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ABSTRACT 

Nowadays, Internet of Things (IoT) gives rise to a huge amount of data. IoT nodes equipped with smart sensors can immediately 

extract meaningful knowledge from the data through machine learning technologies. Deep learning (DL) is constantly 

contributing significant progress in smart sensing due to its dramatic superiorities over traditional machine learning. The 

promising prospect of wide-range applications puts forwards demands on the ubiquitous deployment of DL under various 

contexts. As a result, performing DL on mobile or embedded platforms is becoming a common requirement. Nevertheless, a 

typical DL application can easily exhaust an embedded or mobile device owing to a large amount of multiply and accumulate 

(MAC) operations and memory access operations. Consequently, it is a challenging task to bridge the gap between deep learning 

and resource-limited platforms. We summarize typical applications of resource-limited deep learning and point out that deep 

learning is an indispensable impetus of pervasive computing. Subsequently, we explore the underlying reasons for the high 

computational overhead of DL through reviewing the fundamental concepts including capacity, generalization, and 

backpropagation of a neural network. Guided by these concepts, we investigate on principles of representative research works, as 

well as three types of solutions: algorithmic design, computational optimization, and hardware revolution. In pursuant to these 

solutions, we identify challenges to be addressed. 
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I.     INTRODUCTION 

The last decade has witnessed exciting development of deep 

learning (DL) technologies, which contributes dramatic 

progress in signal and information processing applications 

including IoT and smart sensing. A deep neural network 

(DNN) comprises multiple neuron layers organized in a 

hierarchical structure. Parameters of every layer can be 

learned through iterative training. A well-trained DNN can 

distill useful features from raw data. All training samples are 

manually labeled. In one layer, input data can be mapped into 

a low-dimensional space through feature extraction. 

Subsequently, output features of the current layer are exported 

into the next layer. Outputs of the last layer imply the learned 

labels. A DNN can be fine-tuned through minimizing the error 

between manual labels and learned labels [1]. 

Deep learning enjoys significant advantages over traditional 

machine learning [2, 3]. First, deep learning can achieve 

superior performance when data volume is massive. This 

means that deep learning can fully benefit from the huge 

amount of data collected by IoT. Traditional machine learning 

techniques are preferable when data volume is small. 

However, the performance prominently degrades when data 

volume is extremely large. In contrast, deep learning exhibits 

advantageous scalability with massive data. Second, deep 

learning relies less on feature engineering. IoT can gather 

diversified categories of data that are distinct in nature. 

Manually extracting features of heterogeneous data is a 

daunting task. Traditional machine learning requires a domain 

expert to extract features. The manually identified features 

expose underlying patterns to algorithms. Nevertheless, deep 

learning autonomously extract features in a layer-wise manner 

to represent input samples with a nested hierarchy of features. 

Every layer defines higher-level features based on lower-level 

features extracted by the previous layer. Third, deep learning 

techniques can outperform traditional ones in terms of various 

smart-sensing-related tasks, such as computer vision, speech 

recognition, and human behavior understanding. 

By contrast with traditional machine learning solutions, deep 

learning techniques are undergoing rapid development. 

Applications of deep learning involve information retrieval 

[4], natural language processing [5], human voice recognition 

[6], computer vision [7], anomaly detection [8], 

recommendation systems [9], bioinformatics [10], medicine 

[11, 12], crop science [13], earth science [14], robotics [15–

18], transportation engineering [19], communication 

technologies [20–22], and system simulation [23, 24]. 

Deep learning is permeating into diversified aspects of human 

society, which puts forwards urgent demand on the ubiquitous 

deployment of DL-powered applications. In other words, deep 

learning is required to be fit into resource-limited platforms 

like smartphones or wearable devices. Nevertheless, matching 

DL and resource-limited platforms is a challenging task. 

Inferencing with DL is extremely resource-consuming 

(processor, memory, energy, etc) even though the more 

resource-consuming training phase can be offloaded onto 

high-performance-computing-powered mainframes. We 

investigate on typical resource-limited DL inferencing 
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solutions by categorizing the solutions and discussing open 

questions. The rest of this paper is organized as follows. 

Clarifies impetus of developing resource-limited DL. 

