

International Journal of Computer Science Trends and Technology (IJCST) – Volume 11 Issue 2, Mar-Apr 2023

ISSN: 2347-8578 www.ijcstjournal.org Page 44

Hyperparameter Tuning for Convolution Neural Network

Dr. Girish Tere [1], Mr. Kuldeep Kandwal [2]
[1] Department of Computer Science, Thakur College of Science & Commerce, Mumbai, Maharashtra, India

[2] Department of Mathematics, Thakur College of Science & Commerce, Mumbai, Maharashtra, India

ABSTRACT

Limitation of Artificial Neural Network can be overcome by using Convolutional Neural Network (CNN). CNN

will work in better way if images/videos need to be processed. This research work attempts to develop CNN

model for image classifier using different hyperparameters. Problem statement is how o tune these

hyperparameters so that developed model will show less loss or better accuracy. There are many libraries

available for hypertuning such as KearsTuner. It is observed that customizing tuning hyperparameters manually

is better approach as each library has its own limitations.

Keywords: - CNN, hyperparameters, convolution layers, filters, convolution layer, pooling, flatten layer,

padding, stride

I. INTRODUCTION

Convolutional neural networks leverage spatial

information, and they are therefore very well-suited

for classifying images [1, 4].

A. Preserves Spatial orientation

B. Reduces learnable parameters

II. METHODOLOGY

CNN model is built to solve Emergency vs non-

Emergency vehicle classification problem[2].

Following steps are completed for this experiment.

[1]

1. Loading the Dataset

2. Pre-processing the Data

3. Creating Training and Validation set

4. Defining the Model Architecture

5. Compiling the Model

6. Training the Model

7. Evaluating model performance

III. EXPERIMENTAL SETUP

CNN Model is developed for classification of

Emergency and non-emergency vehicles. The

notebook is executed in Colab using GPU. Various

libraries such as TensorFlow, Keras are imported.

A. Construction of CNN

1. Loading the Dataset

Following libraries and functions were used:
numpy as np

pandas as pd

matplotlib.pyplot as plt

%matplotlib inline

from keras.layers import Dense, InputLayer,

BatchNormalization, Dropout

from keras.models import Sequential

from keras.optimizers import Adam

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

2. Pre-processing the Data

Since CNN is used, images resizing into 1D array

is not required. Normalizing the pixel values is

performed.

3. Creating Training and Validation set

Training and validation sets are created using

train_test_split method. Training dataset was 70%

and Testing dataset was 30% used. Shape of

training and validation set are

(((1646, 224, 224, 3), (1646,)), ((706, 224, 224, 3),

(706,)))

4. Defining the Model Architecture

Imported the convolutional and flatten layer from

Keras. Following Model architecture is developed

for the experiment.

1. Used Keras sequential model

2. Defined input layer with 3D input of shape

(224,224,3)

3. Defined the first convolutional layer with 25

filters of size (5,5), used Relu activation function,

strides (1,1) and ‘valid’ padding is used.

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 11 Issue 2, Mar-Apr 2023

ISSN: 2347-8578 www.ijcstjournal.org Page 45

4. Defined the second convolutional layer with 50

filters of size (5,5), used Relu activation function,

strides (1,1) and ‘valid’ padding is used.

5. Flattened the output from convolutional layers so

that it can be forwarded to the dense layers

6. Defined the first dense or fully connected layer

with 100 neurons

7. Defined the output layer with 1 neuron since it is

a binary classification problem

Summary of the model1:

Layer (type) Output Shape Param #

===

conv2d_1 (Conv2D) (None, 220, 220, 25) 1900

conv2d_2 (Conv2D) (None, 216, 216, 50) 31300

flatten_1 (Flatten) (None, 2332800) 0

dense_1 (Dense) (None, 100) 233280100

dense_2 (Dense) (None, 1) 101

===

Total params: 233,313,401

Trainable params: 233,313,401

Non-trainable params: 0

5. Compiling the Model

Compiled the model using

model.compile(loss='binary_crossentropy',

optimizer="sgd", metrics=['accuracy'])

6. Training the Model

Model is trained using following command:

model_history = model.fit(X_train, y_train,

epochs=10,

batch_size=128,validation_data=(X_valid,y_valid))

7. Evaluating model performance

Accuracy on training set: 0.7612393681652491 %

Accuracy on validation set:0.7195467422096318

%

Fig. 1 show summarize history for loss

Fig. 1: Model Loss

 Fig. 2 show summarize history for accuracy

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 11 Issue 2, Mar-Apr 2023

ISSN: 2347-8578 www.ijcstjournal.org Page 46

Fig. 2: Model Accuracy

B. Adding Maxpool layer to CNN to rereduce

parameters

To achieve this maxpool layer from keras is

imported. New CNN model is developed, adding

maxpool layer after the convolutional layers.

