
 International Journal of Computer Science Trends and Technology (IJCST) – Volume 10 Issue 3, May-Jun 2022

ISSN: 2347-8578 www.ijcstjournal.org Page 6

Solving Real-Time Computational Problems

using Smart Recognition AI System
Yew Kee Wong

JiangXi Normal University, Jiangxi - China

ABSTRACT

Nowadays, Internet of Things (IoT) gives rise to a huge amount of data. IoT nodes equipped with smart sensors can immediately

extract meaningful knowledge from the data through machine learning technologies. Deep learning (DL) is constantly

contributing significant progress in smart sensing due to its dramatic superiorities over traditional machine learning. The

promising prospect of wide-range applications puts forwards demands on the ubiquitous deployment of DL under various

contexts. As a result, performing DL on mobile or embedded platforms is becoming a common requirement. Nevertheless, a

typical DL application can easily exhaust an embedded or mobile device owing to a large amount of multiply and accumulate

(MAC) operations and memory access operations. Consequently, it is a challenging task to bridge the gap between deep learning

and resource-limited platforms. We summarize typical applications of resource-limited deep learning and point out that deep

learning is an indispensable impetus of pervasive computing. Subsequently, we explore the underlying reasons for the high

computational overhead of DL through reviewing the fundamental concepts including capacity, generalization, and

backpropagation of a neural network. Guided by these concepts, we investigate on principles of representative research works, as

well as three types of solutions: algorithmic design, computational optimization, and hardware revolution. In pursuant to these

solutions, we identify challenges to be addressed.

Keywords — Blockchain, Artificial Intelligence, Autonomy, Cryptography, Privacy Protection

I. INTRODUCTION

The last decade has witnessed exciting development of deep

learning (DL) technologies, which contributes dramatic

progress in signal and information processing applications

including IoT and smart sensing. A deep neural network

(DNN) comprises multiple neuron layers organized in a

hierarchical structure. Parameters of every layer can be

learned through iterative training. A well-trained DNN can

distill useful features from raw data. All training samples are

manually labeled. In one layer, input data can be mapped into

a low-dimensional space through feature extraction.

Subsequently, output features of the current layer are exported

into the next layer. Outputs of the last layer imply the learned

labels. A DNN can be fine-tuned through minimizing the error

between manual labels and learned labels [1].

Deep learning enjoys significant advantages over traditional

machine learning [2, 3]. First, deep learning can achieve

superior performance when data volume is massive. This

means that deep learning can fully benefit from the huge

amount of data collected by IoT. Traditional machine learning

techniques are preferable when data volume is small.

However, the performance prominently degrades when data

volume is extremely large. In contrast, deep learning exhibits

advantageous scalability with massive data. Second, deep

learning relies less on feature engineering. IoT can gather

diversified categories of data that are distinct in nature.

Manually extracting features of heterogeneous data is a

daunting task. Traditional machine learning requires a domain

expert to extract features. The manually identified features

expose underlying patterns to algorithms. Nevertheless, deep

learning autonomously extract features in a layer-wise manner

to represent input samples with a nested hierarchy of features.

Every layer defines higher-level features based on lower-level

features extracted by the previous layer. Third, deep learning

techniques can outperform traditional ones in terms of various

smart-sensing-related tasks, such as computer vision, speech

recognition, and human behavior understanding.

By contrast with traditional machine learning solutions, deep

learning techniques are undergoing rapid development.

Applications of deep learning involve information retrieval

[4], natural language processing [5], human voice recognition

[6], computer vision [7], anomaly detection [8],

recommendation systems [9], bioinformatics [10], medicine

[11, 12], crop science [13], earth science [14], robotics [15–

18], transportation engineering [19], communication

technologies [20–22], and system simulation [23, 24].

Deep learning is permeating into diversified aspects of human

society, which puts forwards urgent demand on the ubiquitous

deployment of DL-powered applications. In other words, deep

learning is required to be fit into resource-limited platforms

like smartphones or wearable devices. Nevertheless, matching

DL and resource-limited platforms is a challenging task.

Inferencing with DL is extremely resource-consuming

(processor, memory, energy, etc) even though the more

resource-consuming training phase can be offloaded onto

high-performance-computing-powered mainframes. We

investigate on typical resource-limited DL inferencing

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 10 Issue 3, May-Jun 2022

ISSN: 2347-8578 www.ijcstjournal.org Page 7

solutions by categorizing the solutions and discussing open

questions. The rest of this paper is organized as follows.

Clarifies impetus of developing resource-limited DL.

Representative solutions are discussed.

II. COMPUTATIONAL RESOURCE

LIMITED CONTEXT OF DEEP LEARNING

A. A Perspective of Pervasive Computing

Deep learning can automatically extract features and achieve

higher accuracy than traditional artificial intelligence

techniques. As a result, deep learning is applicable to a broad

range of scenarios. Additionally, open-source development

tools like TensorFlow and Caffe are also speeding up

progresses in deep learning. Research works on fitting deep

learning into resource-limited mobile or embedded platforms

will undoubtedly push a huge step forward towards the

pervasive deep learning.

Deep learning is currently an indispensable impetus that

advances the progress of pervasive computing. We summarize

the development of pervasive computing into three stages.

The hardware and software solutions of a former stage are

incorporated into the latter stages. In the 1990s, researchers in

this area try to facilitate the daily life of humans through

Internet-interconnected desktops and mainframes. TCP/IP

protocols account for the backbone of networks and the

software layer of pervasive applications typically focuses on

network organization and data delivery. In the following

stage, the mobile Internet provides network access to users at

any time and any place. IoT interconnects almost all digital

sensors to collect raw data from diversified sources, which

results in large data volume and puts forward high demand on

the computing power of the data processing platform. Thus,

distributed or parallel middleware like Hadoop aggregates the

computing power of huge amounts of commodity servers.

Additionally, cloud computing provides the aggregated

supercomputing power to customers through Web Service.

Data transmission between IoT and cloud platforms is further

supported by WIFI and 3G/4G. However, applications of this

stage mainly adopt traditional machine learning solutions,

which cannot achieve constantly advancing performance with

the continuous increase of input data volume. Nowadays, the

learning and inference accuracy of DNN can efficiently scale

with the input data amount. However, high time and memory

overheads impede the deployment of DL on resource-limited

platforms. Matching deep learning and hardware platforms is

an active research area. Software layer solutions mainly focus

on simplifying the trained DNN to approximate a full-status

DNN. Hardware layer solutions involve embedded GPUs,

artificial intelligence chips, or even analog computing based

on new nonvolatile memory. Additionally, 5G will meet even

higher bandwidth requirements.