Representative solutions are discussed.  

II.     COMPUTATIONAL RESOURCE 

LIMITED CONTEXT OF DEEP LEARNING 

A. A Perspective of Pervasive Computing 

Deep learning can automatically extract features and achieve 

higher accuracy than traditional artificial intelligence 

techniques. As a result, deep learning is applicable to a broad 

range of scenarios. Additionally, open-source development 

tools like TensorFlow and Caffe are also speeding up 

progresses in deep learning. Research works on fitting deep 

learning into resource-limited mobile or embedded platforms 

will undoubtedly push a huge step forward towards the 

pervasive deep learning. 

Deep learning is currently an indispensable impetus that 

advances the progress of pervasive computing. We summarize 

the development of pervasive computing into three stages. 

The hardware and software solutions of a former stage are 

incorporated into the latter stages. In the 1990s, researchers in 

this area try to facilitate the daily life of humans through 

Internet-interconnected desktops and mainframes. TCP/IP 

protocols account for the backbone of networks and the 

software layer of pervasive applications typically focuses on 

network organization and data delivery. In the following 

stage, the mobile Internet provides network access to users at 

any time and any place. IoT interconnects almost all digital 

sensors to collect raw data from diversified sources, which 

results in large data volume and puts forward high demand on 

the computing power of the data processing platform. Thus, 

distributed or parallel middleware like Hadoop aggregates the 

computing power of huge amounts of commodity servers. 

Additionally, cloud computing provides the aggregated 

supercomputing power to customers through Web Service. 

Data transmission between IoT and cloud platforms is further 

supported by WIFI and 3G/4G. However, applications of this 

stage mainly adopt traditional machine learning solutions, 

which cannot achieve constantly advancing performance with 

the continuous increase of input data volume. Nowadays, the 

learning and inference accuracy of DNN can efficiently scale 

with the input data amount. However, high time and memory 

overheads impede the deployment of DL on resource-limited 

platforms. Matching deep learning and hardware platforms is 

an active research area. Software layer solutions mainly focus 

on simplifying the trained DNN to approximate a full-status 

DNN. Hardware layer solutions involve embedded GPUs, 

artificial intelligence chips, or even analog computing based 

on new nonvolatile memory. Additionally, 5G will meet even 

higher bandwidth requirements. 

III. INVESTIGATION ON EXISTING 

SOLUTIONS 

B. Computational Predicament of DNN: A Perspective of 

Underlying Principles 

Classification is a typical application scenario of DNNs. 

Under this scenario, the target is to establish a mapping from 

input samples to corresponding labels. The following concepts 

are the cornerstones to exploit the learning and inference of 

DNNs: hypothesis space, capacity, stochastic gradient 

descent, and generalization [38]. 

Hypothesis space is the set of all functions generated by a 

neural network. One function is obtained by fitting part of 

parameters of the neural network and can map homogeneous 

samples to the same label. Training a neural network is to 

search the optimal functions in the hypothesis space, which 

can build mapping relationships specified by the training data 

(in other words, minimizing the training error). As a result, the 

size of hypothesis space determines the potential ability of a 

neural network to find optimal functions. 

Capacity of a neural network reflects the size of hypothesis 

space, as well as the upper bound of ability to fit functions. 

The optimal functions may be beyond the hypothesis space, if 

the capacity is not sufficiently large. In this case, the neural 

network can only search in the limited hypothesis space and 

find functions that approximate the optimal functions with 

best efforts. Consequently, underfitting is inevitable. 

A trained neural network is expected to correctly predict the 

label of previously unseen samples. Generalization reflects 

this kind of ability. Lower generalization error means higher 

generalization ability. Underfitting during the training phase 

can result in large generalization error in the inference phase. 

Capacity sets the limit of the fitting ability, while 

generalization can measure the ability of scaling with 

unknown samples. Another vital issue with neural networks is 

the mechanism of searching the hypothesis space in the 

training phase. Conventionally, the searching is manipulated 

by stochastic gradient descent; searching is always along the 

direction in which training error drops fastest. The gradients 

are backpropagated from the deepest layer to the first layer to 

update weights in a layer-wise manner. Backpropagation 

converges when the difference of train errors between two 

successive iterations is smaller than a threshold. However, 

stochastic gradient descent commonly cannot reach the global 

optima. Despite that a near-optimal solution is generally 

sufficient to train a low-error neural network, this method 

typically requires a long time to converge. Moreover, 

parameters like step length should be carefully selected to 

avoid fluctuation of the gradient. From the perspective of 

underlying principles, the computational predicament of 

DNNs is due to the following reasons. 

