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ABSTRACT 

Cancer of the breast, often known as breast cancer (BC), is one of the most lethal types of disease, and it causes lots of deaths 

among women around the world. Mammography and ultrasonography are the imaging procedures that are typically used for 

screening for breast cancer. On the other hand, current imaging technologies are unable to distinguish between distinct subtypes 

of benign and malignant tumors. In this regard, images obtained through histopathology may provide improved sensitivity 

toward benign and malignant forms of cancer. Because of the success, they have had in a variety of computer vision tasks, 

Vision Transformer have recently garnered more attention for medical imaging tasks. The Swin Transformer is based on the 

idea of limiting the self-attention mechanism to non-overlapping shifted windows and has demonstrated its effectiveness for a 

range of computer vision tasks. Hence, the goal of this study was to investigate the proficiency of the Swin Transformer model 

in the binary classification of benign and malignant tumors utilizing a publically available dataset known as BreaKHis, which 

has 7909 histopathological images obtained at various zoom factors, namely 40X, 100X, 200X, and 400X. The custom Swin 

Transformer model was trained on the dataset from scratch without using any pre-trained weights, which is typical in most 

studies involving Transformer, and yet it achieved an average test-case accuracy of 94.05%, this result outperformed all SOTA 

works. As a result, the custom Swin Transformer model was able to identify BC subtypes based on histopathological images, 

which can ease the workload of pathologists. 
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I.     INTRODUCTION 

Currently, cancer is one of the primary causes of illness and 

mortality on a global scale. In 2020 alone, it was responsible 

for the deaths of approximately 10 million individuals. There 

are projected to be 28.4 million newly diagnosed instances of 

cancer in the year 2040. The projected number of cancer 

diagnoses in the year 2040 is a sharp rise of 47% when 

compared to the year 2020. The American Cancer Society 

(ACS) reports that lung cancer has been eclipsed by female 

breast cancer as the most often diagnosed form of cancer. 

They anticipate 2.3 million new cases of breast cancer in 

women. There are approximately 6.9% of all cancer-related 

deaths due to breast cancer, making it the fifth most prominent 

cause of death worldwide due to cancer (0.68 million in 2020). 

This places breast cancer behind lung, colorectal, liver, and 

stomach cancers as the leading cause of cancer-related 

mortality. Additionally, breast cancer in females accounts for 

11.7% of all newly diagnosed malignancies, making it the 

most prevalent form of the disease [1]. 

A breast biopsy and subsequent microscopic image analysis 

are required to obtain a diagnosis of breast cancer. The 

pathologist can examine the breast tissue’s microscopic 

architecture and the components of the breast tissue by using a 

sample of breast tissue. The pathologist is then able to 

categorize these histological images into normal tissue, non-

malignant (benign) tissue, and malignant lesions. After that, 

the information is used for analysis, and a diagnosis is made 

based on that analysis [2]. 

The development of breast cancer is not linked to the presence 

of benign breast lesions, which are anomalies in normal breast 

tissue. In-situ cancer tissue and invasive cancer tissue are the 

two types of cancerous tissue. The term ”in-situ tissue” refers 

to the tissue that is found within the ductal-lobular mammary 

gland. On the other hand, invasive cancer cells were able to 

spread outside of the ductal and lobular structure of the breast. 

Before the eye expert examines the biopsied tissue samples, 

the samples are stained with hematoxylin and eosin (H&E). 

During the diagnostic technique, whole-slide tissue scans are 

used to determine the location of the diseased region [3]. 

In addition to this, the pathologist looks at micrographs of 

tissue samples at different magnification levels. Multiple 

image features are analyzed to determine the proper diagnosis 

[4]. When conducting analysis on images with variable 

magnification factors, it is necessary to pan, zoom, and focus 

on each image in addition to performing a comprehensive scan 

of each image. The identification of breast cancer with this 

method is likely to produce inaccurate results because it is 

both time consuming and stressful. Since the beginning of this 

century, significant advancements have been made in digital 

imaging. As a direct consequence of these advancements, 

numerous computer vision and machine learning algorithms 

developed especially for the purpose of analyzing 

histopathology images with microscopic resolution have seen 

light [5] [6] [7] [8] [9]. 