III. INVESTIGATION ON EXISTING

SOLUTIONS

B. Computational Predicament of DNN: A Perspective of

Underlying Principles

Classification is a typical application scenario of DNNs.

Under this scenario, the target is to establish a mapping from

input samples to corresponding labels. The following concepts

are the cornerstones to exploit the learning and inference of

DNNs: hypothesis space, capacity, stochastic gradient

descent, and generalization [38].

Hypothesis space is the set of all functions generated by a

neural network. One function is obtained by fitting part of

parameters of the neural network and can map homogeneous

samples to the same label. Training a neural network is to

search the optimal functions in the hypothesis space, which

can build mapping relationships specified by the training data

(in other words, minimizing the training error). As a result, the

size of hypothesis space determines the potential ability of a

neural network to find optimal functions.

Capacity of a neural network reflects the size of hypothesis

space, as well as the upper bound of ability to fit functions.

The optimal functions may be beyond the hypothesis space, if

the capacity is not sufficiently large. In this case, the neural

network can only search in the limited hypothesis space and

find functions that approximate the optimal functions with

best efforts. Consequently, underfitting is inevitable.

A trained neural network is expected to correctly predict the

label of previously unseen samples. Generalization reflects

this kind of ability. Lower generalization error means higher

generalization ability. Underfitting during the training phase

can result in large generalization error in the inference phase.

Capacity sets the limit of the fitting ability, while

generalization can measure the ability of scaling with

unknown samples. Another vital issue with neural networks is

the mechanism of searching the hypothesis space in the

training phase. Conventionally, the searching is manipulated

by stochastic gradient descent; searching is always along the

direction in which training error drops fastest. The gradients

are backpropagated from the deepest layer to the first layer to

update weights in a layer-wise manner. Backpropagation

converges when the difference of train errors between two

successive iterations is smaller than a threshold. However,

stochastic gradient descent commonly cannot reach the global

optima. Despite that a near-optimal solution is generally

sufficient to train a low-error neural network, this method

typically requires a long time to converge. Moreover,

parameters like step length should be carefully selected to

avoid fluctuation of the gradient. From the perspective of

underlying principles, the computational predicament of

DNNs is due to the following reasons.

The first is memory overhead. Oversized network is a

conventional method to achieve low generalization error. A

large capacity does not necessarily result in low generalization

error. However, a large hypothesis space raises the upper

bound of the generalization ability and thus increases the

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 10 Issue 3, May-Jun 2022

ISSN: 2347-8578 www.ijcstjournal.org Page 8

possibility of reaching a low error, especially when the target

functions are not excessively complex.

The second is time and energy overhead. Backpropagation is

inherently iterative and time-consuming. The gradient is

calculated by minimizing the training error. The training error

is a function of weights and other parameters. The huge

number of weights leads to a slow convergence speed.

Moreover, these weights need to be frequently transmitted

between processing units and memory. Consequently, the

long-time computation and intensive memory operations raise

high demand on the processing ability and energy duration. In

addition, values of hyperparameters are conventionally

selected through fine-tuning, which multiplies the time

overhead.

The third is the curse of dimensionality. High dimensionality

of data aggravates the computational resource consumption.

DNNs commonly need a large volume of training data to

guarantee the generalization ability of the trained network.

Higher dimensionality requires denser samples. If is the

number of necessary training data points in the one-

dimensional sample space, then the number of training data

points is in n-dimensional sample space [38]. More training

data points of higher dimension inevitably exacerbate

overheads of memory, time, and energy.

C. Challenges to be Investigated

Deep learning is currently more art than a science. Neural

networks are inherently approximate models and can often be

simplified [39].

In spite of the dramatic learning power of deep learning,

computational cost has impeded their portability to resource-

limited platforms [40]. DL algorithms are facing three kinds

of barriers to optimize computational performance. The first

barrier is the resource-consuming iterative nature of DL

training. Moreover, the experiential nature aggravates this

kind of iterative cost. Up to now, the success of deep learning

mainly relies on empirical designs and experimental

evaluations. Theoretical principles are still to be exploited. As

a result, optimizing the performance of deep learning requires

implementing and executing various possible models within

the computational resource constraints to empirically

recognize the optimal one [41]. Extracting meaningful

knowledge from a single input sample can require enormous

MAC operations. The number of MAC operations can reach

the magnitude of billion [42]. Additionally, a single deep

learning network can contain over a million parameters [43].

As a result, deep learning proposes high demands on

processing ability, memory capacity, and energy efficiency. It

is a vital issue to optimize deep learning networks by

eliminating ineffectual MAC operations and parameters

[42]. The second barrier is fitting DNNs into diversified

modern hardware platforms. Different hardware platforms can

be distinct in terms of clock frequency, memory access

latency, intercore communication latency, and parallelism

mode. Designer of DL model can be categorized into two

different types: data scientist and computer engineer. Data

scientists mainly concentrate on optimizing training and

inference accuracy through data and neural network

techniques. However, they have little or even no concern with

computational cost. Efforts to upgrade accuracy do not

necessarily result in smaller network size and higher speed.

Computer engineers focus on accelerating deep learning based

on hardware platforms. They fine-tune or even reform DNNs

to match the models to the design requirements for resource-

constrained applications. The third barrier is lack of dedicated

hardware. Traditional general-purpose digital computing

hardware such as CPU, GPU, and FPGA neglect some unique

characteristics of deep learning. For example, deep learning

only involves limited kinds of computational operations.

Additionally, deep learning is significantly tolerant to noise

and uncertainty. Dedicated hardware may trade off

universality for performance [44–48].

Cloud-powered DL has been an active research area. Such

solutions can offload heavy computation onto the remote

cloud hosts. Such methods assemble data from mobile or

embedded devices, transfer the data to cloud, and perform

deep learning algorithms (both training and inferencing) on

cloud. Users are facing the risk of privacy leakage due to data

transmission through computer networks, particularly if the

data contain sensitive information. In addition, the reliability

of cloud-based deep learning may be affected by network

package loss or even network failure. In this paper, we focus

on three issues: first, trade-off between neural network

capacity and generalization error using algorithmic design;

second, fitting DNN into digital hardware through

computational design; and third, next-generation hardware to

cope with the computational predicament of DNN. We

categorize the existing solutions into three layers: the

algorithmic, computational, and hardware layers.