Activation Function was changed to Sigmoid. Rest

of Model architecture is same as explained in

Model 1.

compiling the model with maxpool layer

model.compile(loss='binary_crossentropy',

optimizer="sgd", metrics=['accuracy'])

Summary of the model2:

Layer (type) Output Shape Param #

===

conv2d_3 (Conv2D) (None, 220, 220, 25) 1900

conv2d_4 (Conv2D) (None, 216, 216, 50) 31300

max_pooling2d_1 (MaxPooling2 (None, 54, 54, 50) 0

flatten_2 (Flatten) (None, 145800) 0

dense_3 (Dense) (None, 100) 14580100

dense_4 (Dense) (None, 1) 101

===

Total params: 14,613,401

Trainable params: 14,613,401

Non-trainable params: 0

Training the Model

Model is trained using following command:

model_history = model.fit(X_train, y_train, epochs=10,

batch_size=128,validation_data=(X_valid,y_valid))

C. Hyperparameter Tuning of CNN

Among the diverse deep learning architecture,

convolutional neural network stands out for its

unprecedented performance on computer vision.

Tuning hyperparameters for deep neural network

[5] is difficult as it is slow to train a deep neural

network and there are numerous parameters to

configure. In this section, effect of change of

various hyperparameters for convnet are observed.

Following hyperparameters are changed and for

every change the CNN Model loss and Model

accuracy is measured.

1. increase number of convolutional layers

2. increase number of pooling layers

3. increase number of convolutional filters

4. change size of convolutional filters

5. change pooling type

6. change padding technique

7. change stride

Hyperparameters of fully connected layers

1. change activation function of hidden layer

2. increase hidden neurons

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 11 Issue 2, Mar-Apr 2023

ISSN: 2347-8578 www.ijcstjournal.org Page 47

3. increase hidden layers

4. increase number of epochs

5. change optimizer

6. add batch normalization layer

7. add dropout layer

Different CNN models were developed for same

emergency vehicle dataset with different

hyperparameters and in next session results

obtained are discussed.

IV. RESULTS AND DISCUSSION

Following Keras sequential models are developed and they are evaluated.

M
o
d

el

Input Layer First

Convolutio

n Layer

second convol

utional layer

Pooling

Layer

Flattened the

output from

convolutiona

l layers?

first dense or

 fully connec

ted layer

Output

Layer with

activation

function

sigmoid

Loss and

Optimizer

No.

Of

Epoc

hs

Batch

Size

M
o
d

el1

3D input of sha

pe (224,224,3)

25 filters of

 size (5,5),

used Relu

activation

function,

strides (1,1)

and ‘valid’

padding

50 filters of si

ze (5,5), used

Relu

activation

function,

strides (1,1)

and ‘valid’

padding

Nil Yes 100 neurons 1 neuron loss='binary

_crossentro

py', optimiz

er="sgd",

10 128

Accuracy on training set: 0.7612393681652491 %, Accuracy on validation set: 0.7195467422096318 %

M
o
d

el2

3D input of sha

pe (224,224,3)

25 filters of

 size (5,5),

used Relu

activation

function,

strides (1,1)

and ‘valid’

padding

50 filters of si

ze (5,5), used

Relu

activation

function,

strides (1,1)

and ‘valid’

padding

Maxpool

layer

Yes 100 neurons 1 neuron loss='binary

_crossentro

py', optimiz

er="sgd",

10 128

Accuracy on training set: 0.6944106925880923 %, Accuracy on validation set: 0.6898016997167139 %

M
o
d

el3

3D input of sha

pe (224,224,3)