It is possible that these technologies will make it easier to 

automate pathological process operations within a diagnostic 

system. In spite of this, a method of image processing that is 

both effective and reliable is required for clinical applications. 
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Unfortunately, the results of standard tactics do not live up to 

expectations. As a consequence of this, we are still a long way 

from being able to automatically detect breast cancer based on 

histology images [10]. Meanwhile, many breakthroughs in 

Deep Learning techniques have showed significant promise 

with performance that is state-of-the-art (SOTA) on varieties 

of tasks. These algorithms have been utilized in a wide 

number of medical imaging modalities, like histopathology 

imaging, and have demonstrated enhanced classification, 

segmentation, and detection capabilities [11]. These methods 

have proven to be quite useful in medical imaging; 

nevertheless, they call on a substantial amount of labelled or 

annotated data, which is currently lacking in this application 

domain for a number of different reasons [12]. In addition to 

everything else, annotating a dataset is a particularly time-

consuming and expensive process [13]. 

Vision transformer (ViT) [14] has recently demonstrated its 

capabilities in image processing tasks by achieving results that 

are equal to those obtained by models based on convolutional 

neural networks (CNN) while using significantly fewer 

computer resources. The self-attention architecture-based 

Transformer [15] model for natural language processing (NLP) 

is quickly becoming the industry standard for NLP tasks [16]. 

The training pace for natural language processing (NLP) tasks 

can be greatly boosted by applying attention models, also 

known as transformer. As a result, the performance of neural 

machine translation applications can be significantly improved. 

Vision transformer are becoming more prevalent and are 

starting to show their potential for image processing by being 

applied to computer vision applications such as image 

recognition. Rarely does ViT employ convolutional filters, the 

core of CNNs [17]. Typically, convolutional filters are used 

for tokenization. Therefore, ViT structurally lacks locality 

inductive bias compared to CNNs, which require ViT an 

excessive amount of training data to produce an acceptable 

visual representation [18]. ViT performs better when 

pretrained on sufficient data, surpassing a comparable state-

ofthe-art CNN with fewer computational resources. To 

minimize the cost of pre-training, a number of ViTs capable of 

learning a medium-sized dataset from scratch, such as 

ImageNet [19], have been proposed. In terms of network 

architecture, these data-efficient ViTs attempted to amplify the 

locality inductive bias. Some chose a hierarchical structure, 

such as CNNs [20], to exploit multiple receptive fields, while 

others attempted to alter the self-attention mechanism [21]. 

Swin Transformer [22] are hierarchical vision transformer that 

make use of shifting windows. They are an enhanced variant 

of the architecture known as ViT. In order to aid accurate 

modelling, the idea of self-attention was first introduced 

within the setting of local windows, and then its computation 

was performed. Additionally, in order to ensure that the image 

was evenly partitioned, the windows were placed in a manner 

that prevented them from overlapping one another. 

The window-based method of self-attention has a degree of 

complexity that may be thought of as linear, and it can be 

easily scaled. Nevertheless, the value of window-based 

modelling is restricted as its ability to self-attention has its 

bounds because it does not allow for connections to be made 

between other windows. Consequently, a shifted window 

partitioning strategy was developed. This strategy uses 

sequential Swin transformer blocks and switches between the 

various configurations of partitioning. This made it feasible to 

build cross-window connections while also ensuring that the 

computation of non-overlapping windows was carried out in 

the most efficient manner. The shifted window strategy that is 

used in Swin transformer offers greater efficiency as a result 

of the restriction of self-attention mechanism to non-

overlapping shifted windows. Additionally, this strategy 

makes it possible to connect windows that are located in 

different locations. In comparison to that of the ViTs, the 

performance of the Swin Transformer network was 

significantly higher. However, learning from scratch on 

datasets of medium size continues to incur high costs. In 

addition, learning small-scale datasets from scratch is 

extremely difficult due to the trade-off between dataset size 

and performance. 

To our knowledge, there is no study that attempts to automate 

the binary-class classification of breast cancer based on 

histopathological images utilizing Swin Transformer without 

using any pre-training techniques. Additionally, we have 

compared our proposed custom Swin Transformer model with 

ten distinct pre-trained DL models. Our experimental results 

demonstrate the robustness of the proposed model for the 

accurate classification of breast cancer histopathology images. 

As a result, the primary contributions that come from this 

research are as follows: 

• We propose custom Swin Transformer, a DL model for 
automated classification of breast cancer histopathology 

images. 

• We trained the existing Swin Transformer with custom 

parameters and hyperparameters from scratch, without 

any transfer learning approaches to investigate the 

model’s capability for binary (benign vs. malignant) 

classification. 

• In addition, for the binary-class classification, we utilized 

the BreakHis dataset in its entirety with regards to the 

images obtained at 40x, 100x, 200x, and 400x zoom 

factors. 

• In the end, cross-validation and testing were carried out 

on each of the specific classifications of the distinct 

zoom factors. 