D. Algorithmic Design

Algorithmic designs focus on reducing resource consumption

through mathematically adjusting or reforming the DNN

model and algorithm. Typical simplification techniques

include depthwise separable convolution, matrix factorizing,

weight matrix sparsification, weight matrix compression, data

dimension reduction, and mathematical optimization.

Howard et al. designed a series of neural network models

(MobileNets) to facilitate machine vision applications on

mobile platforms [49]. MobileNets represent a kind of

lightweight deep neural network based on depthwise separable

convolutions. The main goal of MobileNets is to construct

real-time and low-space-complexity models to satisfy the

demands raised by mobile machine vision applications. The

contributions of MobileNets are summarized as follows. First,

core layers of MobileNets are derived from the depthwise

separable convolution. The core concept of the depthwise

separable convolution is to factorize a conventional

convolution into a depthwise separable convolution layer and

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 10 Issue 3, May-Jun 2022

ISSN: 2347-8578 www.ijcstjournal.org Page 9

a pointwise convolution layer [50]. MobileNets adopt this

core concept to reduce the model size, as well as the total

number of multiplication and addition operations. Second,

pointwise convolutions account for 95% of the total

computation while the im2col reordering optimization is

unnecessary for pointwise convolutions [51]. Thus,

MobileNets avoid massive computation of im2col reordering.

Third, since MobileNets generate relatively small models and

require comparatively few parameters, conventional anti-

overfitting measures are adjusted. For instance, less

regularization and data augmentation are used. Additionally,

minimal weight decay (L2 regularization) is adopted on the

depthwise filter. Fourth, two hyperparameters called width

multiplier and resolution multiplier are applied to further

shrink the model size.

The core concept of [49] is factorizing a conventional

convolution to lower the computation complexity. This

factorization does not affect the inference accuracy and thus is

a lossless simplification method. However, lossy

simplification is necessary if superior simplification effect is

demanded. Samraph et al. customize DL network to match

FPGA platform [39]. This method simplifies the weight

matrix through clustering and encoding. Additionally, matrix-

vector multiplication operations are factorized to decrease

computational complexity. First, elements of the weight

matrix are clustered by k-means into K clusters. Thus, every

element is affiliated to a cluster, and the center of every

cluster is the mean of its affiliated elements. Consequently,

every element in the weight matrix is replaced with the

corresponding center. In other words, every weight is

approximated with the center of its affiliated cluster. Second,

the approximate weights are encoded with a bit width of

log K. And all cluster centers form a dictionary vector. As a

result, encoding can significantly lower memory overhead.

Third, the matrix-vector multiplication can be factorized due

to the fact that the encoded matrix has abundant repetitive

elements. Therefore, the number of floating-point

multiplication operations is dramatically reduced, which

means lower computational complexity. In addition to the

aforementioned three basic steps, this method faces another

problem: replacing weights with cluster centers inevitably

induces numerical error to the DL network. This error can

affect the inference accuracy. The method of [39] adopts two

solutions to handle this error. One is increasing the length of

the dictionary vector (in other words, designating a

larger K to k-means). The other is to iteratively cluster and

retrain the weights. The method of [39] focuses on

compressing the already trained weight matrix. By contrast,

methods like lasso regularization can sparsify the weight

matrix during training [52].

Lane et al. propose a software framework named to reshape

the DNN reference model under limited resource constraints

[53]. By contrast to the clustering method of [39], uses SVD

decomposition and reconstruction error minimization to

compress the DNN model. On the first level, they adopt SVD

decomposition to reconstruct and approximate the weight

matrix of every DNN layer. Thus, dramatically reduces the

amount of DNN parameters in each layer. Additionally, the

accuracy of this approximation is measured and tuned in

pursuant to the reconstruction error. As a result, this

reconstruction method avoids the predicament of retraining.

On the second level, quantizes the computation loads of every

neuron and formalizes workload scheduling as a constrained

dynamic programming problem. In this manner, computation

load can be automatically scheduled onto processors to meet

energy and time constraints.

Pruning or compressing an already-trained DNN could result

in large approximation error [54–57]. One alternative is to

train a sparse DNN. Lin et al. propose a method named

structured sparsity regularization (SSR) to achieve weight

matrix sparsification during training [58]. They introduce two

distinct structured-sparsity regularizers into the object

function of matrix weight sparsification. These two

regularizers can constrain the intermediate status of DNN

filter matrix to be sparse. Subsequently, they adopt an

Alternative Updating with Lagrange Multipliers (AULM)

scheme to alternatively optimize the sparsification objective

function and minimize recognition loss. The SSR method

enjoys significantly lower time and memory overhead than

state-of-the-art weight matrix pruning methods. Nazemi et al.

propose a DNN training method to remove redundant memory

access operations. This method utilizes Boolean logic

minimization [59]. In the training process, the function is

adopted as the activation. Consequently, activations are

confined to binary values. Every layer of the DNN (except the

first layer and the last layer) is modeled as a multi-input

multioutput Boolean function. In the inference process,

outputs of the DNN are obtained through synthesizing a

Boolean expression other than computing the dot product of

the input and weight. In other words, enormous memory

accessing operations are avoided, which removes vast

memory access latency and energy consumption.

The aforementioned algorithmic solutions focus on

simplifying the DNN model so as to reduce MAC operations

and memory consumption. Nevertheless, physical durability,

especially energy efficiency, is still a daunting barrier to

benefit various practical applications through deep

learning. DeLight is a low-overhead framework that

capacitates efficient training and execution of deep neural

networks under low-energy constraints [60]. Authors of [60]

restrain the DL network size through energy characterization

in pursuant to pertinent physical resources. They design an

automatic customization methodology to adaptively fit the

DNN into the specific hardware while inducing minimum

degradation of learning accuracy. The core concept

of DeLight is to project data to low-dimensional embeddings

(subspaces) in a context-and-resource-aware manner.

Consequently, insights into data samples can be achieved

through dramatically less neurons. Moreover, trained models

in every embedding are integrated to enhance learning

accuracy.

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 10 Issue 3, May-Jun 2022

ISSN: 2347-8578 www.ijcstjournal.org Page 10

The core concept of is fine-grained energy consumption

control based on data dimension reduction. The

framework proposes to bound energy and memory

consumption from the point of hyperparameter optimization

[41]. This is a hyperparameter optimization framework based

on Gaussian process (GP) and Bayesian optimization [61, 62].

This framework denotes test error as a function , where x is a

data point in the design space of hyperparameters.