The first is memory overhead. Oversized network is a 

conventional method to achieve low generalization error. A 

large capacity does not necessarily result in low generalization 

error. However, a large hypothesis space raises the upper 

bound of the generalization ability and thus increases the 
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possibility of reaching a low error, especially when the target 

functions are not excessively complex. 

The second is time and energy overhead. Backpropagation is 

inherently iterative and time-consuming. The gradient is 

calculated by minimizing the training error. The training error 

is a function of weights and other parameters. The huge 

number of weights leads to a slow convergence speed. 

Moreover, these weights need to be frequently transmitted 

between processing units and memory. Consequently, the 

long-time computation and intensive memory operations raise 

high demand on the processing ability and energy duration. In 

addition, values of hyperparameters are conventionally 

selected through fine-tuning, which multiplies the time 

overhead. 

The third is the curse of dimensionality. High dimensionality 

of data aggravates the computational resource consumption. 

DNNs commonly need a large volume of training data to 

guarantee the generalization ability of the trained network. 

Higher dimensionality requires denser samples. If  is the 

number of necessary training data points in the one-

dimensional sample space, then the number of training data 

points is  in n-dimensional sample space [38]. More training 

data points of higher dimension inevitably exacerbate 

overheads of memory, time, and energy. 

C. Challenges to be Investigated 

Deep learning is currently more art than a science. Neural 

networks are inherently approximate models and can often be 

simplified [39]. 

In spite of the dramatic learning power of deep learning, 

computational cost has impeded their portability to resource-

limited platforms [40]. DL algorithms are facing three kinds 

of barriers to optimize computational performance. The first 

barrier is the resource-consuming iterative nature of DL 

training. Moreover, the experiential nature aggravates this 

kind of iterative cost. Up to now, the success of deep learning 

mainly relies on empirical designs and experimental 

evaluations. Theoretical principles are still to be exploited. As 

a result, optimizing the performance of deep learning requires 

implementing and executing various possible models within 

the computational resource constraints to empirically 

recognize the optimal one [41]. Extracting meaningful 

knowledge from a single input sample can require enormous 

MAC operations. The number of MAC operations can reach 

the magnitude of billion [42]. Additionally, a single deep 

learning network can contain over a million parameters [43]. 

As a result, deep learning proposes high demands on 

processing ability, memory capacity, and energy efficiency. It 

is a vital issue to optimize deep learning networks by 

eliminating ineffectual MAC operations and parameters 

[42]. The second barrier is fitting DNNs into diversified 

modern hardware platforms. Different hardware platforms can 

be distinct in terms of clock frequency, memory access 

latency, intercore communication latency, and parallelism 

mode. Designer of DL model can be categorized into two 

different types: data scientist and computer engineer. Data 

scientists mainly concentrate on optimizing training and 

inference accuracy through data and neural network 

techniques. However, they have little or even no concern with 

computational cost. Efforts to upgrade accuracy do not 

necessarily result in smaller network size and higher speed. 

Computer engineers focus on accelerating deep learning based 

on hardware platforms. They fine-tune or even reform DNNs 

to match the models to the design requirements for resource-

constrained applications. The third barrier is lack of dedicated 

hardware. Traditional general-purpose digital computing 

hardware such as CPU, GPU, and FPGA neglect some unique 

characteristics of deep learning. For example, deep learning 

only involves limited kinds of computational operations. 

Additionally, deep learning is significantly tolerant to noise 

and uncertainty. Dedicated hardware may trade off 

universality for performance [44–48]. 

