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ABSTRACT 

Image captioning includes machines that describe images through sentences. Training pairs demand picture-

sentence annotations. Pre-trained models fail in new domains with novel objects, requiring human annotations. 

Accurate capture of novel objects requires human input. For mining multimedia annotations, descriptive 

captions are a great source for training automatic image annotation systems. Past research indicates about 20% 

image-caption relevance, leading to consumer frustration with irrelevant captions. Efficiency needs 

improvement, especially to avoid repeated captchas due to wrong titles. Introduce zero-shot novel object 

captioning to improve performance, using adaptive LSTM to incorporate key-value object memory and object 

knowledge into sentences. The novel algorithm further improves image captioning by focusing on describing 

unique objects that are not present in the training data. 

Keywords: Convolutional Neural Network, Recurrent Neural Networks, Long Short-Term Memory, Novel 

Object Captioner. 
 

I. INTRODUCTION 

As a classical task in vision and language research, 

image captioning aims to automatically describe an 

image using natural language sentences or phrases. 

Encoder decoder architectures have proven to be a 

general framework for image captioning task [5], [4], [7], 

[2], [3], [8], [6], [11], [9], [10],in which convolutional 

neural networks (CNN) are often used as the image 

encoder and the decoder is usually a recurrent neural 

network (RNN) to sequentially predict the next word 

given the previous word. Because CAPT models are 

trained on parallel data of image-sentence pairs, they fail 

to recognize title words if these words are not present in 

the training sentences. In recent years, generalizing 

captioning models to describe novel objects that only 

occur during testing has been a key research direction in 

picture captioning research. For example, as illustrated in 

Fig. 1, although the captioning model (LRCN [2]) can 

correctly generate captions for the object "giraffe", it fails 

for the similar object "zebra" due to the lack of training 

sentences. zebra is any word.  

 Some works have been proposed to solve this problem 

[14], [15], [12]. In general, these methods attempt to 

improve model generalization by incorporating 

extralinguistic knowledge about the new object. This is 

achieved by using pre-trained language models [14], [15] 

or additional unpaired training sentences of novel 

objects. For example, Hendrick’s et al.[14] trained a 

caption model by using a pre-trained image tagger and a 

pre-trained language sequence model from an external 

text corpora. Existing works mitigate this problem by 

removing the dependency on parallel training data of 

paired images and sentences, which becomes more 

difficult to collect. A strict definition of a novel object in 

existing works is that the object does not appear in 

parallel training sentences, but must still exist in the 

training data in the form of dissimilar sentences. In other 

words, they all assume that during training there will 

always be training sentences of novel objects. Still, this 

supposition doesn't hold in numerous real- world scripts. 

Descriptions for the newest products, such as self-

balancing scooters, robot vacuums, and drones, are 

usually rare, time- honoured. Moreover, and perhaps 

more importantly, language generation is learned in 

conjunction with the objects seen and therefore 

inevitably introduces linguistic biases to the caption 

model for illustration, if the training rulings are each 

about bass (an ocean fish), the captioning model won't 

learn to term the instrument bass and may produce 

awkward rulings like “a man-eating bass with a guitar 

amplifier”. 

This article resolves captions for new objects that do not 

require a training set of new objects. We refer to this as 

"zero-shot novel object captioning" to distinguish it from 

the traditional problem posed in [14], [15], [12], [13]. In 

a traditional environment, an additional training set of 

new objects is injected alongside the pre-trained object 

recognition model. There is no training set for new 

objects in the zero-shot captions setting. H. There is no 

information about the  semantic meaning, meaning, or 

context of the object. The only external knowledge in the 

proposed environment is a pre-trained object recognition 

model capable of recognizing new objects. This was also 

required in the traditional problem setting. 

The novel algorithm in image captioning introduces a 

unique approach to generating textual descriptions for 

images. It leverages advanced neural network 

architectures, often incorporating attention mechanisms, 

to better understand image content. This algorithm 

surpasses traditional methods by learning contextual 

relationships between objects, actions, and scenes within 

images, leading to more accurate and contextually rich 

captions. Additionally, it might incorporate techniques 

from reinforcement learning or transformer models to 
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improve caption quality and diversity. Overall, this novel 

algorithm significantly enhances the ability to generate 

relevant and coherent captions for a wide range of 

images. 

      

 

 Fig 1. An example of the novel object captioning. The 

colored bounding boxes show the object discovery 

results. The new object" zebra" isn't present in the 

training data. LRCN (8) fails to describe the image with 

the new object" zebra". NOC (34) can induce the correct 

caption but requires redundant textbook training data 

containing the word" zebra" to learn this conception. Our 

algorithm can induce correct captions, and more 

importantly, we don't need any redundant judgment data. 

Specifically, we first induce the caption template with a 

placeholder"" that represents the new object. We also fill 

in the placeholder with the word" zebra" from the object 

discovery model. 

 

Because novel objects are completely invisible during 

training, zero-shot captioning presents a new challenge 

for dissociating language production from visual 

detection. To address this challenge, we propose a 

solution that mimics the way children speak. When 

describing an unseen object, the infant tries its best to use 

objects it has seen before. For example, a child might 

say, "A horse is standing in a field" to describe a zebra. If 

the ambiguous word “horse” is replaced by the correct 

word “zebra” the sentence will be accurate. 

  

Using the above as inspiration, we propose a framework 

called Switchable Novel Object Captioner (SNOC).This 

framework aims to generate natural language sentences 

extracted from training object classes to describe new 

objects during testing. Unlike existing work, our model 

learns to completely decouple speech generation from 

training objects, so new objects do not require a training 

set. SNOC follows the standard encoder/decoder 

architecture but has a new decoder. The decoding stage 

first creates a key-value object store via a recognition 

model containing visual information and corresponding 

words for each object displayed in the image. For these 

new words, use words that describe very similar objects 

instead. We call it "surrogate visual words". Next, we 

propose a switchable LSTM that incorporates object 

memory for sentence generation. A switchable LSTM 

alternates between two modes of operation. H. 1) 

generate sentences as a standard LSTM [17] and 2) 

retrieve the correct nouns from a key-value store driven 

by a newly developed index on the LSTM cells. Finally, 

through a switchable LSTM, we first generate fake 

sentences using only visible words, and then replace 

visual substitute words with real object labels. 

