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ABSTRACT

In recent years internet fraud methods are increasing dramatically, However,bad debt has become a serious threat to
internet financial companies. Recently, Internet finance is increasingly popular. However, bad debt has become a
serious threat to Internet financial companies. The fraud detection models commonly used in conventional financial
companies is logistic regression. Although it is interpretable, the accuracy of the logistic regression still remains to
be improved. The fraud detection models commonly used in conventional financial companies is logistic regression.
Although it is interpretable, the accuracy of the logistic regression still remains to be improved. This project takes a
public loan dataset to explore the potential of applying deep neural network for fraud detection. Then, an XGBoost
algorithm is employed to select the most discriminate features. After that, we propose to use a synthetic minority
oversampling technique to deal with the sample imbalance. After Processing, we design a deep neural network for

Internet loan fraud detection.
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I. INTRODUCTION

In recent years internet frauds methods are increasing
dramatically. The main contribution of the project is
first, analyze the real-world internet financial data for
the missing data and simple imbalance. Train a deep
neural network by the preprocessed data. Researchers
have developed various anti-fraud prevention systems
over the years.

In existing system they proposed a rule-based expert
system for fraud detection. The rules of this model
were manually constructed by the fraud experts from
the bank. A set of financial fraud modeling
languages (FFML) for better describing and
combining fraud rule sets to assists fraud analysis.
However, the rule-based models require sufficient
and accurate expertise knowledge. While Internet
loan Dataset is given, Features are Extracted From
Dataset. Based on Features extraction, Experts can
detect Internet loan Fraudsters Based on Knowledge
Base. Internet fraud methods are increasing
dramatically in recent years, together with the rapid
development of Internet financial models and the
Internet business used to be handled by traditional
financial institutions. In this regard, Internet lending
companies face an unprecedented risk of online
fraud. Luckily, the rapid development of computer
technology, the accumulating data, and the emerging
data analysis techniques bring new opportunities to

financial risk management and analysis on the big
data in the financial industry. Researchers have
developed various anti-fraud measures and fraud
prevention systems over the years.

Leonard [1] proposed a rule-based expert
system for fraud detection. The rules of this model
were manually constructed by the fraud experts from
the bank. Sanchez et al. [2] proposed to use
association rules to detect fraud and help risk analysts
extract more fraud rules. Edge and Sampaio [3]
proposed a set of a _nancial fraud modeling language
(FFML) for better describing and combining fraud
rule sets to assist fraud analysis. However, the rule-
based models require suf_cient and accurate expertise
knowledge and can not be updated timely to new
frauds. To this end, machine learning models have
been introduced for fraud detection. Ghosh and
Reilly [4] uses neural networks to detect credit card
fraud. Kokkinaki [5] proposed decision trees and
Boolean logic functions to characterize normal
transaction patterns to detect fraudulent transactions.
Peng et al. [6] compared nine machine learning
models for fraud detection. The results demonstrate
linear logistic and Bayesian networks are more
effective. Lei and Ghorbani [7] proposed a new
clustering algorithm namely improved competitive
learning network (ICLN) and supervised an improved
competitive learning network (SICLN). Sahin et al.
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[8] designed a decision tree based on cost sensitivity.
Halvaiee and Akbari [9] proposed to use an AIRS
improved algorithm for fraud detection. However,
these traditional machine learning methods heavily
rely on manual subjective rules and easily lead to
model risk. These methods also tend to overfit due to
the imbalance training dataset with serious pollution
by noises. Thus, ensemble learning methods have
also been introduced to integrate different models for
complicated fraud detection. Louzada and Ara [10]
proposed a bagging ensemble model that integrates k-
dependence probabilistic networks. The results show
that the proposed ensemble model has stronger
modeling capabilities. Carminati et al. [11] proposed
a combination of semi-supervised and unsupervised
fraud and anomaly detection methods, mainly using a
histogram-based outlier score (HBOS) algorithm to
model the user's past behavior.

