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ABSTRACT 

Limitation of Artificial Neural Network can be overcome by using Convolutional Neural Network (CNN). CNN 

will work in better way if images/videos need to be processed. This research work attempts to develop CNN 

model for image classifier using different hyperparameters. Problem statement is how o tune these 

hyperparameters so that developed model will show less loss or better accuracy. There are many libraries 

available for hypertuning such as KearsTuner. It is observed that customizing tuning hyperparameters manually 

is better approach as each library has its own limitations. 
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I.     INTRODUCTION 

Convolutional neural networks leverage spatial 

information, and they are therefore very well-suited 

for classifying images [1, 4].  

 

A. Preserves Spatial orientation 

B. Reduces learnable parameters 

 

II.   METHODOLOGY 

CNN model is built to solve Emergency vs non-

Emergency vehicle classification problem[2]. 

Following steps are completed for this experiment. 

[1] 

1. Loading the Dataset 

2. Pre-processing the Data 

3. Creating Training and Validation set 

4. Defining the Model Architecture 

5. Compiling the Model 

6. Training the Model 

7. Evaluating model performance 

III.   EXPERIMENTAL SETUP 

CNN Model is developed for classification of 

Emergency and non-emergency vehicles. The 

notebook is executed in Colab using GPU. Various 

libraries such as TensorFlow, Keras are imported. 

A. Construction of CNN 

1. Loading the Dataset 

Following libraries and functions were used: 
numpy as np 

pandas as pd 

matplotlib.pyplot as plt 

%matplotlib inline 

from keras.layers import Dense, InputLayer, 

BatchNormalization, Dropout 

from keras.models import Sequential 

from keras.optimizers import Adam 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import accuracy_score 

 

2. Pre-processing the Data 

Since CNN is used, images resizing into 1D array 

is not required.  Normalizing the pixel values is 

performed. 

3. Creating Training and Validation set 

Training and validation sets are created using 

train_test_split method. Training dataset was 70% 

and Testing dataset was 30% used. Shape of 

training and validation set are  

(((1646, 224, 224, 3), (1646,)), ((706, 224, 224, 3), 

(706,))) 

4. Defining the Model Architecture 

Imported the convolutional and flatten layer from 

Keras. Following Model architecture is developed 

for the experiment. 

1. Used Keras sequential model  

2. Defined input layer with 3D input of shape 

(224,224,3) 

3. Defined the first convolutional layer with 25 

filters of size (5,5), used Relu activation function, 

strides (1,1) and ‘valid’ padding is used. 
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4. Defined the second convolutional layer with 50 

filters of size (5,5), used Relu activation function, 

strides (1,1) and ‘valid’ padding is used. 

5. Flattened the output from convolutional layers so 

that it can be forwarded to the dense layers 

6. Defined the first dense or fully connected layer 

with 100 neurons 

7. Defined the output layer with 1 neuron since it is 

a binary classification problem 

Summary of the model1: 

_________________________________________________________________ 

Layer (type)                 Output Shape              Param #    

================================================================= 

conv2d_1 (Conv2D)            (None, 220, 220, 25)      1900       

_________________________________________________________________ 

conv2d_2 (Conv2D)            (None, 216, 216, 50)      31300      

_________________________________________________________________ 

flatten_1 (Flatten)          (None, 2332800)           0          

_________________________________________________________________ 

dense_1 (Dense)              (None, 100)               233280100  

_________________________________________________________________ 

dense_2 (Dense)              (None, 1)                 101        

================================================================= 

Total params: 233,313,401 

Trainable params: 233,313,401 

Non-trainable params: 0 

_________________________________________________________________ 

 

5. Compiling the Model 

Compiled the model using  

model.compile(loss='binary_crossentropy', 

optimizer="sgd", metrics=['accuracy']) 

6. Training the Model 

Model is trained using following command: 

model_history = model.fit(X_train, y_train, 

epochs=10, 

batch_size=128,validation_data=(X_valid,y_valid)) 

7. Evaluating model performance 

Accuracy on training set: 0.7612393681652491 % 

Accuracy on validation set:0.7195467422096318 

% 

Fig. 1 show summarize history for loss 

 

 

Fig. 1: Model Loss 

 

 

 

 

 

 Fig. 2 show summarize history for accuracy 
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Fig. 2: Model Accuracy 

B. Adding Maxpool layer to CNN to rereduce 

parameters 

To achieve this maxpool layer from keras is 

imported. New CNN model is developed, adding 

maxpool layer after the convolutional layers. 

Activation Function was changed to Sigmoid. Rest 

of Model architecture is same as explained in 

Model 1. 