• The proposed custom Swin Transformer model is 

evaluated in terms of various performance metrics, such 

as accuracy, F1-score, sensitivity, and precision. We have 

also compared our proposed model with some pre-trained 

DL models and a state-of-the-art model. 

The sections of the paper are arranged as follows: In Section II, 

the material and methodology are described. The results of the 

experiment are discussed in Section III, and the paper is 

concluded in Section IV. 

II.     MATERIAL AND METHODOLOGY 

http://www.ijcstjournal.org/


International Journal of Computer Science Trends and Technology (IJCST) – Volume 11 Issue 3, May-Jun 2023 
 

ISSN: 2347-8578                          www.ijcstjournal.org                                                  Page 122 

A. BreakHis Dataset 

The dataset was split into three sets, with 70% of the data 

being utilized for training, 10% for validation, and 20% for 

testing. The original dataset’s image intensity values ranged 

from 0 to 255. The intensities underwent rescaling through the 

utilization of the pre-processing technique provided by 

Tensorflow. A resolution of 224 x 224 pixels was utilized for 

the training of Swin Transformer model. The resolution was 

kept the same for a fair comparison with all the ten pre-trained 

and fine-tuned DL models. Both benign and malignant tumors 

are separated into their own categories within the BreakHis 

dataset. If a lesion does not meet any of the criteria for cancer, 

then its histological classification is that it is benign, such as 

marked cellular atypia, mitosis, basement membrane 

breakdown, metastasizing, and so on. Benign tumors are 

typical ”innocents,” as their growth is modest and confined. 

Cancer is referred to as a malignant tumor, which is a lesion 

that has the potential to infiltrate and damage neighboring 

structures (known as ”locally invasive”) as well as spread to 

distant areas (known as ”metastasize”), ultimately leading to 

death. BreakHis is a dataset that contains 7,909 microscopic 

images of breast tumor tissue. These images were taken from 

82 patients and were captured at a variety of magnification 

factors (40x, 100x, 200x, and 400x). It consists of 2,480 

samples that are benign and 5,429 samples that are malignant. 

These images have a resolution of 700 x 460 pixels and are of 

RGB type with 8-bit depth in each of the three channels and 

are provided in PNG format [23]. The photographs were taken 

by P&D Laboratory in Brazil between January 2014 and 

December 2014. In the current version of the dataset, samples 

were obtained through the use of the SOB technique, also 

called as partial mastectomy or excisional biopsy. This 

procedure, in contrast to needle biopsy techniques, retrieves a 

larger tissue sample and is conducted under general 

anaesthesia in a hospital setting. The number of images with 

respect to their classes and zoom factors can be seen in table I. 

TABLE I 

THE NUMBER OF IMAGES AT VARIOUS ZOOM FACTORS FROM 

BREAKHIS DATASET UNDER BENIGN AND MALIGNANT CLASSES. 

Zoom Benign Samples Malignant Samples Total 

40x 625 1370 1995 

100x 644 1437 2081 

200x 623 1390 2013 

400x 588 1232 1820 

Total 2480 5429 7909 

B. Swin Transformer Model 

Figure 2 comprehensively summarizes the Swin 

Transformer model’s architectural components. From its 

initial 700x460 pixels, the image was resized to just 224 x 

224 pixels. Due to the limitations of our system’s 

processing power and memory limitations, this was the 

best choice. In addition, the original patch size of 4 × 4 is 

replaced with a smaller starting patch size of 2 x 2, and the 

input RGB picture with input dimensions of H x W x 3 is 

broken into small patches having sizes equal to 2 x 2. 

Therefore, each patch is of the size 2 x 2 x 3 = 12. A linear 

embedding layer is then applied on top of this raw 12-

sized feature tensor 

 

Fig. 1 Sample of images from the dataset at various zoom factors. 

to allow for projection onto an arbitrary feature dimension 

denoted as C. Keeping the token count constant at , 

these patch linear embeddings are subjected to various 

Swin transformer blocks that have a modified self-

attention. Stage 1 of the Swin transformer architecture 

includes the linear embedding layer and Swin transformer 

blocks. To simplify the representation of data in a 

hierarchical structure and reduce the number of patches 

required, the Swin Transformer design introduces patch 

merging layers at Stage 2. In Stage 2, the patch merging 

layer adds a linear layer to the aggregated features from all 

4C dimensions, which are the sum of the features from 

each pair of adjacent 2x2 patches. After this, the linear 

layer’s output depth is updated as 2C, and the total number 

of patches is reduced by 2 x 2 = 4. The number of Stage 2 

output patches is kept constant at , and feature 

transformation is accomplished with the help of Swin 

transformer blocks. Stages 3 and 4 repeat this procedure 

twice more, yielding an output resolution of either 

  or  , depending on the number of stages 

performed. 