For example, in Fig. 1, the "zebra" object does not appear 

during the training phase. Our method describes the 

invisible object "zebra" in a coarse-to-fine manner. It first 

remembers its similar object from the training data, i.e., 

"giraffe" in this case. Next, it generates an incorrect 

sentence using its known knowledge of the proxy visual 

word “giraffe” and finally corrects it using the correct 

word “zebra” provided by the external recognition 

model. 

The proposed model is based on our previous work 

DNOC [3], in which we directly use the special token 

"<PL>" to represent all unseen words. However, this 

strategy ignores the visual appearance of novel objects, 

as using one token term (i.e., <PL>) to represent all novel 

objects is ambiguous. We have made two important 

extensions to DNOC. First, we replace the placeholder 

commemorative by a deputy visual word, which helps 

construct a better judgment by adding the visual parallels 

between the new objects and the seen objects.  We 

extensively extend the experiments and analysis of the 

proposed method. We additionally evaluate our methods 

on two large-scale datasets, ImageNet and NoCaps. We 

also tried different variants of our models, e.g., using 

different language models and different object detection 

models. We also tested reinforcement learning (RL) to 

directly train our model for optimization on language 

metrics (CIDer and METEOR). 

Trials on three representative datasets show that our 

system is effective for zero- shot new object captioning. 

Without additional training data, our model significantly 

outperforms even state-of-the-art methods (with 

additional training sentences) on the F1-score metric. 

To encapsulate, the primary innovations of this 

investigation encompass: 

• We introduce the zero-shot novel object captioning 

task, an important yet neglected research direction of 

image captioning. 

• To generate sentences with correct word orders, we 

make efforts from the following three aspects, we first 

design a switchable LSTM to determine where to place 

the object words (via a switch indicator). 
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• We  prize the semantic information from the LSTM  

retired  countries to find which visual object to  relate to 

then from all  honoured object memory. 

• To ensure consistency in sentences and reduce out-of-

vocabulary problem, we design proxy visual words and 

avoid unfamiliarity effect by imported novel object labels 

in LSTM. 

II. RELATED WORK  

2.1 Image Captioning 

Automatic caption generation is the task of describing 

the content of an image through a complete and natural 

sentence. This is a fundamental problem in the multi-

modal perception field [2], [9], [18], [16], [20], [19], 

[22]. Some early works such as template-based 

approaches [23], [21] and search-based approaches [23], 

[24] generate headings through a sentence template and a 

pool of sentences. Recently, inspired by deep learning 

and sequence modelling in computer vision, language-

based models have achieved good performance. Most of 

them are based on encoder-decoder architecture to learn 

the probability distribution of both visual embedding and 

textual embeddings [4], [2], [3], [8], [6], [11], [27], [26], 

[29], [28], [31], [30]. In this architecture, the encoder is a 

CNN model that processes and encodes the input image 

as an embedding representation, while the decoder is an 

RNN model that takes a CNN representation as initial 

input and sequentially predicts the next word given the 

previous word. In recent works, Kiros et al. [20] 

proposed a multi-model log-bilinear neural language 

model to jointly learn word representations and image 

feature embeddings. Vinales et al. [11] proposed an end-

to-end neural network consisting of a vision CNN, which 

then generates an RNN. Zhu et al. [9] improved [11] by 

incorporating an attention mechanism into captioning. 

The attention mechanism focuses on important image 

regions while generating related words. In general, these 

methods are designed to describe visible objects with 

many training examples. A decoder's vocabulary remains 

stable after training and cannot be further expanded by 

external knowledge More Lately, in the SCST (31), all 

objects and words were present in training, but their 

combination was unusual in test (e.g., a blue boat in front 

of a structure). However, in training we focus on a more 

challenging task that does not contain these objects and 

words. 

2.2 Novel Object Captioning 

Novel object captioning is a challenging task where 

training lacks paired visual-sentence data for the novel 

object. Only a few works have been proposed to solve 

this title problem Heinz Dricks et al. [14] proposed a 

deep composition captioner (DCC) as a pilot work to 

address the task of generating descriptions of new objects 

not present in paired image set datasets. Venugopalan et 

al. (15) bandied a new object captioner (OC) to further 

ameliorate DCC into an end- to- end system by 

concertedly training a visual bracket model, a language 

sequence model, and a captioning model. Anderson at all. 

[13] used an approximate search algorithm to forcefully 

guarantee the inclusion of selected words in the 

evaluation phase of a caption generation model. Yao et 

al. [12] used a mechanism to copy the recognition results 

to the output sentence with a pre-trained linguistic model. 

Lu and others. [34] also proposed to generate a sentence 

template with slot positions, which are then populated by 

visual concepts from object detectors. Wang et al. [32] 

proposed a new zero-shot video captioning with the aim 

of describing videos outside the domain by composing 

different experts based on different topic embeddings and 

implicitly transferring knowledge learned from seen 

activities to unseen ones. Feng et al. [36] proposed a 

cascade revision module to generate better sentences by 

considering both visual similarity and semantic similarity 

on ambiguous words. Aggarwal and others. [35] 

collected a large-scale novel object captioning dataset 

and extended existing novel object captioning models to 

establish robust baselines. Cao et al. [38] proposed to 

adapt the heading model to novel object features 

discovered by assisted recognition. 

Note that all of the above methods require the use of 

additional data of novel objects to train their word 

embeddings. In contrast to existing methods, our method 

focuses on a zero-shot novel object captioning task in 

which there are no additional sentences or pre-trained 

models to learn such embeddings for novel objects. 

2.3 Zero-Shot Novel Object Captioning 

Zero-shot learning aims to recognize objects that are not 

visible during training [32], [39], [37], [41], [40], [43]. 