# compiling the model with maxpool layer 

model.compile(loss='binary_crossentropy', 

optimizer="sgd", metrics=['accuracy']) 

 

Summary of the model2: 

_________________________________________________________________ 

Layer (type)                 Output Shape              Param #    

================================================================= 

conv2d_3 (Conv2D)            (None, 220, 220, 25)      1900       

_________________________________________________________________ 

conv2d_4 (Conv2D)            (None, 216, 216, 50)      31300      

_________________________________________________________________ 

max_pooling2d_1 (MaxPooling2 (None, 54, 54, 50)        0          

_________________________________________________________________ 

flatten_2 (Flatten)          (None, 145800)            0          

_________________________________________________________________ 

dense_3 (Dense)              (None, 100)               14580100   

_________________________________________________________________ 

dense_4 (Dense)              (None, 1)                 101        

================================================================= 

Total params: 14,613,401 

Trainable params: 14,613,401 

Non-trainable params: 0 

_________________________________________________________________ 

 

Training the Model 

Model is trained using following command: 

model_history = model.fit(X_train, y_train, epochs=10, 

batch_size=128,validation_data=(X_valid,y_valid)) 

C. Hyperparameter Tuning of CNN 

Among the diverse deep learning architecture, 

convolutional neural network stands out for its 

unprecedented performance on computer vision. 

Tuning hyperparameters for deep neural network 

[5] is difficult as it is slow to train a deep neural 

network and there are numerous parameters to 

configure. In this section, effect of change of 

various hyperparameters for convnet are observed. 

Following hyperparameters are changed and for 

every change the CNN Model loss and Model 

accuracy is measured.  

1. increase number of convolutional layers 

2. increase number of pooling layers 

3. increase number of convolutional filters 

4. change size of convolutional filters 

5. change pooling type 

6. change padding technique 

7. change stride 

 

Hyperparameters of fully connected layers 

1. change activation function of hidden layer 

2. increase hidden neurons 
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3. increase hidden layers 

4. increase number of epochs 

5. change optimizer 

6. add batch normalization layer 

7. add dropout layer 

 

Different CNN models were developed for same 

emergency vehicle dataset with different 

hyperparameters and in next session results 

obtained are discussed.

IV. RESULTS AND DISCUSSION 

Following Keras sequential models are developed and they are evaluated.  

M
o
d

el 

Input Layer First 

Convolutio

n Layer 

second convol

utional layer  

Pooling 

Layer 

Flattened the 

output from 

convolutiona

l layers? 

first dense or

 fully connec

ted layer  

Output 

Layer with 

activation 

function 

sigmoid 

Loss and 

Optimizer 

No. 

Of 

Epoc

hs 

Batch 

Size 

M
o
d

el1
 

3D input of sha

pe (224,224,3) 

25 filters of

 size (5,5), 

used Relu 

activation 

function, 

strides (1,1) 

and ‘valid’ 

padding 

50 filters of si

ze (5,5), used 

Relu 

activation 

function, 

strides (1,1) 

and ‘valid’ 

padding 

Nil Yes 100 neurons 1 neuron loss='binary

_crossentro

py', optimiz

er="sgd",  

10 128 

Accuracy on training set: 0.7612393681652491 %, Accuracy on validation set: 0.7195467422096318 % 

M
o
d

el2
 

3D input of sha

pe (224,224,3) 

25 filters of

 size (5,5), 

used Relu 

activation 

function, 

strides (1,1) 

and ‘valid’ 

padding 

50 filters of si

ze (5,5), used 

Relu 

activation 

function, 

strides (1,1) 

and ‘valid’ 

padding 

Maxpool 

layer 

Yes 100 neurons 1 neuron loss='binary

_crossentro

py', optimiz

er="sgd",  

10 128 

Accuracy on training set: 0.6944106925880923 %, Accuracy on validation set: 0.6898016997167139 % 

M
o
d

el3
 

3D input of sha

pe (224,224,3) 

25 filters of

 size (5,5), 

used Relu 

activation 

function, 

strides (1,1) 

and ‘valid’ 

padding 

50 filters of si

ze (5,5), used 

Relu 

activation 

function, 

strides (1,1) 

and ‘valid’ 

padding 

Maxpool 

layer 

Yes 100 neurons First output 

layer: 100 

neurons 

 

Second 

output 

layer: 1 

neuron 

loss='binary

_crossentro

py', optimiz

er="sgd",  

10 128 

Accuracy on training set: 0.6852976913730255 %, Accuracy on validation set: 0.6728045325779037 % 

M
o
d

el4
 

3D input of sha

pe (224,224,3) 

25 filters of

 size (5,5), 

used Relu 

activation 

function, 

strides (1,1) 

and ‘valid’ 

padding 

+ Maxpool 

layer 

50 filters of si

ze (5,5), used 

Relu 

activation 

function, 

strides (1,1) 

and ‘valid’ 

padding 

+ Maxpool 

layer 

2 Maxpool 

layers 

Yes 100 neurons 1 neuron loss='binary

_crossentro

py', optimiz

er="sgd",  

10 128 

 