Additionally, power and memory overhead is denoted as a

function . Subsequently, hyperparameter tuning is formalized

as an optimization problem: minimizing under the constraint

that is lower than a threshold. Minimizing is costly due to the

fact that has no close form. Consequently, adopts GP to

approximate distributions of . Moreover, the framework

leverages Bayesian optimization to iteratively select optimal

hyperparameters and update distribution of . is assumed to

obey Gaussian distribution. Let y denote the observations

of . At the very beginning, an initial approximation of can be

resolved as based on the assumption and a set of

known values (Gaussian process regression). Every iteration

includes the following operations. The primary task is to

select an optimal value of x from the design space to

refine . And the selected x should push the value along a

direction of decrease. This value of x is identified through

maximizing an expectation-improvement-based acquisition

function. In addition, the acquisition function incorporates the

constraint using an indicator function. The indicator function

equals to one if the constraint is satisfied and zero if not.

Second, the neural network is configured in accordance with

the new design parameter (the newly identified x) and trained

to obtain the test error (a new value of y). Third, the mean and

covariance are updated using the new , and thus, is updated

to .

E. Computational Optimization

Computational optimization relies on reengineering the

algorithm implementation in accordance with a specific

hardware architecture. Some conventional optimization

techniques are code parallelizing, fine-tuning of parallel code,

data caching, and fine-grained memory utilization.

Huynh et al. developed a tool for continuous vision

applications based on commodity mobile GPUs [37]. Large

deep neural networks (DNNs) powered by commodity mobile

GPU commonly cannot achieve strict real-time performance

due to limited computational resources. However, the frame

rate can be low (one to two frames per second) under some

use cases, such as speaker recognition and elder nursing care.

These application scenarios put forward comparatively low

demands on real-time performance. implements large DNNs

for such applications based on commodity mobile GPUs and

achieves near real-time performance. In the aforementioned

applications, first-person-view images are not apt to exhibit

significant changes during a short time span. divides each

frame of image into equal-size blocks. cached the

intermediate results of each block when calculating the

convolution of one frame. Subsequently, similar blocks are

identified between this frame and the next frame.

Consequently, the cached results can be directly utilized to

calculate convolution of the next frame. Additionally, cached

results expire after a certain time period. Similarity between

two images is identified based on color distribution histogram

and chi-square distance metric. In addition to this caching

mechanism, leverages Tucker-2 decomposition convolution

layers [63] to factorize a traditional convolution layer into

several small convolution layers. As a result, computation cost

of convolution is reduced. Finally, tunes GPU codes on

various mainstream commodity mobile GPUs. Tuned and

optimized GPU codes are encapsulated into separate kernels

for each GPU model. As a result, can adaptively adopt

appropriate kernels at runtime so as to fit into a specific GPU

with best efforts.

The main idea of is caching the intermediate result to

eliminate redundant computation. Another typical technique is

GPGPU acceleration. Cao et al. proposed a GPGPU-powered

RNN model that executes locally on mobile devices [64].

Recurrent neural network (RNN) can find wide applications

such as speech recognition and robot chatting. Traditional

mobile applications of RNN generally offload main

computation onto the cloud. However, the cloud-based

implementation induces security and efficiency issues. Cao et

al. pointed out that existing GPGPU-accelerated methods for

convolutional neural network (CNN) cannot directly be

transplanted to mobile-device-based RNN. On the one hand,

RNN inherently contains many sequential operations, which

constrains the parallelism of RNN. On the other hand, existing

GPGPU-powered RNN methods are specially designed for

desktop GPGPUs. Such methods can not directly fit into

mobile GPGPUs due to the fact that the mobile GPGPU

possesses significantly less memory capacity and processing

cores. In a RNN, the inevitable dependencies between

adjacent cells dramatically increase the difficulty in exploiting

parallelism among cells. Nevertheless, operations within a cell

still exhibit considerable parallelism. In the work of [64],

computation of the cell is factorized in fine granularity and

elegantly fits into the mobile GPGPU.

The adaptive platform DL framework still adopts the idea of

GPGPU-powered computing. However, exploit parallelism

from three levels: data, network, and hardware. The ultimate

goal of is to bridge the gap between data science perspective

design of deep learning and computer engineering perspective

optimization of deep learning. First is hardware

parallelism. extracts basic operations (layers) of a deep

learning network, including convolution, maximum pooling,

mean pooling, matrix multiplication, and nonlinearities.

Optimized implementation of a basic operation can be

dramatically distinct with regard to the hardware platform. For

example, by altering the dimensionality of matrices, we can

observe that matrix multiplication is computation-intensive or

data-intensive on a specific platform. employs subroutines to

perform hardware profiling. Each subroutine runs a specific

operation with varying sizes on different platforms,

separately. In this manner, recognizes the optimal size of a

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 10 Issue 3, May-Jun 2022

ISSN: 2347-8578 www.ijcstjournal.org Page 11

specific operation regarding a target platform. These optimal

sizes are vital instructions to split an entire deep learning

network into subnetworks, which adapt the computational,

memory, and bandwidth resources of the target platform.

Second is network parallelism. breaks down the entire deep

learning network into overlapped subnetworks using a depth-

first method. Each subnetwork has the same depth as the

original network with significantly fewer edges. Every

subnetwork can be independently updated, and such local

updates are periodically collected by a parameter coordinator

to optimize the entire network. Third is data

parallelism. decomposes the high-dimensional input data into

several low-dimensional subspaces through dictionary

learning. Dictionary learning can be efficiently performed by

machine learning algorithms like spectral clustering [65–67].

Subsequently, each subnetwork is dedicated to handling a

specific subspace and different subspaces are processed in

parallel.

Wu et al. exploit mobile deep learning in the joint perspective

of software-and-hardware architecture. They propose a

platform named to capacitate commercial-off-the-shelf

(COTS) mobile devices with the capability of adaptive

resource scheduling [68]. Methods like try to compress the

deep model. By contrast, seeks trade-off between response

speed and memory consumption. It splits a pretrained DNN

into code blocks and incrementally runs the blocks on system-

on-chip (SoC) to accomplish inference. Consequently, only

needs to load currently required data from external storage

into memory rather than hold entire data in memory

throughout the execution period. Thus, remarkably lowers

memory consumption. In addition, induces no accuracy loss

due to the absence of model compression or approximation.

Moreover, privacy risks are avoided due to the fact that all

user-relevant data are processed locally. Eventually, is

transparent to deep learning developers. It overloads default

system functions of TensorFlow and Caffe. Developers can

invoke APIs in the same way as calling TensorFlow or Caffe

APIs. By contrast, the work of [59] eliminates redundant

memory operations in an algorithmic manner.

F. Hardware Revolution

Haensch et al. point out that the aspiration to apply DL to all

fields of daily life is an inheritage of pervasive computing.