25 filters of

 size (5,5),

used Relu

activation

function,

strides (1,1)

and ‘valid’

padding

50 filters of si

ze (5,5), used

Relu

activation

function,

strides (1,1)

and ‘valid’

padding

Maxpool

layer

Yes 100 neurons First output

layer: 100

neurons

Second

output

layer: 1

neuron

loss='binary

_crossentro

py', optimiz

er="sgd",

10 128

Accuracy on training set: 0.6852976913730255 %, Accuracy on validation set: 0.6728045325779037 %

M
o
d

el4

3D input of sha

pe (224,224,3)

25 filters of

 size (5,5),

used Relu

activation

function,

strides (1,1)

and ‘valid’

padding

+ Maxpool

layer

50 filters of si

ze (5,5), used

Relu

activation

function,

strides (1,1)

and ‘valid’

padding

+ Maxpool

layer

2 Maxpool

layers

Yes 100 neurons 1 neuron loss='binary

_crossentro

py', optimiz

er="sgd",

10 128

M
o
d

el5

3D input of sha

pe (224,224,3)

Increasing

number of

convolutional

filters

50 filters of

 size (5,5),

used Relu

activation

function,

strides (1,1)

and ‘valid’

padding

75 filters of si

ze (5,5), used

Relu

activation

function,

strides (1,1)

and ‘valid’

padding

Maxpool

layer

Yes 100 neurons 1 neuron loss='binary

_crossentro

py', optimiz

er="sgd",

10 128

Accuracy on training set: 0.7168894289185905 %, Accuracy on validation set: 0.6883852691218131 %

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 11 Issue 2, Mar-Apr 2023

ISSN: 2347-8578 www.ijcstjournal.org Page 48

M
o
d

el6

3D input of sha

pe (224,224,3)

Changing size

of

convolutional

filters

25 filters of

 size (3,3),

used Relu

activation

function,

strides (1,1)

and ‘valid’

padding

50 filters of si

ze (3,3), used

Relu

activation

function,

strides (1,1)

and ‘valid’

padding

Maxpool

layer

Yes 100 neurons 1 neuron loss='binary

_crossentro

py', optimiz

er="sgd",

10 128

Accuracy on training set: 0.715674362089915 %, Accuracy on validation set: 0.7096317280453258 %

M
o

d
el6

3D input of sh

ape (224,224,3)

Changing size

of filters &

pooling size

25 filters o

f size (3,3),

used Relu

activation

function,

pool_size=(

2, 2)

strides

(1,1) and

‘valid’

padding

50 filters of si

ze (3,3), used

Relu

activation

function,

pool_size=(2,

2)

strides (1,1)

and ‘valid’

padding

Maxpool

layer

Yes 100 neurons 1 neuron loss='binar

y_crossent

ropy', opti

mizer="sg

d",

10 128

Accuracy on training set: 0.735722964763062 %, Accuracy on validation set: 0.7209631728045326 % M
o
d

el7

3D input of sha

pe (224,224,3)

Changing

pooling size

and Padding

technique

25 filters of

 size (3,3),

used Relu

activation

function,

pool_size=(

4, 4)

strides (1,1)

and ‘same’

padding

50 filters of si

ze (3,3), used

Relu

activation

function,

pool_size=(4,

4)

strides (1,1)

and ‘same’

padding

Maxpool

layer

Yes 100 neurons 1 neuron loss='binary

_crossentro

py', optimiz

er="sgd",

10 128

Accuracy on training set: 0.7284325637910085 %, Accuracy on validation set: 0.7039660056657224 %

M
o
d

el8

3D input of sha

pe (224,224,3)

Changing stride

25 filters of

 size (3,3),

used Relu

activation

function,

pool_size=(

4, 4)

strides (2,2)

and ‘valid’

padding

50 filters of si

ze (3,3), used

Relu

activation

function,

pool_size=(4,

4)

strides (1,1)

and ‘valid’

padding

Maxpool

layer

Yes 100 neurons 1 neuron loss='binary

_crossentro

py', optimiz

er="sgd",

10 128

Accuracy on training set: 0.6634264884568651 %, Accuracy on validation set: 0.6572237960339944 %

It is observed with many experiments that tuning of

Hyperparameters in CNN is important so that

desire model accuracy can be obtained. Deciding

Hyperparameters value manually is tedious and

time-consuming procedure. By increasing filter size

no of trainable parameters are reduced but at the

same time some information in the image is lost

and the model has the problem of overfit.

