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ABSTRACT  

An increasingly crucial yet difficult problem is the blind quality assessment of screen content images (SCIs) and 

natural scene pictures (NSIs). In this research, we provide a dictionary of learnt local and global quality attributes 

that forms the basis of a blind quality assessment approach for SCIs and NSIs. To begin, we use local normalised 

picture patches and traditional K -means clustering to build a local lexicon. Using a locality-constrained linear code 

with maximum pooling, the learnt local quality characteristics may be derived with the help of this specialised 

dictionary. The histogram representations of binary patterns are joined to produce a global dictionary, which is then 

used to extract the learnt global quality characteristics. Using this dictionary, the collaborative representation 

technique effectively codes the learnt global quality attributes of the distorted pictures. Finally, a quality score is 

derived by combining all of these factors using a kernel-based support vector regression model. Extensive studies 

with the suggested assessment method show that the blind measure produces considerably greater consistency in line 

with subjective fidelity evaluations than do other comparable metrics. 

Keywords: - Screen content images (SCIs), natural scene images (NSIs), image quality assessment, local and global 

features, locality-constrained linear coding, collaborative representation. 

 

I.  INTRODUCTION 
 Screen content images (SCIs) and natural 

scene pictures (NSIs) have been more prevalent and 

intimately used in everyday life as the Internet has 

become more widely accessible in recent years. In 

addition, SCIs and NSIs are becoming more popular in 

a wide range of multimedia applications for computers 

and other electronic devices, such as those used for 

visual screen sharing, distance learning, cloud 

computing, online games, instant messaging, and 

snapping photos. [1]–[3]. Blurring, noising, 

compression artefacts, contrast shift, quantization, and 

transmission loss are only some of the ways in which 

SCIs and NSIs are degraded during the capture, 

compression, storage, and transmission processes in 

multiclient communication systems. [4]–[7]. Therefore, 

in order to create, monitor, and enhance the 

performance of each processing step, precise 

approaches for measuring the perceptual quality of 

SCIs and NSIs are necessary. What this means is that a 

performance index based on a quality assessment model 

for SCIs and NSIs may be utilised to enhance 

compression effectiveness. Sender may also adjust SCI 

and NSI quality to meet specific needs. As a result, 

there is a lot of curiosity in this issue among academics 

[8]-[16]. There are two main categories of image 

quality assessment (IQA) techniques: subjective and 

objective techniques. [8]–[10]. Objective approaches 

give a quantifiable objective criterion for the perceived 

quality of distorted pictures, whereas subjective 

methods rely on the subjective opinions of humans. 

Subjective IQA using humans is the most accurate and 

natural way to measure perceptual quality, but it also 

has a lot of drawbacks, such as being time consuming, 

difficult, and inconvenient. Specifically, real-time or 

automated systems are not suitable for implementing 

subjective IQA [8, 10]. Consequently, it is important to 

have objective IQA measures that can predict picture 

quality both automatically and reliably. 

 There have been recent efforts to develop 

objective IQA indicators for SCIs and NSIs [11–16], 

[26], [27]. There are three main types of objective IQA 

metrics that may be broken down by the amount of 

reference data available: full-reference (FR), reduced-

reference (RR), and blind/no-reference (NR). To 

evaluate the quality of a SCI or NSI, most researchers 

employ FR measures, which presume full knowledge of 

the reference data. Wang et al[11] .'s popular structural 

similarity index (SSIM) is a watershed moment in the 

development of FR-IQA measures. You might find 

some more related research in [12] - [17]. In recent 

years, numerous blind IQA metrics for NSIs have been 

studied extensively [19]–[28]. For instance, Ye and 

Doermann [19] proposed a visual codebook-based blind 

IQA metric to measure NSIs quality using histograms 

of codeword occurrences, but the codebook size is very 

large. Xue et al. [20] proposed a quality clustering 

(QAC) metric that learns a set of quality-predictive 

centroids. These centroids are then used as a codebook 

to calculate the quality of an NSI patch; hence, the final 

quality value of the overall NSI is inferred. Further, 
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Mittal et al. [21] presented the NSI quality evaluator 

(NIQE), which does not require training with human- 

scored distorted NSIs. Inspired by NIQE, Zhang et al. 