However, academia and industry are facing challenging

barriers to scale DL to fit DL into pervasive applications [69].

Overhead is a vital problem regarding pervasive application of

DL, where overhead refers to time and computational

resources required to construct, train, and run the model.

Prior-art research works show that GPUs take a step further

towards pervasive DL, whereas it is confirmed that

customized hardware dedicated to DL can outperform

general-purpose GPUs.

Han et al. design a dedicated processor for DNN-based real-

time object tracking [70]. This processor achieves low power

consumption through a DNN-specific processor architecture

and a specialized algorithm. However, this dedicated

processor still relies on digital computing.

A DL network only requires limited kinds of mathematical

operations (for example, matrix multiplication). And such

operations frequently reoccur in model training or inference.

These two characteristics enable efficient execution of DL

algorithms on not only GPUs but also analog computing

circuits. Additionally, DL algorithms are highly tolerant to

noise and uncertainty, which opens a way to trade numerical

precision for algorithmic accuracy. Analog computing

discussed by Haensch et al. [69] is an extension of in-memory

computing. Prior-art nonvolatile memory materials cannot

efficiently accommodate analog in-memory computing.

Reengineering memory materials is a challenging task. A new

generation of DL accelerating hardware has entered the vision

of academia and industry. This kind of hardware trades

versatility for low overhead. Nevertheless, complexity of

constructing and training DL models is beyond the capacity of

any single kind of hardware. As a result, researchers need to

consider the solution in a systematic perspective and

aggregate several kinds of accelerators into a perfect system.

Vitality of new accelerators heavily depends on this issue.

Moreover, Haensch et al. declare that analog accelerators will

not completely replace the digital ones. Both digital and

analog accelerators should be continuously developed to the

maximum possible extent. The analog accelerators should be

capable of seamless integration into digital ones.

Analog computing can be implemented based on

electrochemical reactions. Such a mechanism has been

investigated to establish hardware foundations for DL-related

problems. For example, neuromorphic computing can

circumvent immanent performance bottlenecks of traditional

computing via parallel processing and crossbar-memory-

enabled data accessing. Fuller et al. link a redox transistor to a

conductive-bridge memory (CBM) and thus establish an ionic

floating-gate memory (IFG) array [71]. The working life of

redox transistors can reach up to over one billion “read-write”

operations. Additionally, data access frequencies can achieve

more than one megahertz. This IFG-based neuromorphic

system shows that in-memory learning and inference can

efficiently perform based on low-voltage electrochemical

systems. The adaptive electrical features of IFG can hopefully

pioneer neuromorphic computers that can significantly

outperform conventional digital computers in power

efficiency. Such neuromorphic analog computers could adjust

deep learning to power-limited context, or even capacitate

persistent lifelong learning of a product. Another

electrochemistry-based hardware prototype is proposed in

[72]. Tsushiya et al. design a solid-state ionic device to

address decision-making issues like the multiarmed bandit

problem (MBPs). This device opens a way to achieve

decision-making through motion of ions, which could

contribute to mobile artificial chips and find various

applications including deep learning.

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 10 Issue 3, May-Jun 2022

ISSN: 2347-8578 www.ijcstjournal.org Page 12

In addition to analog computing, photonic (or optical)

computing is also a promising hardware solution. Currently,

mainstream photonic computers replace components of

electric digital computers with photonic equivalents, which

can achieve higher speed and bandwidth. Some pioneering

research works have adopted photonic computing to support

DL-related computations. Rios et al. achieve all-photonic in-

memory computations through combining integrated optics

with collocated data storage and processing [73]. They

fabricate nonvolatile memory using the phase-change

material and perform direct scalar and matrix-vector

multiplications based on this nonvolatile photonic memory.

The computation results are represented by the output pulses.

This photonic computing system offers a promising shift

towards high-speed and large bandwidth on-chip photonic

computing, which circumvents electro-optical conversions.

Such a system could be the cornerstone of the purely photonic

computers. Feldmann et al. point out that conventional

computing architectures differentiate real neural tissue by

physically separating the functionalities of data memory and

processing [74]. This separated design places a daunting

barrier to achieving high-speed and power-efficient computing

systems like human brains. A promising solution to conquer

this barrier is to elaborate novel hardware to simulate neurons

and synapses of human brains. Consequently, they investigate

on wavelength division multiplexing techniques to implement

a photonic neural network based on a scalable circuit, which

can mimic the neurosynaptic system in an all-optical manner.

This circuit maintains the intrinsic high-speed and large

bandwidth characteristics of an optical system and capacitates

efficient execution of machine learning algorithms.

Quantum computing is another prospective solution to support

DL. Gao et al. adopt a quantum generative model to design

quantum algorithm of machine learning. This model enjoys

superior ability of representing probability distributions over

conventional generative models. In addition, the model can

achieve a speedup of exponential magnitude at least in some

application scenarios that a quantum computer cannot be fully

simulated through conventional digital computing paradigm.

The work of [75] opens a way to quantum machine learning

and demonstrates a dramatic instance where a quantum

algorithm of both theoretical and practical values can reach

exponentially higher performance over conventional

algorithms.

Novel hardware paradigms like ionic memory, photonic

computing, and quantum computing could set indispensable

stages for resource-limited deep learning. Despite that these

hardware evolutions may be initially motivated by facilitating

deep learning applications, the next-generation hardware

could find much broader applications in future.

IV. CONCLUSION

In this paper, we investigate typical solutions of resource-

limited deep learning and point out the open problems.

Existing solutions have achieved successes under specific

scenarios. However, we expect future breakthroughs in the

following two aspects. The first aspect is dedicated hardware.

Most existing solutions depend on general-purpose digital

hardware. Dedicated hardware, which takes into consideration

unique characteristics of deep learning, is a promising

direction to achieve further performance enhancements. The

second aspect is the theoretical principles of deep learning.

Simplifying the DNN is almost an inevitable method to reduce

resource consumption. Nonetheless, such methods currently

rely on empirical and iterative tuning. Additionally, the

robustness of simplification is not theoretically guaranteed.

Clarifying the theoretical principles of deep learning will

enable more efficient simplification and guarantee robustness.

REFERENCES

[1] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E.

Alsaadi, “A survey of deep neural network architectures

and their applications,” Neurocomputing, vol. 234,

pp. 11–26, 2017.

[2] H. W. Lin, M. Tegmark, and D. Rolnick, “Why does

deep and cheap learning work so well?” Journal of

Statistical Physics, vol. 168, no. 6, pp. 1223–1247, 2017.