Model tuning is the experimental process of finding

the optimal values of hyperparameters to maximize

model performance. Hyperparameters are the set of

variables whose values cannot be estimated by the

model from the training data. These values control

the training process.

The Keras Tuner[9] is a library that helps you pick

the optimal set of hyperparameters for your

TensorFlow program. The process of selecting the

right set of hyperparameters for your machine

learning (ML) application is called hyperparameter

tuning. For this emergency vehicle data set, it was

observed that Model6 is giving optimum result.

V. CONCLUSIONS

Keras tuner is an open-source python library

developed exclusively for tuning the

hyperparameters of ANN. Using this library,

selected hypermeters of ANN can be tuned.

Whereas for tuning parameters of CNN, it is best

practice to repeat the procedure of compiling,

training and evaluating model manually. After

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 11 Issue 2, Mar-Apr 2023

ISSN: 2347-8578 www.ijcstjournal.org Page 49

repeating experiments with many data sets it is

observed that there is no fix solution for

hyperparameter tuning, but tuning need to be

performed manually depending on data set and

problem statement.

ACKNOWLEDGMENT

Authors wish to thank teachers of Department of

Computer Science, Thakur College of Science &

Commerce for their constant support and

motivation. We also thank for allowing to use

resources of Thakur College of Science and

Commerce, Mumbai.

REFERENCES

[1] Amita Kapoor, Antonio Gulli , Sujit Pal

Deep Learning with TensorFlow and

Keras, Packt Publisher, Third Edition,

2022

[2] Esteban Real, Sherry Moore, Andrew

Selle, Saurabh Saxena, Yutaka Leon

Suematsu, Jie Tan, Quoc Le, and Alex

Kurakin. Large-Scale Evolution of Image

Classifiers. In Proceedings of the 34th

International Conference on Machine

Learning - Volume 70, pages 2902–2911,

Sydney, NSW, Australia, 2017

[3] Jie Fu, Hongyin Luo, Jiashi Feng, Kian

Hsiang Low, and Tat-Seng Chua. Dr

MAD: Distilling Reverse-Mode

Automatic Differentiation for Optimizing

Hyperparameters of Deep Neural

Networks. In Proceedings of the Twenty-

Fifth International Joint Conference on

Artificial Intelligence, pages 1469–1475, 1

2016.

[4] Ian Goodfellow, Yoshua Bengio, Aaron

Courvile, Deep Learning, MIT Press, 2016

[5] Ilievski, I., Akhtar, T., Feng, J., &

Shoemaker, C. (2017). Efficient

Hyperparameter Optimization for Deep

Learning Algorithms Using Deterministic

RBF Surrogates. Proceedings of the AAAI

Conference on Artificial

Intelligence, 31(1).

[6] L. Wu, G. Perin and S. Picek, "I Choose

You: Automated Hyperparameter Tuning

for Deep Learning-based Side-channel

Analysis," in IEEE Transactions on

Emerging Topics in Computing,

2022, doi: 10.1109/TETC.2022.3218372.

[7] Steven R. Young, Derek C. Rose, Thomas

P. Karnowski, Seung-Hwan Lim, and

Robert M. Patton. Optimizing deep

learning hyper-parameters through an

evolutionary algorithm. In Proceedings of

the Workshop on Machine Learning in

High-Performance Computing

Environments - MLHPC ’15, pages 1–5,

Austin, Texas, USA, 2015. ACM Press.

[8] T. Triwiyanto, I. P. A. Pawana and M. H.

Purnomo, "An Improved Performance of

Deep Learning Based on Convolution

Neural Network to Classify the Hand

Motion by Evaluating Hyper Parameter,"

in IEEE Transactions on Neural Systems

and Rehabilitation Engineering, vol. 28,

no. 7, pp. 1678-1688, July 2020, doi:

10.1109/TNSRE.2020.2999505.

https://doi.org/10.1609/aaai.v31i1.10647

[9] Keras Tuner,

https://keras.io/keras_tuner/

Accessed on 20th march 2023

http://www.ijcstjournal.org/
https://doi.org/10.1609/aaai.v31i1.10647
https://keras.io/keras_tuner/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 11 Issue 2, Mar-Apr 2023

ISSN: 2347-8578 www.ijcstjournal.org Page 50

http://www.ijcstjournal.org/