[22] developed an integrated-local NIQE (IL_NIQE) by 

integrating more NSI feature statistics. Further, Xue et 

al. [23] presented a blind natural NSI IQA metric that 

uses joint statistics of the gradient magnitude and 

Laplacian of Gaussian features (GM_LOG). In 

addition, Zhou et al. [24] developed a natural IQA 

metric by analyzing the usefulness and effectiveness of 

two complementary image components, i.e., the 

gradient phase and magnitude. Xu et al. [25] presented 

a blind IQA metric by aggregating soft-weighted high-

order statistical differences between a small codebook 

and normalized NSI patches. From the image content 

perspective, SCIs can be regarded as a mixture of 

natural images, computer graphics, document images, 

and other components. Obviously, these conventional 

blind metrics may not perform well on SCIs, as the 

statistical properties of the pictorial and textual regions 

in such images are distinct from those of natural 

images. Furthermore, the same levels of distortion in 

distinct regions may yield differences in perceptual 

quality [10]. In other words, the application of blind 

IQA to SCIs is significantly more complex than it is for 

NSIs, because it is affected by the quality of the natural 

images, computer graphics, document images, and 

other content [12]–[17], [29], [30]. 

 

II. RELATEDWORKS 
 Blind quality assessment of SCIs has received 

little research attention; thus, only a small number of 

stud- ies have focused on this area [29]–[32]. For 

instance, Gu et al. [29] presented a blind quality metric 

(BQMS) for SCIs based on a new SCI statistical model. 

Further, Qian et al. [30] devised a blind SCI quality 

IQA metric utiliz- ing an edge-preserving filter-based 

free energy and structural degradation model. Gu et al. 

[32] proposed a blind SCI IQA metric through bag data 

learning. However, the performance improvement 

yielded by these methods is limited by insufficient 

consideration of the statistical properties of the SCIs. 

Thus, the efficacy of blind IQA metrics for SCIs can be 

improved significantly.  

 In the current state of the research described 

above, the existing blind IQA metrics are either 

developed for NSIs or designed for SCIs. Only a very 

few quality metrics work for both simultaneously [25], 

[31]. In practical multime- dia application systems, we 

may encounter cross-content-type images (e.g., NSIs, 

SCIs, and other image types). Efficient general blind 

IQA metrics that do not depend on image types are 

required in such circumstances. To further advance the 

development of blind IQA metrics for SCIs and NSIs, 

in this study, we proposed an effective blind quality 

metric for SCIs and NSIs that fuses learned local and 

global quality features to efficiently represent both the 

local fine details and global statistical structures of the 

images. The key contributions of our work are summed 

up as follows:  

(1) The local and global dictionaries are preconstructed 

based on an image statistical model. With these local 

dic- tionaries, the learned local and global quality 

features can comprehensively characterize the features 

of the images (e.g., spots, lines, and corners, which are 

the basic elements of SCIs and NSIs).  

(2) The learned local quality features can be obtained 

using a strategy of locality-constrained linear coding 

(LLC) with max pooling. Meanwhile, the collaborative 

representa- tion (CR) algorithm is used to efficiently 

code the learned global quality features of the distorted 

images using global dictionary.  

(3) To the best of our knowledge, this is the first 

attempt to combine LLC-based quality local features 

and CR-based global quality features to achieve a fused 

representation for distorted SCIs and NSIs. The 

combined use of two types of features can effectively 

mitigate the respective shortcomings of the individual 

local and global features.  

 

III. PROPOSED SYSTEM ARCHITECTURE 
 A flow chart of the proposed blind metric is 

depicted in Fig. 1. The process is composed of two 

stages: i) local and global feature learning and ii) 

perceived quality prediction. In the feature learning 

stage, the local and global dictionaries are 

preconstructed in advance based on an image statistical 

model. The local and global quality features are learned 

using these dictionaries and able to express the micro- 

and macro- structures of the distorted images. In the 

perceptual quality prediction stage, SVR is 

implemented to determine the overall quality score. The 

final human perception of visual signals is a synthesis 

of local and global visual perception [32]–[35]. The 

average distortion in an image influences the overall 

human visual per- ception to some degree, whereas an 

extremely distorted local region lowers the overall 

visual quality severely. Because of the fundamental 

difference in the computational methods for the local 

and global quality features, we expect the two fea- ture 

representations to provide different types of 

information. That is, most local quality features convey 

texture information for a given image patch. However, 

global quality features include contour representations, 

texture features, and shape descriptors. Global and local 

texture features provide different types of information 

about an image because the support over which the 

texture is calculated varies. Note that it is necessary to 
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consider both the local and global statistical properties of the images when designing the proposed metric. 