[3] P. P. Brahma, D. Wu, and Y. She, “Why deep learning

works: a manifold disentanglement

perspective,” IEEE Transactions on Neural Networks and

Learning Systems, vol. 27, no. 10, pp. 1997–2008, 2016.

[4] Y. Bayle, M. Robine, and P. Hanna, “SATIN: a

persistent musical database for music information

retrieval and a supporting deep learning experiment on

song instrumental classification,” Multimedia Tools and

 Applications, vol. 78, no. 3, pp. 2703–2718, 2019.

[5] B. Xu, R. Cai, Z. Zhang et al., “NADAQ: natural

Language database querying based on deep

learning,” IEEE Access, vol. 7, pp. 35012– 35017, 2019.

[6] R. V. Swaminathan and A. Lerch, “Improving singing

voice separation using attribute-aware deep network,”

in Proceedings of the 2019 International Workshop

On Multilayer Music Representation And

 Processing(MMRP), pp. 60–65, IEEE, Milano, Italy,

2019.

[7] M. S. Hossain, M. Al-Hammadi, and G. Muhammad,

“Automatic fruit classification using deep learning for

industrial applications,” IEEE Transactions on Industrial

Informatics, vol. 15, no. 2, pp. 1027–1034, 2019.

[8] S. Garg, K. Kaur, N. Kumar, and J. J. P. C. Rodrigues,

“Hybrid deep- learning-based anomaly detection scheme

for suspicious flow detection in SDN: a social

multimedia perspective,” IEEE Transactions on

 Multimedia, vol. 21, no. 3, pp. 566–578, 2019.

[9] Z. Huang, J. Tang, G. Shan, J. Ni, Y. Chen, and C.

Wang, “An efficient passenger-hunting recommendation

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 10 Issue 3, May-Jun 2022

ISSN: 2347-8578 www.ijcstjournal.org Page 13

framework with multitask deep learning,” IEEE Internet of

Things Journal, vol. 6, no. 5, pp. 7713– 7721, 2019.

[10] M. Zeng, M. Li, Z. Fei et al., “A deep learning

framework for identifying essential proteins by integrating

multiple types of biological information,” IEEE/ACM

transactions on computational biology and bioinformatics, p.

1, 2019.

[11] F. Pasa, V. Golkov, F. Pfeiffer, D. Cremers, and D.

Pfeiffer, “Efficient deep network architectures for fast

chest X-ray tuberculosis screening and

visualization,” Scientific Reports, vol. 9, no. 1, p. 6268, 2019.

[12] K. Li, J. Daniels, and C. Liu, “Convolutional recurrent

neural networks for glucose prediction,” IEEE Journal of

Biomedical and Health Informatics, vol. 24, no. 2, pp. 603–

613, 2019.

[13] A. Ramcharan, P. McCloskey, and K. Baranowski, “A

mobile-based deep learning model for cassava disease

diagnosis,” Frontiers in Plant Science, vol. 10, p. 272,

2019.

[14] M. Reichstein, G. Camps-Valls, B. Stevens et al., “Deep

learning and process understanding for data-driven earth

system science,” Nature, vol. 566, no. 7743, pp. 195–204,

2019.

[15] T. G. Thuruthel, B. Shih, C. Laschi, and M. T. Tolley,

“Soft robot perception using embedded soft sensors and

recurrent neural networks,” Science Robotics, vol. 4, no. 6,

Article ID eaav1488, 2019.

[16] W. Zheng, H. B. Wang, and Z. M. Zhang, “Multi-layer

feed-forward neural network deep learning control with

hybrid position and virtual- force algorithm for mobile

robot obstacle avoidance,” International Journal of

Control, Automation and Systems, vol. 17, no. 4, pp. 1007–

 1018, 2019.

[17] Y. J. Heo, D. Kim, and W. Lee, “Collision detection for

industrial collaborative robots: a deep learning

approach,” IEEE Robotics and Automation Letters, vol. 4,

no. 2, pp. 740–746, 2019.

[18] F. Niroui, K. Zhang, and Z. Kashino, “Deep

reinforcement learning robot for search and rescue

applications: exploration in unknown cluttered

environments,” EEE Robotics and Automation Letters, vol. 4,

 no. 2, pp. 610–617, 2019.

[19] F. Ding, Z. Zhang, Y. Zhou, X. Chen, and B. Ran,

“Large-scale full- coverage traffic speed estimation under

extreme traffic conditions using a big data and deep learning

approach: case study in China,” Journal of Transportation

Engineering, Part A: Systems, vol. 145, no. 5, Article ID

05019001, 2019.

[20] D. Mochizuki, Y. Abiko, T. Saito, D. Ikeda, and H.

Mineno, “Delay- tolerance-based mobile data offloading

using deep reinforcement learning,” Sensors, vol. 19, no. 7, p.

1674, 2019.

[21] H. Ye, G. Y. Li, and B. H. F. Juang, “Deep

reinforcement learning based resource allocation for V2V

communications,” IEEE Transactions on Vehicular

Technology, vol. 68, no. 4, pp. 3163–3173, 2019.

[22] H. Ye and G. Y. Li, “Deep reinforcement learning based

distributed resource allocation for V2V broadcasting,”

in Proceedings of the 2018 14th International

Wireless Communications And Mobile Computing

 Conference (IWCMC), pp. 440–445, Kansas City, MO,

USA, 2018.

[23] W. Li, C. W. Pan, R. Zhang et al., “AADS.: Augmented

autonomous driving simulation using data-driven

algorithms,” Science Robotics, vol. 4, no. 28, Article ID

eaaw0863, 2019.

[24] S. M. Aldossari and K.-C. Chen, “Machine learning for

wireless communication channel modeling: an

overview,” Wireless Personal Communications, vol. 106,

no. 1, pp. 46–70, 2019.

[25] X. Qi, Y. Luo, G. Wu, K. Boriboonsomsin, and M.

Barth, “Deep reinforcement learning enabled self-learning

control for energy efficient driving,” Transportation

Research Part C: Emerging Technologies, vol. 99, pp.

67–81, 2019.

[26] D. Li, D. Zhao, Q. Zhang, and Y. Chen, “Reinforcement

learning and deep learning based lateral control for

autonomous driving [application notes],” IEEE

Computational Intelligence Magazine, vol. 14, no. 2, pp.

 83–98, 2019.

[27] K. Z. Haider, K. R. Malik, S. Khalid, T. Nawaz, and S.

Jabbar, “Deepgender: real-time gender classification using

deep learning for smartphones,” Journal of Real-Time Image

Processing, vol. 16, no. 1, pp. 15–29, 2019.