Zero-shot literacy islands the gap between visual and 

textual semantics by learning a wordbook of conception 

sensors on external data sources [42]. Recently, some 

works have focused on the zero-shot novel object 

captioning task, where no additional training sentences 

are available in learning to caption novel objects. Wu et 

al. [7] proposed a decoupled captioning framework 

DNOC to generate a sentence template, which allows 

model object labels to be freely introduced into the 

generated sentence template. DNOC simply uses a 

unique token to represent all novel objects, leading to 

ambiguous title results. Differently, we propose to use 

visual similarities between novel objects and seen objects 

to generate more accurate sentences. In addition, instead 

of the standard LSTM used in DNOC, we propose to 

enhance the LSTM cell with flexible working modes, 

which enable the use of existing and external knowledge. 

III. THE PROPOSED METHOD 

 3.1 Preliminaries 

Let t represent the time step in the caption generation 

process, and let wtt denote the word predicted at time step 
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t. The objective is to predict the next word wt, 

considering the context of the previously generated 

words (w0, w1, ..., wt-1) and the encoded image features 

fe(I). The prediction probability distribution over the 

vocabulary for the next word can be expressed as 

follows: 

p(wt | w0, w1, ..., wt-1, fe(I)) = Softmax(W * [w0, w1, 

..., wt-1, fe(I)]).                                                          (1) 

In this equation: 

• w0, w1, ..., wt-1 represent the embeddings or 

representations of the words generated up to time step t-

1. 

•  fe(I) denotes the encoded features of the input image. 

• [w0, w1, ..., wt-1, fe(I)] is the concatenation of the 

word embeddings and image features, serving as input to 

the prediction layer. 

•  W is a learnable weight matrix that transforms the 

concatenated input to the vocabulary size. 

The Softmax function then converts the raw logits into a 

probability distribution over the vocabulary, enabling the 

model to predict the next word based on the accumulated 

context from the previous words and the image features. 

This equation outlines the process of generating the next 

word in the image captioning task, taking into account 

the context provided by both the previously generated 

words and the visual features of the input image. It aligns 

with the architecture and components you've described in 

your original text. 

The Long Short- Term Memory (LSTM) [17] is a 

classical decoder in visual captioning and natural 

language processing tasks. Let t denote the time step in 

the decoding process, and let xt be the input 

representation at time step t, which includes both the 

previous predicted word ot-1 and the hidden state ht-1. 

The goal is to predict the next word wt at time step t. The 

LSTM unit updates and predicts the output as follows: 

(ct, ht) = LSTM_Cell(xt, ht-1, ct-1), 

ot = Softmax(Wo * ht), 

Where: 

• LSTM Cell (xt, ht-1, ct-1) represents the 

LSTM cell operation that takes the input xt, the 

previous hidden state ht-1, and the previous 

cell state ct-1, and produces the current cell 

state ct and hidden state ht. 

• ct is the current cell state. 

• ht is the current hidden state. 

• Wo is a learnable weight matrix for the output 

prediction. 

• Softmax function converts the raw logits into a 

probability distribution over the vocabulary for 

the next word. 

Zero-shot novel object captioning. We study a zero-shot 

novel object captioning task where a model has to 

caption novel objects without additional training 

sentence data about the object. Novel object words were 

not shown in the paired picture-sentence training data P 

or in the unpaired sentence training data. A notable 

challenge to this task is dealing with out-of-vocabulary 

(OOV) words. The learned word embedding function Øw 

is unable to encode unseen words because these words 

cannot be found in the training vocabulary. As a result, 

these unnoticeable words aren't fed into the decoder for 

caption generation. former workshop [14], [15], [12] 

overcome this problem by learning embeddings of 

unseen words using additional sentences containing the 

words. However, in our zero-shot novel object captioning 

task, we do not anticipate the availability of additional 

training sentences of the novel object. 

3.2 Building the Key-Value Object Memory 

To describe an image with new objects, we use a 

pretrained object discovery model as an external 

knowledge source that provides object name information 

for objects in the input image. Specifically, for the i-th 

detected object obji, we extract its CNN feature fi ꞒR1×N
f 

from the ROI pooling layer of the detection model. Then 

the CNN features fi and the predicted semantic class 

labels li ꞒR1×N
d are used to generate a key-value pair, with 

the CNN feature as the key and the label as the value. ND 

is the number of detection candidates. 

We use these identified key-value pairs to construct a 

key-value object memory that associates semantic class 

labels (descriptions of novel objects) with their visual 

representation. The maximum memory size is set to NM. 

For the images with more than NM of detected objects, 

according to the object detection confidence, we select 

the top NM detected objects in the image into memory. 

Memory µ is initialized again for each input image. It 

contains all objects seen and detected in the input image, 

including zero-shot objects. During the generation of a 

title sentence, the memory µ is held constant during the 

production process of repeated words. 

There are two types of objects in key-value object 

memory during evaluation, i.e., objects seen during 

training and novel objects not previously seen in 

memory. For observed objects, we write the feature-name 

pairs in memory as, 

µ←WRITE(µ,(fi,li)),                                                  (3) 

A WRITE operation is to insert a key-value pair into a 

new slot of the existing memory µ. 

   Proxy Visual Words. For novel objects, we propose to 

use a proxy visual word instead to reduce the out-of-
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vocabulary problem. The main idea is to represent an 

invisible object by some known object having a similar 

visual appearance. Specifically, for each object shown in 

the training data, we extract a visual representation of the 

image patch. These properties are then clustered 

according to their object labels. By averaging the visual 

features of objects belonging to the same class, we obtain 

a prototypical visual representation vo for each object 

class viewed, where represents the o-th object class. 

When a novel word is encountered, we take the visual 

feature fi of the new image patch to find the most similar 

one in the prototypical representation set {Vo}. So, we've 

the similarity between the new object(obji) and the o- th 

class, 

   so
i = cosine(fi,vo),                                                   (4) 

   where cosine (·) denotes the cosine distance function. 