The combined effect of these steps yields a deep 

hierarchical representation with feature map sizes common 

to popular CNN models like VGGNet [24] and ResNet 
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[25]. This means the architecture has a good shot at 

replacing the previous approaches’ use of backbone 

networks in the numerous vision activities that are 

currently being completed. 

   1) Swin Transformer Block: The standard multi-head 

self-attention (MSA) module in a Transformer block is 

swapped out for a module based on shifted windows 

during the construction of a Swin Transformer. The other 

layers of the Transformer block are left unchanged 

throughout this process. 

A shifted window-based MSA module is the first 

component of a Swin Transformer block. Following this is 

a two-layered Multilayer perceptron (MLP) with GELU 

[26] nonlinearity embedded in the middle. A Layer 

Normalization (LN) layer before each MSA module and 

MLP, and a residual connection is added after each 

module. The Gaussian Error Linear Unit, or GELU, is an 

activation function which produces smoother curve values 

when compared to RELU and has the following formula: 

 GELU(x) = xΦ(x) (1) 

   2) Self Attention using Shifted Windows: The window-

based self-attention module’s modelling capacity is 

restricted due to the absence of inter-window connections. 

The utilization of a shifted window partitioning technique 

is employed to ensure the efficient computation of non-

overlapping windows. The aforementioned approach 

alternates between two distinct partitioning configurations 

within consecutive Swin Transformer blocks. This will 

enable us to establish cross-window connections. The 

initial module is accountable for implementing a 

conventional technique of window partitioning, 

commencing from the pixel located in the upper-left 

corner. Subsequently, the 8 × 8 feature map undergoes 

uniform partitioning into 4 x 4 windows of dimensions 4 x 

4, where M is equal to 4. Subsequently, the next module 

employs a distinct windowing configuration in contrast to 

its preceding layer. The aforementioned task is achieved 

through the displacement of the windows from the 

conventionally partitioned windows by a distance 

equivalent to  pixels. When using the strategy 

known as shifting window partitioning, the consecutive 

blocks are computed as 

zl = W − MSA(LN(zl−1))+ zl−1 (2) 

zl = MLP(LN(zl))+ zl (3) 

zl+1 = SW − MSA(LN(zl))+ zl (4) 

zl+1 = MLP(LN(zl+1))+ zl+1 (5) 

where “zl” and “zl+1” denote the output features of the 

(S)WMSA module and the MLP module for block l, 

respectively while “W-MSA” and “SW-MSA” denote 

window based multi-head self-attention using regular and 

shifted window partitioning configurations, respectively. 

The self-attention is computed by adding a relative 

position bias (denoted by “B”) to every head. 

 

where “Q”, “K”, “V”  are the query, key and 

value matrices; “d” is the query/key dimension, and “M2” 

is the number of patches in a window. 

The Sigmoid activation function was used to classify the 

inputs into two distinct classes, and it has the following 

formula: 

  (8) 

C. Model Validation and Testing 

The dataset was split into three sets, with 70% of the data 

being utilized for training, 10% for validation, and 20% 

for testing. The image size was kept constant at 224 x 224 

 

    Fig. 2 (a) Architecture of Swin Transformer model [22], (b) Two consecutive Blocks 
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pixels for all training, validation, and testing purposes. The 

original dataset’s image intensity values ranged from 0 to 

255. The intensities underwent rescaling through the 

utilization of the pre-processing technique provided by 

Tensorflow. After training the model the validation set of 

images was analyzed to ensure that the model did not 

contain any instances of overfitting. 

D. Performance Metrics 

In addition to accuracy, other performance metrics, 

including weighted-averaged versions of precision, 

sensitivity, and F1-score, were utilized because the 

number of samples in both the benign and malignant, 

considering zoom factors, were imbalanced. The number 

of incorrect classifications that lie above the off-diagonal 

in the confusion matrix was counted as false positives, 

while the number of incorrect classifications that fell 

below the off-diagonal was counted as false negatives. The 

true negatives represent the number of items that have 

been accurately categorized for other classes besides that 

particular class. “TP”, “TN”, “FP”, and “FN” denote “true 

positives,” “true negatives,” “false positives,” and “false 

negatives,” respectively. These are the foundation for the 

mathematical formulae that are used to calculate the 

performance measures described above. The mathematical 

equations used for the calculation of performance metrics 

are given below. 