M
o
d

el5
 

3D input of sha

pe (224,224,3) 

 

Increasing 

number of 

convolutional 

filters 

50 filters of

 size (5,5), 

used Relu 

activation 

function, 

strides (1,1) 

and ‘valid’ 

padding 

75 filters of si

ze (5,5), used 

Relu 

activation 

function, 

strides (1,1) 

and ‘valid’ 

padding 

Maxpool 

layer 

Yes 100 neurons 1 neuron loss='binary

_crossentro

py', optimiz

er="sgd",  

10 128 

Accuracy on training set: 0.7168894289185905 %, Accuracy on validation set: 0.6883852691218131 % 
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M
o
d

el6
 

3D input of sha

pe (224,224,3) 

 
Changing size 

of 

convolutional 

filters 

25 filters of

 size (3,3), 

used Relu 

activation 

function, 

strides (1,1) 

and ‘valid’ 

padding 

50 filters of si

ze (3,3), used 

Relu 

activation 

function, 

strides (1,1) 

and ‘valid’ 

padding 

Maxpool 

layer 

Yes 100 neurons 1 neuron loss='binary

_crossentro

py', optimiz

er="sgd",  

10 128 

Accuracy on training set: 0.715674362089915 %, Accuracy on validation set: 0.7096317280453258 % 

M
o

d
el6

 

3D input of sh

ape (224,224,3) 

 
Changing size 

of filters & 

pooling size 

25 filters o

f size (3,3), 

used Relu 

activation 

function,  

pool_size=(

2, 2) 

strides 

(1,1) and 

‘valid’ 

padding 

50 filters of si

ze (3,3), used 

Relu 

activation 

function,  

pool_size=(2, 

2) 

strides (1,1) 

and ‘valid’ 

padding 

Maxpool 

layer 

Yes 100 neurons 1 neuron loss='binar

y_crossent

ropy', opti

mizer="sg

d",  

10 128 

Accuracy on training set: 0.735722964763062 %, Accuracy on validation set: 0.7209631728045326 % M
o
d

el7
 

3D input of sha

pe (224,224,3) 

 
Changing 

pooling size 

and Padding 

technique 

25 filters of

 size (3,3), 

used Relu 

activation 

function,  

pool_size=(

4, 4) 

strides (1,1) 

and ‘same’ 

padding 

50 filters of si

ze (3,3), used 

Relu 

activation 

function,  

pool_size=(4, 

4) 

strides (1,1) 

and ‘same’ 

padding 

Maxpool 

layer 

Yes 100 neurons 1 neuron loss='binary

_crossentro

py', optimiz

er="sgd",  

10 128 

Accuracy on training set: 0.7284325637910085 %, Accuracy on validation set: 0.7039660056657224 % 

M
o
d

el8
 

3D input of sha

pe (224,224,3) 

 
Changing stride 

25 filters of

 size (3,3), 

used Relu 

activation 

function,  

pool_size=(

4, 4) 

strides (2,2) 

and ‘valid’ 

padding 

50 filters of si

ze (3,3), used 

Relu 

activation 

function,  

pool_size=(4, 

4) 

strides (1,1) 

and ‘valid’ 

padding 

Maxpool 

layer 

Yes 100 neurons 1 neuron loss='binary

_crossentro

py', optimiz

er="sgd",  

10 128 

Accuracy on training set: 0.6634264884568651 %, Accuracy on validation set: 0.6572237960339944 % 

 

It is observed with many experiments that tuning of 

Hyperparameters in CNN is important so that 

desire model accuracy can be obtained. Deciding 

Hyperparameters value manually is tedious and 

time-consuming procedure. By increasing filter size 

no of trainable parameters are reduced but at the 

same time some information in the image is lost 

and the model has the problem of overfit. 

Model tuning is the experimental process of finding 

the optimal values of hyperparameters to maximize 

model performance. Hyperparameters are the set of 

variables whose values cannot be estimated by the 

model from the training data. These values control 

the training process. 

The Keras Tuner[9] is a library that helps you pick 

the optimal set of hyperparameters for your 

TensorFlow program. The process of selecting the 

right set of hyperparameters for your machine 

learning (ML) application is called hyperparameter 

tuning. For this emergency vehicle data set, it was 

observed that Model6 is giving optimum result. 

V. CONCLUSIONS 

Keras tuner is an open-source python library 

developed exclusively for tuning the 

hyperparameters of ANN. Using this library, 

selected hypermeters of ANN can be tuned. 

Whereas for tuning parameters of CNN, it is best 

practice to repeat the procedure of compiling, 

training and evaluating model manually. After 
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repeating experiments with many data sets it is 

observed that there is no fix solution for 

hyperparameter tuning, but tuning need to be 

performed manually depending on data set and 

problem statement.  
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