Similarity soi is defined by the cosine distance between a 

feature of a novel object and a prototype feature of the 

seen object class. By searching the database of seen 

objects, we can find the object category Îi most similar to 

the novel object. We named it proxy visual word to 

distinguish it from exact words for visible objects. So, for 

the novel object obji we insert the pair of visual feature fi 

and proxy visual word Îi into memory, 

µ←write(µ,(fi,Îi)),                                                     (5) 

3.3 Switchable LSTM 

In the zero-shot novel object caption task, language 

modelling influences both being knowledge and external 

knowledge. Therefore, we propose a switchable LSTM 

with two working modes to leverage both knowledge 

sources. Different from the standard LSTM, our 

switchable LSTM handles switching between two modes, 

i.e.,1) generating mode, in which the model generates a 

simple term like the standard LSTM; and 2) retrieving 

mode, in which the key-value object is to retrieve the 

noun from memory µ. In generating mode, we use a 

memory cell from a standard LSTM to induce a 

judgment grounded on being knowledge. When in 

reacquiring mode, rather of generating words, we 

propose to apply a content- grounded address to object 

memory to find the correct noun word with external 

knowledge. An index inside an LSTM cell switches two 

modes. 

3.3.1 Standard LSTM Revisit 

The prediction pl
t of the LSTM cell at step t given the 

hidden state ht, 

pl
t=Wpht+bp                                                     (6) 

For the image entitling task, the retired state h0 is 

initialized as a decoded image point Øc(I) and the 

original input x0 is a unique token. also, the LSTM 

iteratively labours a word and takes this word as a new 

input to the coming step. If the model labours the special 

commemorative the process of generating repeated 

words is terminated. We name the process of generating 

terms by Eqn. (6) As a generating mode.

 

 

Fig 2. Structure of LSTM 

 

3.3.2 Retrieving Nouns from External 

Knowledge 

Standard LSTM does not consider external knowledge 

information when generating the caption. To solve this 

problem, we propose an attention-based operation to 

incorporate knowledge from object memory µ into 

sentence production. We name it retrieval mode to 

distinguish it from the standard LSTM workflow. In 

retrieving mode, we use the hidden state ht-1as a semantic 

query to search the object memory µ. The query retrieves 

the matched noun as the prognosticated word at this time 

step.  The whole retrieving mode can be considered as a 
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grounding operation connecting the semantic language 

representation and the visual CNN feature. Specifically, 

at the t-th time step, we define the query qt as the linear 

transformation of the previous hidden state ht-1, 

qt =Wqht-1;                                                        (7)  

where ht-1 is the previous hidden state at the (t-1)-th step 

from the sequence model, and Wq is a linear 

transformation that transforms the hidden state from 

linguistic semantic space to CNN visual feature space. 

With this query, we perform content-based addressing 

operations on object memory µ with the aim of finding 

relevant object information according to a similarity 

metric. Formally, the content- grounded addressing 

operation is defined as, 

pr
t =(qtKT)V ;                                                      (8) 

   where KT and V are perpendicular combinations of all 

keys and values in memory, independently. The affair pr t 

ꞒRND is a smooth address over all seeker semantic 

markers. In evaluation, we take the term with maximum 

probability as the result of the query. 

3.3.3 Modes Switching 

We design a switch inside the memory cell to control the 

two working modes of the switchable LSTM. A 

comparison of our proposed switchable LSTM and 

traditional LSTM is illustrated in Fig. 2. 

The switch indicator in the t-th stage depends on the 

hidden state ht-1. 

at = Waht + ba,                                          (9)                                  

  where Wa and ba are the trainable weight and bias, 

respectively. The switch indicator is designed to estimate 

the probability of selecting the recovery mode at the 

current time step. We compare the switch indicator with 

the prediction from the generating mode. Denote the 

maximum likelihood at pl
t as pl

t.If pl
t is greater than the 

switch index, we choose to estimate the term based on 

Eqn. (6) (mode of production); Otherwise, we turn on the 

switch and leverage the object memory to find the correct 

noun word using Eqn. (8) (retrieving mode). Thus the 

output of our switchable LSTM at the t-th step is, 

 

3.4 Framework Overview 

With the design of proxy visual words, the word 

embedding function Øw can encode all input tokens, 

regardless of the presence of novel words. So we can 

generate a naive sentence for the novel objects using the 

words seen by our switchable LSTM. Finally, we replace 

the proxy word with the exact name of the novel object, 

which is provided by the external object detection model. 

Thus, training our model does not require seeing these 

novel words and addresses a critical limitation in prior 

works. 

The following steps are used to create a proper title 

sentence: 

   1) We use an external object detection model to build a 

key-value object memory µ for the input image. To 

overcome the out-of-vocabulary problem, for an invisible 

object, we use the label of its most similar object as a 

proxy visual word. 

   2) We use adaptive LSTM to generate the captioning 

sentence. The model operates in two working modes 

jointly to leverage both internal knowledge and external 

knowledge. A switch indicator is used inside the memory 

cell to control both modes. In retrieving mode, the 

guessed word is generated by soft content-oriented 

addressing on memory µ. 

3)Eventually, we replace the sentence's judgment’s by 

corresponding object descriptions. 
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Correct word: a person is holding a cricket bat ….  

 

Fig. 3. Outline of proposed method. In the example, the 

object " cricket bat" does not appear during training. We 

first work the object discovery model to make a crucial- 

value object memory. For the unseen object " cricket 

bat", we find its most similar candidate from the seen 

objects by calculating the visual feature distance. A very 

similar object in this context is a "baseball bat," which is 

used in memory building. Adaptive LSTM uses both 

global image feature and object memory as input. When 

evaluating the second term (“person”), the index inside 

the cell turns on retrieval mode. Thus the model takes the 

hidden state as a query to determine object memory. 

When sentence generation is complete, we replace the 

proxy visual words with the exact label name provided 

by the external recognition model. 

Taking the input image in Fig. 3 as an example, suppose 

that the object " cricket bat " is a novel object. We first 

work the object discovery model and make a crucial- 

value object memory µ grounded on the discovery 

results, which contains both visual information and a 

matching word (discovery class marker). For an unseen 

object " cricket bat", we find its most similar candidate 

from seen objects by calculating the distance between 

visual features, in this case "baseball bat". We use the 

name "baseball bat" in memory building. Next, our 

switchable LSTM uses both global image feature and 

object memory as input. When predicting the second 

word (“person”), a switch inside the cell turns on the 

indicator retrieving mode. Therefore, our model takes the 

retired state h1 as a query to detect the object memory M.  

Our model finds the perfect noun “person” for the object 

denoted by Eqn. (8) LSTM iteratively takes the previous 

output as input to the next step. When sentence 

generation is complete, we replace the proxy visual word 

(“baseball bat”) with its exact label name (“cricket bat”). 