Cloud-powered DL has been an active research area. Such 

solutions can offload heavy computation onto the remote 

cloud hosts. Such methods assemble data from mobile or 

embedded devices, transfer the data to cloud, and perform 

deep learning algorithms (both training and inferencing) on 

cloud. Users are facing the risk of privacy leakage due to data 

transmission through computer networks, particularly if the 

data contain sensitive information. In addition, the reliability 

of cloud-based deep learning may be affected by network 

package loss or even network failure. In this paper, we focus 

on three issues: first, trade-off between neural network 

capacity and generalization error using algorithmic design; 

second, fitting DNN into digital hardware through 

computational design; and third, next-generation hardware to 

cope with the computational predicament of DNN. We 

categorize the existing solutions into three layers: the 

algorithmic, computational, and hardware layers. 

D. Algorithmic Design 

Algorithmic designs focus on reducing resource consumption 

through mathematically adjusting or reforming the DNN 

model and algorithm. Typical simplification techniques 

include depthwise separable convolution, matrix factorizing, 

weight matrix sparsification, weight matrix compression, data 

dimension reduction, and mathematical optimization. 

Howard et al. designed a series of neural network models 

(MobileNets) to facilitate machine vision applications on 

mobile platforms [49]. MobileNets represent a kind of 

lightweight deep neural network based on depthwise separable 

convolutions. The main goal of MobileNets is to construct 

real-time and low-space-complexity models to satisfy the 

demands raised by mobile machine vision applications. The 

contributions of MobileNets are summarized as follows. First, 

core layers of MobileNets are derived from the depthwise 

separable convolution. The core concept of the depthwise 

separable convolution is to factorize a conventional 

convolution into a depthwise separable convolution layer and 
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a pointwise convolution layer [50]. MobileNets adopt this 

core concept to reduce the model size, as well as the total 

number of multiplication and addition operations. Second, 

pointwise convolutions account for 95% of the total 

computation while the im2col reordering optimization is 

unnecessary for pointwise convolutions [51]. Thus, 

MobileNets avoid massive computation of im2col reordering. 

Third, since MobileNets generate relatively small models and 

require comparatively few parameters, conventional anti-

overfitting measures are adjusted. For instance, less 

regularization and data augmentation are used. Additionally, 

minimal weight decay (L2 regularization) is adopted on the 

depthwise filter. Fourth, two hyperparameters called width 

multiplier and resolution multiplier are applied to further 

shrink the model size. 

The core concept of [49] is factorizing a conventional 

convolution to lower the computation complexity. This 

factorization does not affect the inference accuracy and thus is 

a lossless simplification method. However, lossy 

simplification is necessary if superior simplification effect is 

demanded. Samraph et al. customize DL network to match 

FPGA platform [39]. This method simplifies the weight 

matrix through clustering and encoding. Additionally, matrix-

vector multiplication operations are factorized to decrease 

computational complexity. First, elements of the weight 

matrix are clustered by k-means into K clusters. Thus, every 

element is affiliated to a cluster, and the center of every 

cluster is the mean of its affiliated elements. Consequently, 

every element in the weight matrix is replaced with the 

corresponding center. In other words, every weight is 

approximated with the center of its affiliated cluster. Second, 

the approximate weights are encoded with a bit width of 

log K. And all cluster centers form a dictionary vector. As a 

result, encoding can significantly lower memory overhead. 

Third, the matrix-vector multiplication can be factorized due 

to the fact that the encoded matrix has abundant repetitive 

elements. Therefore, the number of floating-point 

multiplication operations is dramatically reduced, which 

means lower computational complexity. In addition to the 

aforementioned three basic steps, this method faces another 

problem: replacing weights with cluster centers inevitably 

induces numerical error to the DL network. This error can 

affect the inference accuracy. The method of [39] adopts two 

solutions to handle this error. One is increasing the length of 

the dictionary vector (in other words, designating a 

larger K to k-means). The other is to iteratively cluster and 

retrain the weights. The method of [39] focuses on 

compressing the already trained weight matrix. By contrast, 

methods like lasso regularization can sparsify the weight 

matrix during training [52]. 

Lane et al. propose a software framework named  to reshape 

the DNN reference model under limited resource constraints 

[53]. By contrast to the clustering method of [39],  uses SVD 

decomposition and reconstruction error minimization to 

compress the DNN model. On the first level, they adopt SVD 

decomposition to reconstruct and approximate the weight 

matrix of every DNN layer. Thus,  dramatically reduces the 

amount of DNN parameters in each layer. Additionally, the 

accuracy of this approximation is measured and tuned in 

pursuant to the reconstruction error. As a result, this 

reconstruction method avoids the predicament of retraining. 