 

 
Fig. 1 A flow chart of the proposed blind metric. 

 

Semantic structural alteration can generally reflect degra- dations in visual quality. Recent work indicated that struc- 

ture descriptors (e.g., local binary patterns (LBPs) [44]) can effectively and efficiently represent the semantic 

structural information of visual signals and can be considered as the binary approximation of the semantic structural 

information primitives in the primary visual cortex [24].  The global quality feature learning method implemented in 

this work incorporates global dictionary learning and global feature representation. The HVS is highly sensitive to 

the edge profile representation that is often encountered in images [17], [18]. Because cortical and retinal neurons in 

the primary stage of vision respond to stimulus frequency and orientation, multiscale orientation filter responses are 

similar to the orientation and scale sensitivities of the visual receptive fields of HVS [45]. In this work, perceptually 

similar log-Gabor filters (kernels) are utilized for global feature extraction [46]. A phase change generally induces 

significant visual distortion. In this study, we first readjust the phase range to [0, 360). Motivated by the local binary 

pattern (LBP) strategy [44], we consider two cases when comparing feature types: different feature types or identi- 

cal/similar feature types. To improve the stability of the binary quantification, the normalized phase range is divided 

into K intervals (here, we set K= 4). The local feature types are considered similar when they belong to the same 

interval; otherwise, they are considered different. 

 

IV. RESULTS AND DISCUSSION 
 We conducted several experiments using three IQA datasets: the newly released SIQAD dataset [11], 

categorical subjec- tive image quality (CSIQ) dataset [51], and cross-content- type (CCT) dataset [31] to validate the 

effectiveness of the proposed blind metric. The SIQAD dataset contains 20 reference SCIs altered by seven types of 

distortion, each with seven levels of degradation. Thus, this dataset consists of 140 distorted SCIs, comprising 20 

reference SCIs distorted by Gaussian noise (GN), motion blur (MB), Gaussian blur (GB), contrast change (CC), 

JPEG2000 compression (JP2K), JPEG compres- sion (JPEG), and layer-segmentation-based coding (LSC). For  

further details on this dataset, see [10]. The CSIQ dataset consists of 866 NISs and six types of distortion: white 

noise (WN), JPEG, JP2K, additive Gaussian pinknoise (PN), GB, and global contrast decrements (GCD). The 

difference mean opinion score (DMOS) of each NSI is included. 

 

 The CCT dataset, contains 1,320 distorted images (e.g., SCIs, NSIs, and others) and associated DMOS 

values generated from 72 pristine images distorted with two distortion types, at various levels of distortion.  

Two typical performance criteria were employed to evaluate the IQA metrics tested in these experiments: i) 

Pearson’s linear correlation coefficient (PLCC), which evaluates prediction accuracy, and ii) Spearman’s rank order 

correlation coeffi- cient (SROCC), which reflects the prediction monotonic of IQA metrics. Higher PLCC and 

SROCC values values indicate superior correlation performance. Thus, a high-performance objective model has the 

PLCC and SROCC values are close to 1. As the proposed blind metric requires training and testing, a cross-

validation test was implemented by randomly splitting each dataset into two non-overlapping subsets: training 
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(80%) and test (20%). To offset the performance bias as much as possible, this 80:20 split of the data was iterated 

1,000 times and the median PLCC and SROCC values of the 1,000 trials are reported. 