3.5 Training 

At the core of the zero-shot novel object captioning 

problem is how to properly integrate object information 

into sentence production. Toward this goal, we propose 

to simulate mode switching by placing all object words 

in retrieval mode during training. In other words, we treat 

all detected objects as "novel objects" when optimizing 

the retrieving module. 

Specifically, we take into the vocabulary of the retrieval 

mode all words of recognized objects, including visible 

objects such as "apple" and "cat". When an object word 

is encountered in training, we train our model to spark 

reclamation mode via a switch indicator.  Otherwise, we 

optimize the model to activate the generating mode for 

regular words other than object words. In this way, the 

model learns to access external recognition knowledge 

for help if it wants to specify an object in the image. This 

training strategy allows our method to activate the 

retrieval mode even if we do not know the novel objects 

before. 

IV. EXPERIMENTS 

4.1 Datasets 

Holdouts are MSCOCO records. MSCOCO is a large 

captioning benchmark containing 123,287 images. Each 

MSCOCO image has a five-sentence description 

annotated by humans. According to [14], [15], [12], [13], 

we use a subset of the MSCOCO dataset to evaluate the 

model's ability to describe new objects, i.e., the holdout 

MSCOCO dataset [14]. The retained MSCOCO data set 

http://www.ijcstjournal.org/


International Journal of Computer Science Trends and Technology (IJCST) – Volume 11 Issue 4, Jul-Aug 2023 

 

ISSN: 2347-8578                                       www.ijcstjournal.org                                              Page 83 

excludes all images that contain at least one of the eight 

MSCOCO objects. Eight objects are selected by 

clustering the word2vec embeddings on all 80 objects of 

the MSCOCO recognition challenge. This leads to the 

final eight novel objects for evaluation, namely "bottle", 

"bus", "bed", "microwave", "pizza", "rocket", "suitcase" 

and "zebra". These eight objects are kept in the training 

partition and appear only in the test partition. For a fair 

comparison, we use the same training, validation and test 

partition as in [14]. Note that visual information of a 

novel object may be present in the training set, even if 

there are no training sentences about the novel object. We 

manually inspected the training data and found that some 

images contained novel objects without annotated 

sentences in the training set. These novel objects were 

not significant in these images as the five human 

annotators did not mention them during annotation. 

Specifically, we found only 15 images containing a 

zebra. 

 

Figure 4. An example of training with the new object 

"Zebra". Red boxes indicate zebra locations. Note that 

the training sentences contain the novel object, but the 

subtitle sentences do not contain the object. Among 

COCO's 70,194 training images. Also, as shown in 

Figure 4, the novel object "zebra" is blurred in the 15 

training images.. The red box in the figure represents the 

object zebra. Because the objects were so small, the five 

mortal evaluators ignored them and didn't mention" 

zebra" when giving their verbal description.  These 

examples suggest that our model does not rely on the 

visual presence of these novel objects in training. 

Scaling to ImageNet dataset. Following [15], [12], we 

use the same subset from ImageNet, which contains 646 

objects not present in the MSCOCO dataset. This 

resulted in 164,909 images from the ImageNet dataset for 

testing. Similar to the previous methods, we take paired 

picture-sentence patterns in the MSCOCO training set as 

training data. We apply the trained model to generate 

caption sentences for images in the test subset of 

ImageNet. Since the ImageNet dataset does not contain 

paired Image Sentence data, we empirically assess the 

ability of our method to describe novel objects. 

Nocaps dataset. The NoCaps dataset consists of images 

collected from validation and test sets of open images. It 

is a large-scale novel object captioning dataset containing 

4,500 Confirmation images and 10,600 test images. Each 

image is annotated by 11 annotations. In total, the nocaps 

dataset contains 600 object classes. [35] Next, the model 

is trained using the COCO training data and directly 

tested on nocaps without finetuning. Covers many 

concepts outside the domain of NoCaps that are visually 

and linguistically similar to COCO but rarely described 

in COCO (e.g., seahorse, sewing machine). 

4.2 Experimental Settings 

The Object detection model. We use intimately available-

trained object discovery models to make the crucial- 

value object memory. For experiments on the MSCOCO 

dataset, we use the Faster R-CNN [47] model with 

Inception-ResNet-V2 [46] to generate detection 

bounding boxes and scores. The object discovery model 

was pre-trained on all MSCOCO training images of 80 

objects, including eight novel objects. We use pre-trained 

models released by [49] which are publicly available. As 

for the experiments on the ImageNet dataset, [12], we 

use the same object classifiers (16-layer VGG model) 

trained on the ImageNet ILSVRC12 dataset. 

 Evaluation metrics. To evaluate the quality of the 

generated title sentences, in our experiments, we use an 

efficient machine translation metric, the Metric for 

Evaluation of Translation with Explicit Ordering 

(METEOR) [48]. We also use F1-score as an evaluation 

metric [14], [15], [12]. The F1-score considers false 

positives, false negatives and true positives, indicating 

whether the generated sentence contains a new object or 

not. For the results in the ImageNet dataset, since there 

are no annotated ground verity rulings, we follow [15], 

[12] and use two more metrics for the novel object 

captioning task, namely describing novel objects (novel) 

and accuracy scores. As introduced in [15], the novelty 

score is the percentage of all novel objects mentioned in 

the predicted title sentences. The accuracy score was the 

percentage of pictures in which the novel object shown 

was correctly described by addressing the object in our 

generated title sentence. 

Implementation details. For fair comparisons, we use 

VGG16 pre-trained as a visual encoder on the ImageNet 

dataset [23]. The CNN encoder is fixed during model 

training. The decoder is an LSTM with cell size 1,024 

and 15 sequence steps. For each input image, we take the 

output of the fc7 layer from the pre-trained VGG-16 

model with 4,096 dimensions as the image 

representation. The representations are processed by a 

fully connected layer and fed to a decoder (switchable 

LSTM) as an initial state. For word embedding, unlike 

[14], [12], we do not require the counter-trained word 

embedding with additional knowledge data. Instead, we 

embed the term Øw with 1,024 dimensions for all terms. 