On the second level,  quantizes the computation loads of every 

neuron and formalizes workload scheduling as a constrained 

dynamic programming problem. In this manner, computation 

load can be automatically scheduled onto processors to meet 

energy and time constraints. 

Pruning or compressing an already-trained DNN could result 

in large approximation error [54–57]. One alternative is to 

train a sparse DNN. Lin et al. propose a method named 

structured sparsity regularization (SSR) to achieve weight 

matrix sparsification during training [58]. They introduce two 

distinct structured-sparsity regularizers into the object 

function of matrix weight sparsification. These two 

regularizers can constrain the intermediate status of DNN 

filter matrix to be sparse. Subsequently, they adopt an 

Alternative Updating with Lagrange Multipliers (AULM) 

scheme to alternatively optimize the sparsification objective 

function and minimize recognition loss. The SSR method 

enjoys significantly lower time and memory overhead than 

state-of-the-art weight matrix pruning methods. Nazemi et al. 

propose a DNN training method to remove redundant memory 

access operations. This method utilizes Boolean logic 

minimization [59]. In the training process, the  function is 

adopted as the activation. Consequently, activations are 

confined to binary values. Every layer of the DNN (except the 

first layer and the last layer) is modeled as a multi-input 

multioutput Boolean function. In the inference process, 

outputs of the DNN are obtained through synthesizing a 

Boolean expression other than computing the dot product of 

the input and weight. In other words, enormous memory 

accessing operations are avoided, which removes vast 

memory access latency and energy consumption. 

The aforementioned algorithmic solutions focus on 

simplifying the DNN model so as to reduce MAC operations 

and memory consumption. Nevertheless, physical durability, 

especially energy efficiency, is still a daunting barrier to 

benefit various practical applications through deep 

learning. DeLight is a low-overhead framework that 

capacitates efficient training and execution of deep neural 

networks under low-energy constraints [60]. Authors of [60] 

restrain the DL network size through energy characterization 

in pursuant to pertinent physical resources. They design an 

automatic customization methodology to adaptively fit the 

DNN into the specific hardware while inducing minimum 

degradation of learning accuracy. The core concept 

of DeLight is to project data to low-dimensional embeddings 

(subspaces) in a context-and-resource-aware manner. 

Consequently, insights into data samples can be achieved 

through dramatically less neurons. Moreover, trained models 

in every embedding are integrated to enhance learning 

accuracy. 
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The core concept of  is fine-grained energy consumption 

control based on data dimension reduction. The 

framework  proposes to bound energy and memory 

consumption from the point of hyperparameter optimization 

[41]. This is a hyperparameter optimization framework based 

on Gaussian process (GP) and Bayesian optimization [61, 62]. 

This framework denotes test error as a function , where x is a 

data point in the design space of hyperparameters. 

Additionally, power and memory overhead is denoted as a 

function . Subsequently, hyperparameter tuning is formalized 

as an optimization problem: minimizing  under the constraint 

that  is lower than a threshold. Minimizing  is costly due to the 

fact that  has no close form. Consequently,  adopts GP to 

approximate distributions of . Moreover, the framework 

leverages Bayesian optimization to iteratively select optimal 

hyperparameters and update distribution of .  is assumed to 

obey Gaussian distribution. Let y denote the observations 

of . At the very beginning, an initial approximation of  can be 

resolved as  based on the assumption and a set of 

known  values (Gaussian process regression). Every iteration 

includes the following operations. The primary task is to 

select an optimal value of x from the design space to 

refine . And the selected x should push the  value along a 

direction of decrease. This value of x is identified through 

maximizing an expectation-improvement-based acquisition 

function. In addition, the acquisition function incorporates the 

constraint using an indicator function. The indicator function 

equals to one if the constraint is satisfied and zero if not. 

Second, the neural network is configured in accordance with 

the new design parameter (the newly identified x) and trained 

to obtain the test error (a new value of y). Third, the mean and 

covariance are updated using the new , and thus,  is updated 

to . 