[28] A. Esteva, A. Robicquet, B. Ramsundar et al., “A guide

to deep learning in healthcare,” Nature Medicine, vol. 25, no.

1, pp. 24–29, 2019.

[29] E. Kanjo, M. G. Y. Eman, and S. A. Chee, “Deep

learning analysis of mobile physiological,

environmental and location sensor data for emotion

detection,” Information Fusion, vol. 49, pp. 46–56, 2019.

[30] S. Chung, J. Lim, K. J. Noh, G. Kim, and H. Jeong,

“Sensor data acquisition and multimodal sensor fusion for

human activity recognition using deep learning,” Sensors,

vol. 19, no. 7, p. 1716, 2019.

[31] F. Mehmood, I. Ullah, S. Ahmad, and D. Kim, “Object

detection mechanism based on deep learning

algorithm using embedded IoT devices for smart home

appliances control in CoT,” Journal of Ambient

 Intelligence and Humanized Computing, vol. 10, 2019.

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 10 Issue 3, May-Jun 2022

ISSN: 2347-8578 www.ijcstjournal.org Page 14

[32] M. Xu, F. Qian, M. Zhu, F. Huang, S. Pushp, and X. Liu,

“DeepWear: adaptive local offloading for on-wearable

deep learning,” IEEE Transactions on Mobile

Computing, vol. 19, no. 1, pp. 314–330, 2020.

[33] A. Alelaiwi, “An efficient method of computation

offloading in an edge cloud platform,” Journal of Parallel

and Distributed Computing, vol. 127, pp. 58–64, 2019.

[34] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi,

and F. Kawsar, “An early resource characterization of deep

learning on wearables, smartphones and internet-of-things

devices,” in Proceedings of the 2015 International

Workshop on Internet of Things towards Applications—

IoT-App ‘15, pp. 7–12, ACM, Seoul, Korea, 2015.

[35] R. Affolter, S. Eggert, T. Sieberth, M. Thali, and L. C.

Ebert, “Applying augmented reality during a forensic

autopsy-Microsoft HoloLens as a DICOM

viewer,” Journal of Forensic Radiology and Imaging,

vol. 16, pp. 5–8, 2019.

[36] C.-H. Wang, N.-H. Tsai, J.-M. Lu, and M.-J. J. Wang,

“Usability evaluation of an instructional application

based on Google Glass for mobile phone disassembly

tasks,” Applied Ergonomics, vol. 77, pp. 58–69, 2019.

[37] L. N. Huynh, Y. Lee, and R. K. Balan, “Deepmon:

mobile GPU-based deep learning framework for

continuous vision applications,” in Proceedings Of the 15th

Annual International Conference on Mobile Systems,

Applications, and Services, pp. 82–95, ACM, Niagara Falls,

 NY, USA, 2017.

[38] S. Lawrence, C. L. Giles, and A. C. Tsoi, “What size

neural network gives optimal generalization? Convergence

properties of backpropagation,” NEC Research Institute,

Princeton, NJ, USA, 1998, Technical Report.

[39] M. Dong, S. Wen, F. Zeng, Z. Yan, and T. Huang,

“Sparse fully convolutional network for face

labeling,” Neurocomputing, vol. 331, no. 28, pp. 465–

472, 2019.

[40] B. D. Rouhani, A. Mirhoseini, and F. Koushanfar,

“Deep3: leveraging three levels of parallelism for

efficient deep learning,” in Proceedings of the 54th

Annual Design Automation Conference 2017 on—DAC ‘17,

 61 pages, ACM, Austin, TX, USA, 2017.

[41] D. Stamoulis, E. Cai, D.-C. Juan, and D. Marculescu,

“HyperPower: power-and memory-constrained hyper-

parameter optimization for neural networks,”

in Proceedings of the 2018 Design, Automation & Test in

Europe Conference & Exhibition (DATE), pp. 19–24, IEEE,

 Dresden, Germany, 2018.

[42] M. A. Hanif, M. U. Javed, R. Hafiz, S. Rehman, and M.

Shafique, “Hardware-software approximations for

deep neural networks,” in Approximate Circuits, pp. 269–

288, Springer, Berlin, Germany, 2019.

[43] A. Shawahna, S. M. Sait, and A. El-Maleh, “FPGA-

based accelerators of deep learning networks for

learning and classification: a review,” IEEE Access, vol.

7, pp. 7823–7859, 2018.

[44] D. Shin and H.-J. Yoo, “The heterogeneous deep neural

network processor with a non-von Neumann

architecture,” Proceedings of the IEEE, pp. 1–16, 2019.

[45] F. Schuiki, M. Schaffner, F. K. Gurkaynak, and L.

Benini, “A scalable near-memory architecture for

training deep neural networks on large in-memory

datasets,” IEEE Transactions on Computers, vol. 68, no. 4,

 pp. 484–497, 2019.

[46] E. Azarkhish, D. Rossi, I. Loi, and L. Benini,

“Neurostream: scalable and energy efficient deep learning

with smart memory cubes,” IEEE Transactions on Parallel

and Distributed Systems, vol. 29, no. 2, pp. 420–434, 2018.

[47] H. Fuketa, H. Fuketa, T. Ikegami et al., “Image-classifier

deep convolutional neural network training by 9-bit dedicated

Hardware to realize validation accuracy and energy

efficiency superior to the half precision floating point

format,” in Proceedings Of the 2018 IEEE International

Symposium On Circuits And Systems (ISCAS), pp. 1–5,

 IEEE, Florence, Italy, 2018.

[48] H. Tann, S. Hashemi, and S. Reda, “Lightweight deep

neural network accelerators using approximate SW/HW

techniques,” in Approximate Circuits, pp. 289–305,

Springer, Cham, Switzerland, 2019.

[49] A. G. Howard, M. Zhu, B. Chen et al., “Mobilenets:

efficient convolutional neural networks for mobile

vision applications,” 2017.

[50] F. Chollet, “Xception: deep learning with depthwise

separable convolutions,” in Proceedings Of the IEEE

Conference on Computer Vision and Pattern Recognition, pp.

1251–1258, IEEE, Honolulu, HI, USA, 2017.

[51] A. Vasudevan, A. Anderson, and D. Gregg, “Parallel

multi channel convolution using general matrix

multiplication,” in Proceedings of the 2017 IEEE 28th

International Conference on Application-specific Systems,

Architectures and Processors (ASAP), pp. 19–24, IEEE,

 Seattle, WA, USA, July 2017.