Il. RELATEDWORKS

Y Li proposed Relationship between Health Status
and Physical Fitness of College Students from South
China: An Empirical Study by Data Mining
Approach. This study aims to reveal the scientific
associations between the motor competence related
physical fitness and the medical health status of
college students from south China. Two hundred and
fourteen college students, including 112 males and
102 females, from 17 provinces were administrated
with the Shantou University fitness test battery twice.
Y Li and X Sun proposed a Hybrid Learning Model
for Short-Term Traffic Flow Forecasting. Accurate
and reliable traffic flow forecasting is of importance
for urban planning and mitigation of traffic
congestion, and it is also the basis for the deployment
of intelligent traffic management systems. However,
constructing a reasonable and robust forecasting
model is a challenging task due to the uncertainties
and nonlinear characteristics of traffic flow. Aiming
at the nonlinear relationship affecting traffic flow
forecasting effect.

Recently, deep learning techniques have
attracted a lot of academic and industrial attention
that provides a new insight for financial data analysis.
Fu et al. [12] used convolutional neural networks to
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effectively reduce feature redundancy. Tu et al. [13]
design a deep feature representation technique for
fraud detection. To incorporate with prior knowledge
with the deep network, Greiner and Wang [14]
pointed out the borrower is likely to conceal
information that is not beneficial to him or even
fictitious favorable information before obtaining the
loan. After obtaining the loan, the borrower is likely
to default unilaterally. Pope and Sydnor [15] also
found it difficult to judge the risk of the personal
information provided by the borrower unilaterally
because the authenticity of this information cannot be
verified. Freedman and Jin [16] uncovered that the
borrower may commit fraudulent behavior by
reporting false information, which exacerbates the
information asymmetry between the two parties.
Herzenstein et al. [17] also found that the borrowers'
repayment ability and credit rating are the factors that
have the greatest impact on personal credit risk. They
concluded that economic strength is the determinant
of judging the availability

of borrowing. At the same time, Herzenstein et al.
[18] depicted the borrowers' spending power can also
directly affect the success rate of borrowing. These
methods reveal the characteristics of the borrowers
would be helpful for fraud detection. Motivated by
such an idea, we propose a deep learning technique to
mine the fraud in a public lending dataset with
200,000 records. We analyze the customer credit
rating, which can help us to identify customers' actual
situations. Intuitively, the lower a customer has a
credit rating, such as the E rating, the greater the
likelihood of being a fraudulent user. Internet finance
small loan companies set different thresholds on their
customer credit rating data to build anti-fraud rules
based on the true information of their customers. This
paper aims to provide small financial credit
companies a simple yet effective model to improve
their risk control and the level of anti-fraud. Such
companies often have a poor-risk control capacity
with limited capacity for data engineering, modeling,
and optimization.
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I1l. PROPOSED SYSTEM ARCHITECTURE
In the proposed system deep neural networks are use for fraud detection. In this method, fill the missing values by
using a random forest. Then,XBBoost algoritham is employed to select the most discrimate features. After that, we
used a synthetic minority oversampling technique to deal with the sample imbalance.
The admin module has following functionalities:

e Admin enter his user id and password for login.

e View All Users who registered

e Browse For Loan Dataset

e Upload

e Training and Testing by using Classification algorithm such as Random Forest Classifier

e Predict Internet Loan Prediction

e View Anti-Fraud Model for Internet Loan

e If Required , Download Predicted Dataset
The User module has following functiooonalities

e User login with username and password

e Enter Loan Applicant Details

e Predict Loan Approved status

e View Profile.

Service Provider

Login, Browse Data
Sets and Train & Test,

View Trained and
Tested Accuracy in Bar
Chart,

View Trained and

Tested Accuracy

Databa

Fig.1 Architecture of proposed system

IV.RESULTS AND DISCUSSION
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V. FUTURE

CONCLUSION
In this project, take the real customer information of
the public loan data set of the lending club company
as a sample. Then, we build a deep learning based
Internet fraud detection model. We introduce the
main parameters of the model and optimizes to find
the optimal parameter combination of the model.
Finally, the most popular logistic regression in the
financial industry as well as other comparisons are
used as a baseline to evaluate the performance of the
proposed model. The results reveal the deep neural
network achieves better performance, which is
promising to be used in the financial industry for
Internet fraud detection.
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