E. Computational Optimization 

Computational optimization relies on reengineering the 

algorithm implementation in accordance with a specific 

hardware architecture. Some conventional optimization 

techniques are code parallelizing, fine-tuning of parallel code, 

data caching, and fine-grained memory utilization. 

Huynh et al. developed a tool  for continuous vision 

applications based on commodity mobile GPUs [37]. Large 

deep neural networks (DNNs) powered by commodity mobile 

GPU commonly cannot achieve strict real-time performance 

due to limited computational resources. However, the frame 

rate can be low (one to two frames per second) under some 

use cases, such as speaker recognition and elder nursing care. 

These application scenarios put forward comparatively low 

demands on real-time performance.  implements large DNNs 

for such applications based on commodity mobile GPUs and 

achieves near real-time performance. In the aforementioned 

applications, first-person-view images are not apt to exhibit 

significant changes during a short time span.  divides each 

frame of image into equal-size blocks.  cached the 

intermediate results of each block when calculating the 

convolution of one frame. Subsequently, similar blocks are 

identified between this frame and the next frame. 

Consequently, the cached results can be directly utilized to 

calculate convolution of the next frame. Additionally, cached 

results expire after a certain time period. Similarity between 

two images is identified based on color distribution histogram 

and chi-square distance metric. In addition to this caching 

mechanism,  leverages Tucker-2 decomposition convolution 

layers [63] to factorize a traditional convolution layer into 

several small convolution layers. As a result, computation cost 

of convolution is reduced. Finally,  tunes GPU codes on 

various mainstream commodity mobile GPUs. Tuned and 

optimized GPU codes are encapsulated into separate kernels 

for each GPU model. As a result,  can adaptively adopt 

appropriate kernels at runtime so as to fit into a specific GPU 

with best efforts. 

The main idea of  is caching the intermediate result to 

eliminate redundant computation. Another typical technique is 

GPGPU acceleration. Cao et al. proposed a GPGPU-powered 

RNN model that executes locally on mobile devices [64]. 

Recurrent neural network (RNN) can find wide applications 

such as speech recognition and robot chatting. Traditional 

mobile applications of RNN generally offload main 

computation onto the cloud. However, the cloud-based 

implementation induces security and efficiency issues. Cao et 

al. pointed out that existing GPGPU-accelerated methods for 

convolutional neural network (CNN) cannot directly be 

transplanted to mobile-device-based RNN. On the one hand, 

RNN inherently contains many sequential operations, which 

constrains the parallelism of RNN. On the other hand, existing 

GPGPU-powered RNN methods are specially designed for 

desktop GPGPUs. Such methods can not directly fit into 

mobile GPGPUs due to the fact that the mobile GPGPU 

possesses significantly less memory capacity and processing 

cores. In a RNN, the inevitable dependencies between 

adjacent cells dramatically increase the difficulty in exploiting 

parallelism among cells. Nevertheless, operations within a cell 

still exhibit considerable parallelism. In the work of [64], 

computation of the cell is factorized in fine granularity and 

elegantly fits into the mobile GPGPU. 

The adaptive platform DL framework  still adopts the idea of 

GPGPU-powered computing. However,  exploit parallelism 

from three levels: data, network, and hardware. The ultimate 

goal of  is to bridge the gap between data science perspective 

design of deep learning and computer engineering perspective 

optimization of deep learning. First is hardware 

parallelism.  extracts basic operations (layers) of a deep 

learning network, including convolution, maximum pooling, 

mean pooling, matrix multiplication, and nonlinearities. 

Optimized implementation of a basic operation can be 

dramatically distinct with regard to the hardware platform. For 

example, by altering the dimensionality of matrices, we can 

observe that matrix multiplication is computation-intensive or 

data-intensive on a specific platform.  employs subroutines to 

perform hardware profiling. Each subroutine runs a specific 

operation with varying sizes on different platforms, 

separately. In this manner,  recognizes the optimal size of a 
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specific operation regarding a target platform. These optimal 

sizes are vital instructions to split an entire deep learning 

network into subnetworks, which adapt the computational, 

memory, and bandwidth resources of the target platform. 