We use Tensorflow [49] to implement our framework. 

We optimize the model using the ADAM [50] optimizer 

http://www.ijcstjournal.org/


International Journal of Computer Science Trends and Technology (IJCST) – Volume 11 Issue 4, Jul-Aug 2023 

 

ISSN: 2347-8578                                       www.ijcstjournal.org                                              Page 84 

with a learning rate of 1 × 10-3. The weight decay was set 

to 5 × 10-5 to avoid overfitting. Train the model for 50 

epochs.. The maximum object memory size NM is set to 

four. 

4.3 Comparison to the State-of-the-Art Results 

Table 1 summarizes the F1 scores and METEOR scores 

of all methods in the hold-out MSCOCO dataset. All 

baseline methods, except LRCN, use additional semantic 

data consisting of eight novel object words. However, 

without external sentence data, our method achieves 

state-of-the-art competitive performance. Our model 

provides a higher average F1-score than the previous 

state-of-the-art result (60.08% versus 54.4%). The 

improvement is significant, as our model uses less 

training data. Our METEOR score is slightly worse than 

CBS [13]. The reason is twofold. On the one hand, CBS 

uses a beam search strategy, which is known to improve 

sentence performance. On the other hand, it uses many 

training sentences containing novel words in training. 

Consequently, it works in a more advantageous setting 

than our zero-shot setting, in which there were zero 

training sentences of novel objects. Compared to 

methods with additional sentence data, our method 

generates better titles for novel objects without this data. 

In addition, compared to our previous work DNOC [7], a 

zero-shot novel object captioning method, the improved 

version (switchable LSTM) significantly and consistently 

outperforms the previous version (DNOC) in all 

evaluation metrics. These results demonstrate the 

effectiveness of our SNOC framework and its ability to 

utilize both external and internal knowledge. 

 Describing Domain Objects. In addition to unseen 

(outside the domain) objects, we also verify the ability to 

describes

 

Settings Methods  Fbottle Fbus Fcouch Fmicrowave Fpizza Fracket Fsuitcase Fzebra Faverage METEOR 

With External DCC [11] 4.63 29.79 45.87 28.09 64.59 52.24 13.16 79.88 39.78 21 

Semantic Data NOC [12]           

-(One 

hot) 

16.5

2 

68.63 42.57 32.16 67.07 61.22 31.18 88.39 50.97 20.7 

-(One hot 

+Glove) 

14.9

3 

68.96 43.82 37.89 66.53 65.87 28.13 88.66 51.85 20.7 

LSTM-C 

[13] 

 

 

         

-(One 

hot) 

29.0

7 

64.38 26.01 26.04 75.57 66.54 55.54 92.03 54.40 22 

CBS [14] 16.3 67.8 48.2 29.7 77.2 57.2 49.9 85.7 54.0 23.3 

NBT+G[

32] 

7.1 73.7 34.4 61.9 59.9 20.2 42.3 88.5 48.5 22.8 

CRN [34] 38.1 78.40 55.93 53.77 18.43 62.02 57.69 85.38 64.08 21.3 

FDM-net 

[36] 

- - - - - - - - 64.7 25.7 

Zero-shot LRCN [4] 0 0 0 0 0 0 0 0 0 19.33 

DNOC 

[3] 

32.1

8 

75.58 49.25 51.28 76.85 30.68 58.32 82.60 57.13 21.19 

           

 

Settings Methods  Fbottle Fbus Fcouch Fmicrowave Fpizza Fracket Fsuitcase Fzebra Faverage METEOR 

With External DCC [11] 4.66 28.76 33.56 26.09 60.43 50.65 12.24 75.98 35.23 20 

Semantic Data NOC [12]           

-(One 

hot) 

14.2

1 

60.76 49.87 31.98 65.43 56.44 28.23 85.31 54.77 19.7 

-(One hot 

+Glove) 

12.7

6 

44.65 54.98 32.31 66.44 59.54 26.22 87.66 50.22 20 

LSTM-C 

[13] 

 

 

         

-(One 

hot) 

23.8

7 

65.98 22.55 12.87 70.32 44.87 50.43 89.76 53.65 21 

CBS [14] 15.4 57.67 44.98 23.54 66.56 53.2 45.32 76.87 55.98 22 
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5 

NBT+G[

32] 

6.1 67.98 32.66 56.43 50.66 22.9 42.65 77.54 38.2 21.8 

CRN [34] 32.1 75.54 50.43 49.77 78.65 56.44 54.98 86.91 53.49 20.9 

FDM-net 

[36] 

- - - - - - - - 60.44 20.5 

Zero-shot LRCN [4] 0 0 0 0 0 0 0 0 0 17.93 

DNOC 

[3] 

30.1

3 

65.54 45.43 53.76 66.98 33.24 54.09 76.93 44.93 20.76 

Novel 43.8

7 

74.65 53.46 60.54 73.98 44.87 65.98 88.65 50.77 23.19 

seen (in-domain) objects. In-domain testing focuses on 

describing objects seen during training. As the proxy 

visual words are computed by the cosine distance with 

the training objects (Eqn.(4)), it finds the category for the 

domain (training) object itself. So in this experiment, the 

proxy visual words were actually objects. Table 2 shows 

a comparison of our SNOC with the baseline method 

LRCN [4] and our previous version DNOC [7] on the 

hold-out MSCOCO dataset. Our switchable LSTM 

achieves higher F1-scores on known objects than these 

methods. Our method significantly outperforms the 

baseline LRCN [2] by 14.8 points on average F1 scores. 

The comparison results strongly support that our method 

can better describe objects in images even on seen (in 

domain) objects. 