  (9) 

  (10) 

  (11) 

  (12) 

 

 

III. EXPERIMENTAL RESULTS 

A.  Experimental Settings and Network training 

The Swin Transformer model was trained for 100 epochs with 

Adam optimizer, a learning rate of 0.001, a batch size of 128, 

a weight decay factor of 0.0001, patch size of (2, 2), dropout 

rate of 0.05, attention heads equal to 8, embedding dimension 

of 256, MLP layer size of 256, attention window of size equal 

to 4, size of shifting window equal to 1, and image size equal 

to 224 x 224 pixels. The dataset was split into three sets, with 

70% of the data being utilized for training, 10% for validation, 

and 20% for testing. 

 

B. Classification Results  

The custom Swin Transformer performed very well for binary 

classification (benign vs malignant) among all the zoom 

factors. The model had the best performance on 400x 

magnification in which it attained a test accuracy of 95.24%, 

sensitivity of 96.33%, precision of 94.06%, and F1-score of 

95.18%. The performance metrics for all the zoom factors are 

given in the table II. We have also included confusion 

matrices for each magnification level in figures 3, 4, 5, and 6. 

TABLE II 

RESULTS FOR THE BINARY CLASSIFICATION ZOOM FACTOR WISE. 

Zoom  Accuracy Sensitivity Precision F1-score 

40x 92.50 93.52 91.33 92.41 

100x 94.55 95.37 93.64 94.50 

200x 93.90 94.86 92.83 93.83 

400x 95.24 96.33 94.06 95.18 

 

Fig. 3 Confusion Matrix for 40X. 

 

Fig. 4 Confusion Matrix for 100X. 
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Fig. 5 Confusion Matrix for 200X. 

 

 

Fig. 6 Confusion Matrix for 400X. 

C. Comparison with common pre-trained networks 

The proposed custom Swin Transformer model was compared 

with 10 distinct pre-trained fine-tuned DL models. These pre-

trained models VGG-16, VGG-19, ResNet-50, ResNet-101, 

ResNet-152, InceptionV3 [27], Xception [28], MobileNetV2 

[29], DenseNet121 [30], Vision Transformer (ViT) are pre-

trained on ImageNet dataset which consists of more than 1000 

classes. The test accuracies of these models were averaged 

among all the zoom factors and are shown in table III. In 

comparison to the other pre-trained models, the proposed 

custom Swin Transformer model exhibited significant 

performance and superior convergence with an increasing 

number of epochs, and it also outperformed all the pre-trained 

models by a large margin. Learning behaviours of our model 

and pre-trained networks are shown in figures 7 and 8. 

 
TABLE III 

AVERAGE TEST CASE ACCURACY COMPARISON WITH PRE-

TRAINED NETWORKS. 

Architecture Accuracy (%) 

VGG-16 85.49 

VGG-19 85.01 

ResNet-50 68.50 

ResNet-101 70.49 

ResNet-152 71.49 

InceptionV3 71.49 

Xception 64.50 

MobileNetV2 66.77 

DenseNet-121 73.99 

Vision Transformer 93.09 

This Work 94.05 

 
Fig. 7 Validation accuracy of custom Swin Transformer and Pre-trained 

networks over the epochs. 

Fig. 8 Validation loss of custom Swin Transformer and Pre-trained networks 

over the epochs. 
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D. Comparison with prior SOTA 

The proposed custom Swin Transformer model was also 

compared with existing SOTA models for binary classification 

of BreakHis in table IV. And our model performed better than 

all the SOTA models at 40X, 100X, 200X, and 400X zoom 

factors. 

TABLE IV 

PRIOR SOTA ACCURACY COMPARISON FOR BINARY 

CLASSIFICATION OF BREAKHIS. 

Ref Method 40X 100X 200X 400X 

[31] LPQ, SVM 91.10 90.70 86.20 84.30 

[32] Boltzmann 

Machine 

88.70 85.30 88.60 88.40 

[33] CNN 89.52 89.06 88.84 87.67 

 This Work 92.50 94.55 93.90 95.24 

 

IV. CONCLUSION 

This study proposes a custom Swin Transformer model for the 

binary classification of benign and malignant classes zoom-

wise from the BreaKHis dataset. Taking all the magnifications 

into account, our model performed better than all SOTA 

models for breast cancer histopathology binary classification 

with an average test accuracy of 94.05%. Because of this, the 

custom Swin Transformer model has the potential to be 

utilized for computer-assisted diagnosis of benign and 

malignant conditions, which will result in accurate diagnoses 

and will assist in reducing the burden of pathologists. 
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