Second is network parallelism.  breaks down the entire deep 

learning network into overlapped subnetworks using a depth-

first method. Each subnetwork has the same depth as the 

original network with significantly fewer edges. Every 

subnetwork can be independently updated, and such local 

updates are periodically collected by a parameter coordinator 

to optimize the entire network. Third is data 

parallelism.  decomposes the high-dimensional input data into 

several low-dimensional subspaces through dictionary 

learning. Dictionary learning can be efficiently performed by 

machine learning algorithms like spectral clustering [65–67]. 

Subsequently, each subnetwork is dedicated to handling a 

specific subspace and different subspaces are processed in 

parallel. 

Wu et al. exploit mobile deep learning in the joint perspective 

of software-and-hardware architecture. They propose a 

platform named  to capacitate commercial-off-the-shelf 

(COTS) mobile devices with the capability of adaptive 

resource scheduling [68]. Methods like  try to compress the 

deep model. By contrast,  seeks trade-off between response 

speed and memory consumption. It splits a pretrained DNN 

into code blocks and incrementally runs the blocks on system-

on-chip (SoC) to accomplish inference. Consequently,  only 

needs to load currently required data from external storage 

into memory rather than hold entire data in memory 

throughout the execution period. Thus,  remarkably lowers 

memory consumption. In addition,  induces no accuracy loss 

due to the absence of model compression or approximation. 

Moreover, privacy risks are avoided due to the fact that all 

user-relevant data are processed locally. Eventually,  is 

transparent to deep learning developers. It overloads default 

system functions of TensorFlow and Caffe. Developers can 

invoke  APIs in the same way as calling TensorFlow or Caffe 

APIs. By contrast, the work of [59] eliminates redundant 

memory operations in an algorithmic manner. 

F. Hardware Revolution 

Haensch et al. point out that the aspiration to apply DL to all 

fields of daily life is an inheritage of pervasive computing. 

However, academia and industry are facing challenging 

barriers to scale DL to fit DL into pervasive applications [69]. 

Overhead is a vital problem regarding pervasive application of 

DL, where overhead refers to time and computational 

resources required to construct, train, and run the model. 

Prior-art research works show that GPUs take a step further 

towards pervasive DL, whereas it is confirmed that 

customized hardware dedicated to DL can outperform 

general-purpose GPUs. 

Han et al. design a dedicated processor for DNN-based real-

time object tracking [70]. This processor achieves low power 

consumption through a DNN-specific processor architecture 

and a specialized algorithm. However, this dedicated 

processor still relies on digital computing. 

A DL network only requires limited kinds of mathematical 

operations (for example, matrix multiplication). And such 

operations frequently reoccur in model training or inference. 

These two characteristics enable efficient execution of DL 

algorithms on not only GPUs but also analog computing 

circuits. Additionally, DL algorithms are highly tolerant to 

noise and uncertainty, which opens a way to trade numerical 

precision for algorithmic accuracy. Analog computing 

discussed by Haensch et al. [69] is an extension of in-memory 

computing. Prior-art nonvolatile memory materials cannot 

efficiently accommodate analog in-memory computing. 

Reengineering memory materials is a challenging task. A new 

generation of DL accelerating hardware has entered the vision 

of academia and industry. This kind of hardware trades 

versatility for low overhead. Nevertheless, complexity of 

constructing and training DL models is beyond the capacity of 

any single kind of hardware. As a result, researchers need to 

consider the solution in a systematic perspective and 

aggregate several kinds of accelerators into a perfect system. 

Vitality of new accelerators heavily depends on this issue. 

Moreover, Haensch et al. declare that analog accelerators will 

not completely replace the digital ones. Both digital and 

analog accelerators should be continuously developed to the 

maximum possible extent. The analog accelerators should be 

capable of seamless integration into digital ones. 