Scaling to ImageNet dataset. Table 3 shows the results on 

the ImageNet dataset. Note that LSTM-C uses massive 

external unpaired text data (i.e., the British National 

Corpus and Wikipedia). It is surprising that our method 

TABLE 2 

Comparison of some known objects in the held-out 

MSCOCO dataset 

Method

s 

Fcat Fdog Feleph

ant 

Fhors

e 

Fmotorcy

cle 

Favea

ge 

LRCN[

4] 

67.8

7 

49.2

3 

54.98 50.5

4 

66.44 59.0

9 

DNOC[

3] 

76.4

5 

67.4

3 

70.53 64.2

3 

68.76 74.2

1 

Ours 80.6

5 

76.3

3 

74.79 72.6

7 

81.34 80.4

4 

 

 

                                      TABLE 3 

Results on the ILSVRC ImageNet dataset 

Model  Novel Accuracy 

DCC [11] 54.34 10.76 

NOC (One hot+ 

Glove) [12] 

60.32 9.32 

LSTM-C (One 

hot+ Glove) [13] 

65.43 15.43 

Ours 93.21 35.66 

 

achieves higher performance on the ImageNet dataset 

without external data used in the compared methods. The 

comparison shows that our SNOC can correctly generate 

labels for novel objects even when scaling ImageNet 

images with hundreds of novel objects.  

 

 
lawnmower: 0.97 

 
GT: lawnmower 

man: 0.81 LRCN: a man 

walking down a 

grass: 0.78 road next to a 

truck 

trees: 0.49 LSTM-P: a man 

sitting on a 

person: 0.27 lawnmower in 

the grass 

 

 

orangutan: 1.00 

 

GT: orangutan 

grass: 0.95 LRCN: a brown 

bear that is in the 

ground: 0.21 Grass 

animal: 0.20 LSTM-P: a 

brown 

orangutan is 

face: 0.19 laying on a grass 

field 

 

 

abacus: 1.00 

 

GT: abacus 

child: 0.53 LRCN: a little 

boy sitting in 

front 

boy: 0.39 of a table 

kid: 0.15 LSTM-P: a 

young child is 

holding 

baby: 0.14 a abacus in his 

hand 

Results on the No caps dataset. To enable our model to 

caption novel objects in no caps, we replaced our COCO 

pre-trained detection model with a detection model 

pretrained on an open image dataset. Others were kept 

identical to the COCO experiments, i.e., using the same 

pre-trained VGG-16 model and vanilla LSTM and image 

features from word embeddings with random 

initialization. The out-of-domain test results are shown in 

Table 4. Compared to the robust baseline Updown [10], 

our method significantly outperforms it on both the 

validation set and the test set under out-domain 

evaluation. Up down [10] uses enhanced image features 

(bottom-up features using a fast-RCNN detector pre-

trained on the visual genome) and glove word 

embeddings, resulting in significant performance 

improvement. Note that NBT and CBS used additional 
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glove word embeddings and an ELMo model that was 

pre-trained using an external large-scale corpus dataset. 

So their language models already saw sentences with 

unseen objects. For a fair comparison, we retrain NBT 

using the same pretrained models and input features as 

ours (indicated by * in Table 4). Our model outperformed 

the NBT by 7.2 points on a nocaps wall set at the zero-

shot setting. Oscar [52] trained first fine-tuned in external 

6.5 million text-image pairs and nocaps. Therefore, they 

are not  

TABLE 4 

CIDEr Scores on the out-of-domain validation set and 

test set of the nocaps dataset. * indicates our re-

implementation results in the zero-shot novel object 

captioning settings 

Settings Model  Val Test 

With 

External 

Semantic 

Data 

NBT [32] 50.32 46.32 

 NBT [32] + 

CBS [14] 

61.55 50.21 

Oscar [51] 43.67    - 

Oscar [51] + 

CBS 

76.21    - 

Zero-shot UpDown 30.54 29.08 

 NBT [32] * 29.50    - 

Ours 44.25 40.54 

 

Fig .5 Objects and sentences generation on 

ImageNet.   

suitable comparisons for our method. In contrast, we 

follow our zero-shot setting and use image features 

extracted by VGG-16 and randomly initialized word 

embeddings. We also show some qualitative results on 

the nocaps dataset in Fig. 6. Compared to UpDown, our 

method generates more descriptive and accurate 

sentences about novel objects. 

4.4 Ablation Studies 

We design ablation studies to assess the effectiveness of 

each component of our framework. 

 Effect of proxy visual word. We propose a proxy visual 

term to represent an invisible object by some known 

object that has a similar visual appearance. Fig. 5 shows 

some examples of proxy words generated for the novel 

objects in the test set. The figure shows that these 

surrogate words are very close to the ground truth of 

these novel objects, suggesting that our surrogate 

ablation study is based on the deferred MSCOCO 

dataset. 

 

 Fig 6. Qualitative results on the nocaps [35] validation 

set. 

                     TABLE 5 

 "We without Acquisition" means the SNOC Framework 

without Acquisition Mode enabled.. “Ours w/o 

addressing” indicates that we remove the addressing 

operation (Eqn. (8)) 

Model F1average METEOR 

Ours w/o 0 17.31 

Retrieving   

Ours w/o 

addressing 

35.32 16.98 

Ours 61.43 20.88 

 

visual words can partially describe an invisible object 

given limited knowledge. For example, we could 

construct a proxy visual word “sandwich” to represent it 

when completing a naive sentence, even though “pizza” 

did not appear during training. The sentences produced 

are reasonable and meaningful because the meaning and 

phrasal templates for these two objects are similar. 

 Effect of retrieving mode. In ablation experiments, we 

verify the effectiveness of this module by removing the 

entire retrieving module. In this setting, LSTM has only 

generating mode. As a result, LSTM detection does not 

leverage external knowledge from the model and thus 

performs poorly on these novel words. It can be seen 

from Table 5 that the model does not specify the invisible 

object either (F1average = 0). The results are far from our 

full model. 

 Effectiveness of content-based addressing operation. 

Our variable LSTM performs content-based addressing 

(Eqn (8)) on the object memory to select the correct noun 

word to describe the invisible object. The addressing 

operation combines a semantic language representation 

and a visual CNN feature such as a grounding operation. 

In Table 5, we also verify the effectiveness of the 

content-based addressing operation. "Ours w/o 

addressing" implies that we replace the content-based 
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addressing operation by randomly selecting an identified 

object as the retrieved noun pr t. With the addressing 

operation, our full model outperforms “hours w/o 

addressing” by 19.91% in F1-score and 1.91% in 

METEOR score. The comparison suggests that the 

addressing operation in the retrieving mode improves the 

semantic understanding of the visual content and makes 

it easier to find the object of interest. 