[52] M. Dong, S. Wen, Z. Zeng, Z. Yan, and T. Huang,

“Sparse fully convolutional network for face

labeling,” Neurocomputing, vol. 331, no. 28, pp. 465–

472, 2019.

[53] N. D. Lane, S. Bhattacharya, P. Georgiev et al., “Deepx:

a software accelerator for low-power deep learning

inference on mobile devices,” in Proceedings of the 2016

15th ACM/IEEE International Conference on Information

Processing in Sensor Networks (IPSN), p. 23, IEEE, Vienna,

Austria, 2016.

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 10 Issue 3, May-Jun 2022

ISSN: 2347-8578 www.ijcstjournal.org Page 15

[54] S. Ge, Z. Luo, Q. Ye, and X.-Y. Zhang, “MicroBrain:

compressing deep neural networks for energy-efficient

visual inference service,” in Proceedings of the 2017 IEEE

Conference On Computer Communications Workshops

(INFOCOM WKSHPS), pp. 1000-1001, IEEE, Atlanta,

GA, USA, 2017.

[55] C. Deng, S. Liao, Y. Xie, K. K. Parhi, X. Qian, and B.

Yuan, “PermDNN: efficient compressed DNN architecture

with permuted diagonal matrices,” in Proceedings of the

51st Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), pp. 189– 202, IEEE,

Fukuoka, Japan, 2018.

[56] W. Yang, L. Jin, S. Wang, Z. Cu, X. Chen, and L. Chen,

“Thinning of convolutional neural network with mixed

pruning,” IET Image Processing, vol. 13, no. 5, pp. 779–

784, 2019.

[57] R. Yazdani, M. Riera, J.-M. Arnau, and A. Gonzalez,

“The dark side of DNN pruning,” in Proceedings of

the 2018 ACM/IEEE 45th Annual International Symposium

On Computer Architecture (ISCA), pp. 790– 801,

IEEE, Los Angeles, CA, USA, 2018.

[58] S. Lin, R. Ji, Y. Li, C. Deng, and X. Li, “Towards

compact ConvNets via structure-sparsity regularized

filter pruning,” IEEE Transactions on Neural Networks

and Learning Systems, vol. 31, no. 2, pp. 574–588, 2019.

[59] M. Nazemi, G. Pasandi, and M. Pedram, “Energy-

efficient, low-latency realization of neural networks

through boolean logic minimization,” in Proceedings of

the 24th Asia and South Pacific Design Automation

 Conference on - ASPDAC '19, pp. 274–279, ACM,

Tokyo, Japan, 2019.

[60] B. D. Rouhan, A. Mirhoseini, and F. Koushanfar,

“DeLight,” in Proceeding of the 2016 ACM/IEEE

International Symposium On Low Power Electronics

And Design, pp. 112–117, ACM, San Francisco, CA,

USA, 2016.

[61] J. Wang, A. Hertzmann, and D. J. Fleet, “Gaussian

process dynamical models,” Advances in Neural

Information Processing Systems, vol. 19, pp. 1441–1448,

2006.

[62] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N.

de Freitas, “Taking the human out of the loop: a review

of bayesian optimization,” Proceedings of the IEEE, vol.

104, no. 1, pp. 148–175, 2016.

[63] P. P. Markopoulos, D. G. Chachlakis, and E. E.

Papalexakis, “The exact solution to rank-1 L1-norm

TUCKER2 decomposition,” IEEE Signal Processing Letters,

vol. 25, no. 4, pp. 511–515, 2018.

[64] Q. Cao, N. Balasubramanian, and A. Balasubramanian,

“MobiRNN: efficient recurrent neural network execution

on mobile GPU,” in Proceedings of the 1st

International Workshop on Deep Learning for Mobile

Systems and Applications—EMDL ‘17, pp. 1–6, ACM,

 Niagara Falls, New York, USA, 2017.

[65] L. Jing, M. K. Ng, and T. Zeng, “Dictionary learning-

based subspace structure identification in spectral

clustering,” IEEE Transactions on Neural Networks and

Learning Systems, vol. 24, no. 8, pp. 1188–1199, 2013.

[66] L. He and H. Zhang, “Iterative ensemble normalized

cuts,” Pattern Recognition, vol. 52, pp. 274–286, 2016.

[67] L. He, N. Ray, Y. Guan, and H. Zhang, “Fast large-scale

spectral clustering via explicit feature mapping,” IEEE

Transactions on Cybernetics, vol. 49, no. 3, pp. 1058–1071,

2019.

[68] C. Wu, L. Zhang, Q. Li, Z. Fu, W. Zhu, and Y. Zhang,

“Enabling flexible resource allocation in mobile deep

learning systems,” IEEE Transactions on Parallel and

Distributed Systems, vol. 30, no. 2, pp. 346–360, 2019.

[69] W. Haensch, T. Gokmen, and R. Puri, “The next

generation of deep learning hardware: analog

computing,” Proceedings of the IEEE, vol. 107, no. 1, pp.

108–122, 2019.

[70] D. Han, J. Lee, J. Lee, and H.-J. Yoo, “A low-power

deep neural network online learning processor for real-

time object tracking application,” IEEE Transactions on

Circuits and Systems I: Regular Papers, vol. 66, no. 5, pp.

1794–1804, 2019.

[71] E. J. Fuller, S. T. Keene, A. Melianas et al., “Parallel

programming of an ionic floating-gate memory array for

scalable neuromorphic computing,” Science, vol. 364, no.

6440, pp. 570–574, 2019.

[72] T. Tsuchiya, T. Tsuruoka, S. J. Kim et al., “Ionic

decision-maker created as novel, solid-state

devices,” Science Advances, vol. 4, no. 9, Article ID

eaau2057, 2018.

[73] C. Rios, N. Youngblood, Z. Cheng et al., “In-memory

computing on a photonic platform,” Science Advances, vol.

5, no. 2, Article ID eaau5759, 2019.

[74] J. Feldmann, N. Youngblood, C. D. Wright, H.

Bhaskaran, and W. H. P. Pernice, “All-optical spiking

neurosynaptic networks with self- learning

capabilities,” Nature, vol. 569, no. 7755, pp. 208–214,

 2019.

[75] X. Gao, Z. Y. Zhang, and L. M. Duan, “A quantum

machine learning algorithm based on generative

models,” Science Advances, vol. 4, no. 12, Article ID

eaat9004, 2018.

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 10 Issue 3, May-Jun 2022

ISSN: 2347-8578 www.ijcstjournal.org Page 16

http://www.ijcstjournal.org/