 

TABLE I PARAMETERS SELECTION EXPERIMENT RESULTS 

 
TABLE II PERFORMANCE OF THE PROPOSED BLIND METRIC AND  THE OTHER TWELVE METRICS 

USING THE SIQAD DATASET 

 
TABLE III MEAN AND STANDARD DEVIATION OF THE SROCC VALUES ACROSS 1,000 TRIALS 

 
To comprehensively evaluate the improvement in prediction of the proposed blind metric, the performance in terms 

of the SROCC and PLCC was compared with that of the following previous objective metrics: five FR IQA metrics 

(peak signal to noise ratio (PSNR), structural similarity index (SSIM) [11], SPQA [10], SFUW [12], and ESIM [17]) 

and six blind IQA metrics (QAC [20], NIQE [21], IL_NIQE [22], 

GM_LOG [23], local gradient patterns (LGP) [24], DIIVINE [52], and BQMS [29]). The PLCC and SROCC  

values for the given SIQAD are summarized in Table II. The best results in each case are highlighted in bold font. 

Hence, these experimental results indicate that the proposed blind metric can achieved comparative and reasonably 

encouraging quality predictions for distorted SCIs compared to other blind metrics. Specifically, it is well known 

that GM_LOG and LGP perform well for natural images. However, these metrics do not perform well when applied 
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to SCIs. Moreover, compared with FR metrics, the proposed blind metric achieves competitive performance with the 

top-performing FR metric because it considers the local and global statistical properties of the SCIs. Furthermore, 

Table III shows the mean and standard deviation of the SROCC values across the 1,000 trials; higher means with 

lower standard deviations indicate outstanding prediction performance. In summary, the proposed blind metric 

quantifies and predicts perceptual distortions in SCIs stably. 

 

TABLE IV  OVERALL PERFORMANCE OF ELEVEN METRICS FOR EACH TYPE OF DISTORTION (PLCC) 

 
TABLE V  PERFORMANCE OF ELEVEN METRICS FOR EACH TYPE OF DISTORTION (SROCC) 

 
TABLE VI  PERFORMANCE COMPARISON ON THE CSIQ AND CCT DATASETS 

 
TABLE VII  PERFORMANCE OF EACH FEATURE IN THE PROPOSED BLIND METRIC FOR ALL 

DISTORTIONS ON THE SIQAD DATASET 

 
TABLE VIII PERRFORMANCE OF EACH FEATURE IN THE PROPOSED BLIND METRIC FOR EACH 

DISTORTION TYPES (PLCC) ON THE SIQAD DATASET 
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TABLE IX  PERFORMANCE OF EACH FEATURE IN THE PROPOSED METRIC FOR  EACH DISTORTION 

TYPES (SROCC) ON THE SIQAD DATASET 

 
 

TABLE X  RESULTS OF F-TEST COMPARING SROCC VALUES OF VARIOUS  METRICS ON THE SIQAD 

DATASET 

 
To more comprehensively evaluate an IQA metric’s abil- ity to predict the perceptual quality of SCIs caused by 

different types of distortions, we examined the prediction performance of our blind metric against the competing 

met- rics (PSNR, SSIM, SPQA, SFUW, ESIM, QAC, NIQE,  

IL_NIQE, GM_LOG, DIIVINE, and LGP) on specific types of distortions. The PLCC and SROCC results are 

presented (Tables IV and V, respectively). From the tables, it can be see that, compared with existing IQA metrics, 

the proposed blind metric can better handle GN, GB, MB, JPEG, and JP2k distortions. Possibly because of the 

quality features, which cannot efficiently and effectively represent the visual quality distortion of contrast or shape 

changes, the proposed blind metric is not good at handling CC and LSC distortions. However, although some blind 

metrics are good at handling certain individual distortions (CC and LSC), the proposed blind metric is clearly 

competitive with the blind metric that obtain very promising performance on CC and LSC distortions. In general, the 

proposed blind metric performs better than, or has comparable prediction performance to, the classical FR metrics. 