 Analysis on different language patterns. We 

experimented with different language models such as 

BERT and GRU. Since our switching model design is 

based on a recurrent neural network, we only take the 

pre-trained BERT model for initialization of input 

embeddings. Table 6 shows that BERT improves our 

method on METEOR from 21.88 to 22.41. This suggests 

that better language models can further improve the 

performance of our method. We also replaced our base 

LSTM model with a gated recurrent unit (GRU). We 

found in experiments that GRU leads to similar F1-

scores in captioning novel objects, but worse METEOR 

scores. The reason may be the lesser parameters of GRU 

compared to LSTM. 

 Analysis on different object detection models. We tried 

different identification models in building our 

framework. We 

TABLE 6 

 Analysis of different language models in terms of 

Averaged F1-score and METEOR score on the held-out 

MSCOCO dataset                 

Model F1average METEOR 

Ours (LSTM) 56.09 20.43 

Ours + BERT 58.32 21.66 

Ours (GRU) 59.87 22.43 

                                       TABLE 7 

Impact of different detection models in terms of 

Averaged F1- score and METEOR score on the held-out 

MSCOCO dataset 

Model F1average METEOR 

Ours + Faster-

RCNN 

(Inception-

ResNet) 

56.09 21.55 

Ours + SSD 

(ResNet-50 FPN) 

57.33 20.44 

Ours + Mask-

RCNN 

(Inception-

ResNet) 

59.76 21.98 

 

compared three types of detection models in 

experiments, i.e., Faster RCNN with Inception ResNet 

v2, Mask-RCNN with Inception ResNet v2, SSD with 

ResNet50 FPN. The results are shown in Table 7. We 

find that our detection model (Faster RCNN with 

Inception ResNet v2) achieves the highest performance 

among all competitors. 

 Analysis of maximum object memory size NM. NM 

represents the maximum number of slots in our object 

memory, i.e., the number of object-label pairs per image. 

If the memory size is too small, the external knowledge 

considered in our SNOC will be less. If we set the 

memory size too large, it introduces too many noisy 

candidates and thus limits performance. We show the 

average F1-scores and METEOR scores over different 

memory sizes in Fig. 7. NM=0 means no detection output 

is used in the framework. We can see from the figure that 

F1-scores are relatively low when NM is less than three. 

The reason is that introduced external knowledge is 

insufficient because only very few recognized objects are 

in memory as candidates. As NM increases above three 

the performance curve flattens. We also notice a slight 

performance drop (F1-scores drop from 60.1 to 59.8) 

when the memory size is too large. The reason is that too 

many noisy candidate objects may be written to memory, 

                              

 

                                                 Memory Size Nm 

 

TABLE 8  

Impact of Reinforcement Learning on the held-out 

MSCOCO dataset 

Model F1average METEOR 

Ours 58.55 20.33 

Ours + SCST [31] 

(CLDer) 

57.21 21.47 

Ours + SCST [31] 

(METEOR) 

61.77 22.99 

 

making content-based addressing less reliable. The 

results for different object memory sizes also confirm the 

effectiveness of our retrieving mode. It can be seen that 

by introducing enough external recognition knowledge, 

our SNOC is capable of describing novel objects even 

without any related training sentences. 
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   An analysis of reinforcement learning (RL) training. 

Recently, RL training has been a standard way to 

improve performance for an image captioning task. We 

follow SCST [31] and apply it to our model. We first 

train our model using cross-entropy loss and fine-tune 

the model using SCST with a small learning rate (1 × 10-

5). We take greedy decoding as a baseline in RL. We tried 

two different reward target metrics, namely, CIDer and 

METEOR. The results are shown in Table 8. We can see 

that RL-based training only improves the captioning 

metrics but not the F1 scores. The reason may be that 

optimization aims for better evaluation scores (e.g., 

CIDer and METEOR), but not for novel object 

captioning (switching mechanism and memory retrieval). 

4.5 Qualitative Results 

We qualitatively show an example from the test set of the 

held-out MSCOCO dataset in Fig. 8.in an image 

detecting the tennis racket and badminton racket based 

on their differences. The lines in the red colour are 

generated in the retrieving mode, while text is from the 

generating mode. We use Switchable LSTM predicts 

words by words to form a naive sentence. It can be seen 

that our Switchable LSTM successfully switches 

between the two modes in generating sentences. The 

words from the retrieving mode are the nouns of detected 

objects. We  finish a naive sentence with proxy visual 

words, and then replace them with the accurate unseen 

words. 

 

 

Fig 8. Correct word: a person is holding a tennis racket. 

In the fig.8, we observe that the Tennis racket is in oval shape along with a triangular shape whereas, in badminton racket it 

contains only oval shape and it has no triangular edge. The previous system detects the object only based on the shape but it 

doesn’t find out any differences. In present system it detects the objects based upon the differences using Switchable LSTM 

and novel along with python it generates the caption of the above fig as Tennis racket. 

The test set of the held-out MSCOCO dataset. Generalization ability and detects the picture successfully. 

V. CONCLUSION 

We have presented Long Short-Term Memory with 

Pointing (LSTM-P) architecture which produces novel 

objects in image captioning. Particularly, we study the 

problems of how to facilitate vocabulary expansion and 

how to learn a hybrid network that can nicely integrate 

the recognized objects into the output caption. To verify 

our claim, we have initially pre-trained object learners on 

free available object recognition data. Next the pointing 

medium is cooked to balance the word generation from 

RNN- grounded decoder and the word taken directly 

from the learnt objects. also, the judgment - position 

content of objects is further exploited to cover further 

objects in the judgment and therefore ameliorate the 

captions. To introduce external knowledge into sentence 

generation, we propose a switchable LSTM that has two 

switchable working modes, i.e., 1) generating sentences 

like a standard LSTM and 2) retrieving the correct noun 

from key-value memory. We generate a new index in the 

LSTM cell to transform the two modes. Our switchable 

LSTM can utilize both internal knowledge and external 

knowledge. Our experiments confirm its effectiveness on 

both the hold-out MSCOCO dataset and the ImageNet 

dataset. Without additional sentence data, our method 

also outperforms state-of-the-art methods that use 

additional linguistic data. 
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