacle distribution, called polar histogram which is an array 

of, say, 72 angular sectors to identify obstacle location and 

proximity. Based on the specified parameters and thresholds, 

these histograms are converted to binary histograms to 

indicate valid steering directions for the robot[20]. 

To take into account the robot changing position and the 

new sensor readings, the polar histogram is totally updated 

and rebuilt every, say, 30 ms (sampling period)[3]. 

The method Fig  .27involves two steps)[5][3]: 

o Reduce the histogram grid is to one-

dimensional polar histogram which is built around the 

robot’s instantaneous location. Each sector in the polar 

histogram involves a value that represents the polar 

obstacle density (POD) in this direction. 

o The robot moves in the direction, which 

have low POD. 

To achieve these steps, a window (called active window) 

moves with the robot, overlying a square region of cells (e.g., 

33*33) in the histograms. 

We must know that active cells are cells that, each time, 

lie on the moving window. The cell that lies on the sonar axis 

and corresponds to the measured distance d found by each 

range reading is incremented and increases the certainty value 

(CV). 

 

Fig  .27 Vector field histogram 

The VFH method is a local path planner, i.e., it does not 

attempt to find an optimal path (an optimal path can only be 

found if complete environmental information is given). 

Furthermore, a VFH-controlled robot may get “trapped” in 

dead-end situations (as is the case with other local path 

planners). When trapped, mobile robots usually exhibit what 

has been called “cyclic behavior. 

❖ Wandering Standpoint Algorithm 

This algorithm is Local path planning algorithm and 

need Local distance sensor. 

Principle working is: Try to reach goal from start in 

direct line. When encountering an obstacle, measure 

avoidance angle for turning left and for turning right, turn to 

smaller angle. Continue with boundary-following around the 

object, until goal direction is clear again[6]. 
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AS show in Fig.  28, the goal is not directly reachable 

from the start point. Therefore, the robot switch to boundary-

following mode until, at point 1, also the goal is not directly 

reachable. It repeats boundary-following (point 2, 3, 4, 5) until 

the goal is directly reachable in a straight line without further 

obstacles (point 6). 
 

 

Fig.  28 Wandering Standpoint Algorithm 

The disadvantage is that this algorithm can lead to an 

endless loop for extreme obstacle placements. In this case, the 

robot keeps driving, but never reaches the goal. 

 

CONCLUSION 
This paper presented the basic principles of the mobile 

robot and several aspects of localization for mobile robot and 

different path planning algorithms. The advantages and 

disadvantages of each of them are explained and their 

potential applications. In the near future is planned to use 

some of these algorithms to reduce the state space as a first 

stage for path planning and demonstrate the extent to which 

these algorithms are applied in stm32 microcontrollers 

embedded within the robots. 
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