In this section, we tested our proposed blind metric on the CSIQ and CCT datasets to demonstrate that the proposed  

model has a strong ability to handle cross-content-type images. Table VI summarizes the test results on these two 

datasets, which lead to several useful findings. First, on the CSIQ dataset, which contains NISs only, the results 

indicate that the learned local and global quality features are efficient for NSIs. Second, on the CCT dataset, which 

contains cross-content-type images (e.g., NSIs, SCIs, and others), it is interesting to note that the conventional 

handcrafted features cannot represent cross-content-type images, which contain not only natural scenes but also text, 

tables, icons, and graphics. However, the learning-based features are able to catch the specific information with 

various degrees of distortion for text, tables, icons, and graphics. It is efficient for the analysis of NSIs and SCIs 
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under these circumstance not to include any prior knowledge about the image type. In summary, the results show 

that the proposed blind metric has a generalization ability that can be applied to cross-content-type images, including 

SCIs, NSIs, and other types. To better understanding the individual contributions of the learned local and global 

features in the proposed blind metric, we designed two test metrics, A and B, in which only the learned local or 

global features, respectively, were used to estimate the visual quality. Tables VII, VIII, and IX show the 

performance of metrics A and B, along with that of the proposed blind metric on the SIQAD dataset. For all 

distortions, it can be see that the performance can be promoted by correctly and properly integrating the learned 

local and global features. For each type of distortion, we were surprised to see that metric B obtained promising 

performances for the GN, MB JPEG, and LSC distortions, while metric A performed very poorly. Therefore, the 

learned local and global features are complementary, reflecting different attributes of the HVS for quality prediction. 

 

To evaluate the statistical significance of the proposed blind metric’s advantages over other blind IQA metrics, F-

tests were conducted at the 5% significance level. The validation results on the SIQAD dataset are summarized in 

Table X. Symbol “1” denotes that the row metric is significantly better than the column metric, “–1” means that the 

row metric is significantly worse than the column metric, and “0” indicates that the row metric is significantly 

indistinguishable with the column metric. It is clear that outstanding performance was achieved by our proposed 

metric, whose results are “1” for all comparisons. The computational complexity is another important con- 

sideration when evaluating the computational performance of our proposed blind metric. The testing environment 

consisted of a 2.70 GHz Intel Core i5 CPU processor, 8 GB RAM, and the MATLAB R2010 platform. The 

experimental results on the SIQAD dataset are listed in Table XI, where we list the average computation time per 

SCI image. As Table XI clearly demonstrates, our proposed blind metric has medium computational complexity. 

 
1) The current computational complexity of the proposed metric is not very low. The most time-consuming part of 

the metric is the extraction of the log-Gabor base features. We could replace these features with less computationally 

expensive features (e.g., gradient based features) in future work. Furthermore, because the local and global feature 

meth- ods can be executed simultaneously, and parallel computing could be used to improve the speed of the 

proposed metric.  

2) Blind quality evaluation for NSIs and SCIs is still in a preliminary stage. Hence, we have sufficient space for 

improvement. In this work, only local and global visual characteristics for NSIs and SCIs were investigated, while 

the visual characteristics of NSIs and SCIs such as visual saliency and the visual statistical model are different from 

those of natural images. Further exploration of human visual physiology and psychology may bring more inspiration 

for establishing a model with more specific characteristics.  

3) Table VII shows that the adding global features only improves the performance a little for all distortions; 

however, Tables VIII and IX show that the main contribution of the performances on GN, MB JPEG, and LSC 

distortions may come from the global feature. Metric B is marginally inferior to metric A for all distortions, perhaps 

because the global feature cannot efficiently and effectively represent the visual quality distortion for contrast 

change. Further, how to construct a more effective global feature for CC distortion should be considered.  

 

V. FUTURE SCOPE AND CONCLUSION  
In this paper, we have put forward an effective blind quality predictor for distorted images by incorporating the 

learning of both local and global quality features. The novelty of our research resides in combining the 

complementary behaviors of the locality-constrained linear coding (LLC)-based local qual- ity features and 

collaborative representation (CR)-based global quality features to achieve a fused representation for images.  

To extract the learned local features, we use a strategy of LLC with max pooling. Further, the learned global features 

of the distorted images can be obtained using the CR method. Compared with competing IQA metrics, experimental 

results show that the proposed blind metric can obtain significantly higher statistical consistency with evaluations 

from human subjects, confirming that the devised metric is a very robust blind IQA metric for NSIs and SCIs. 

Various aspects of the present research merit further inves- tigation and will, therefore, be considered in future work. 

In the feature extraction stage, we will focus on mining the special characteristics of the NSIs and SCIs more deeply. 

In the perceptual-quality prediction stage, we intend to design blind IQA metrics for NSIs and SCIs based on deep 

learning approaches. 
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