Analog computing can be implemented based on 

electrochemical reactions. Such a mechanism has been 

investigated to establish hardware foundations for DL-related 

problems. For example, neuromorphic computing can 

circumvent immanent performance bottlenecks of traditional 

computing via parallel processing and crossbar-memory-

enabled data accessing. Fuller et al. link a redox transistor to a 

conductive-bridge memory (CBM) and thus establish an ionic 

floating-gate memory (IFG) array [71]. The working life of 

redox transistors can reach up to over one billion “read-write” 

operations. Additionally, data access frequencies can achieve 

more than one megahertz. This IFG-based neuromorphic 

system shows that in-memory learning and inference can 

efficiently perform based on low-voltage electrochemical 

systems. The adaptive electrical features of IFG can hopefully 

pioneer neuromorphic computers that can significantly 

outperform conventional digital computers in power 

efficiency. Such neuromorphic analog computers could adjust 

deep learning to power-limited context, or even capacitate 

persistent lifelong learning of a product. Another 

electrochemistry-based hardware prototype is proposed in 

[72]. Tsushiya et al. design a solid-state ionic device to 

address decision-making issues like the multiarmed bandit 

problem (MBPs). This device opens a way to achieve 

decision-making through motion of ions, which could 

contribute to mobile artificial chips and find various 

applications including deep learning. 
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In addition to analog computing, photonic (or optical) 

computing is also a promising hardware solution. Currently, 

mainstream photonic computers replace components of 

electric digital computers with photonic equivalents, which 

can achieve higher speed and bandwidth. Some pioneering 

research works have adopted photonic computing to support 

DL-related computations. Rios et al. achieve all-photonic in-

memory computations through combining integrated optics 

with collocated data storage and processing [73]. They 

fabricate nonvolatile memory using the phase-change 

material  and perform direct scalar and matrix-vector 

multiplications based on this nonvolatile photonic memory. 

The computation results are represented by the output pulses. 

This photonic computing system offers a promising shift 

towards high-speed and large bandwidth on-chip photonic 

computing, which circumvents electro-optical conversions. 

Such a system could be the cornerstone of the purely photonic 

computers. Feldmann et al. point out that conventional 

computing architectures differentiate real neural tissue by 

physically separating the functionalities of data memory and 

processing [74]. This separated design places a daunting 

barrier to achieving high-speed and power-efficient computing 

systems like human brains. A promising solution to conquer 

this barrier is to elaborate novel hardware to simulate neurons 

and synapses of human brains. Consequently, they investigate 

on wavelength division multiplexing techniques to implement 

a photonic neural network based on a scalable circuit, which 

can mimic the neurosynaptic system in an all-optical manner. 

This circuit maintains the intrinsic high-speed and large 

bandwidth characteristics of an optical system and capacitates 

efficient execution of machine learning algorithms. 

Quantum computing is another prospective solution to support 

DL. Gao et al. adopt a quantum generative model to design 

quantum algorithm of machine learning. This model enjoys 

superior ability of representing probability distributions over 

conventional generative models. In addition, the model can 

achieve a speedup of exponential magnitude at least in some 

application scenarios that a quantum computer cannot be fully 

simulated through conventional digital computing paradigm. 

The work of [75] opens a way to quantum machine learning 

and demonstrates a dramatic instance where a quantum 

algorithm of both theoretical and practical values can reach 

exponentially higher performance over conventional 

algorithms. 

Novel hardware paradigms like ionic memory, photonic 

computing, and quantum computing could set indispensable 

stages for resource-limited deep learning. Despite that these 

hardware evolutions may be initially motivated by facilitating 

deep learning applications, the next-generation hardware 

could find much broader applications in future. 

IV. CONCLUSION 

In this paper, we investigate typical solutions of resource-

limited deep learning and point out the open problems. 

Existing solutions have achieved successes under specific 

scenarios. However, we expect future breakthroughs in the 

following two aspects. The first aspect is dedicated hardware. 

Most existing solutions depend on general-purpose digital 

hardware. Dedicated hardware, which takes into consideration 

unique characteristics of deep learning, is a promising 

direction to achieve further performance enhancements. The 

second aspect is the theoretical principles of deep learning. 

Simplifying the DNN is almost an inevitable method to reduce 

resource consumption. Nonetheless, such methods currently 

rely on empirical and iterative tuning. Additionally, the 

robustness of simplification is not theoretically guaranteed. 

Clarifying the theoretical principles of deep learning will 

enable more efficient simplification and guarantee robustness. 
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