
International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 1, Jan - Feb 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 36

Atmosphere – A Weather Prediction & Monitoring System

Kaushik Kashyap [1], Rinku Moni Borah [2], Priyanku Rahang [3], Dr Bornali Gogoi [4],

Prof. Nelson R Varte [5]

[1][2][3] MCA Student, Department of Computer Application, Assam Engineering College, Guwahati, Assam, India
[4][5] Associate Professor, Department of Computer Application, Assam Engineering College, Guwahati, Assam, India

ABSTRACT
This study looks at the collaborative use of Machine Learning (ML), the Internet of Things (IoT), and sophisticated neural

networks for weather monitoring and prediction. The goal is to create a flexible system that integrates IoT sensors, machine

learning algorithms, and web development to improve real-time weather forecasting. For time series forecasting, the project

utilizes a variety of neural network designs, including Convolutional and Recurrent Neural Networks, with a concentration on

the Long Short-Term Memory (LSTM) model. The ESP8266 NodeMCU is used for real-time data collecting in the IoT

implementation, while the ML model goes through painstaking data preparation, feature extraction, and time series forecasting.

The paper finishes with the successful integration of the machine learning model into the IoT system for both real-time and

anticipated weather data.

Keywords: ESP8266 NodeMCU, DHT22 Sensor, CNN, LSTM, Mean Squared Error (MSE).

I. INTRODUCTION
A major development with possibility for

improving weather monitoring and prediction systems

exists at the intersection of Machine Learning (ML), the

Internet of Things (IoT), and sophisticated neural networks.

Traditional systems frequently fall short of delivering real-

time and localized data, necessitating the development of

novel alternatives. This study aims to combine IoT sensor

technology, ML algorithms, and web development to

produce a dynamic system for accurate weather forecasting.

Motivated by the limits of existing systems, we are working

to create a flexible platform capable of not only collecting

and displaying environmental data, but also utilizing

predictive analytics. The use of ML methods such as

Convolutional and Recurrent Neural Networks is

investigated, with the ESP8266 NodeMCU acting as the

IoT backbone.

II. LITERATURE REVIEW

A. Supervised Learning

In the realm of supervised learning, the training of

a model relies on paired input data and corresponding

output labels within a labelled dataset. For this architecture,

the suitability of supervised learning hinges on the

availability of a dataset containing input sequences

alongside their respective target values. In this context, the

Mean Squared Error (MSE) loss function is deemed

appropriate, calculating the average squared difference

between predicted and observed values.

B. Unsupervised Learning

Conversely, unsupervised learning operates on

datasets devoid of explicit output labels, focusing on

identifying structures, connections, or patterns within the

data. While the architecture primarily caters to supervised

learning tasks, components like the bidirectional processing

of LSTM layers and convolutional layers can find utility in

unsupervised feature learning or clustering scenarios.

C. Neural Networks

Neural networks, inspired by biological neural

networks, are a class of machine learning models.

Comprising interconnected nodes or neurons organized in

layers, these networks excel in learning and modelling

intricate relationships. Tasks such as speech recognition,

image recognition, and prediction align well with their

capabilities.

D. Artificial Neural Networks (ANNs)

Artificial Neural Networks (ANNs) emulate the

structure of the human brain, featuring layers of

interconnected neurons, including input, hidden, and output

layers. Training ANNs involves optimizing the network's

performance by adjusting the weights and biases of the

neurons.

E. Convolutional Neural Networks (CNNs)

Specialized for processing grid-like data like

images, Convolutional Neural Networks (CNNs) prove

highly effective in tasks such as image classification and

recognition. Incorporating convolutional layers for feature

extraction and pooling layers for spatial down sampling,

CNNs excel in capturing spatial relationships in images.

F. Recurrent Neural Networks (RNNs)

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 1, Jan - Feb 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 37

Tailored for sequential data like time series or text,

Recurrent Neural Networks (RNNs) leverage feedback

connections to retain and utilize information from previous

steps. This makes them ideal for tasks involving context

and temporal dependencies, including language modelling,

speech recognition, and image captioning.

G. Long Short-Term Memory (LSTM)

The Long Short-Term Memory (LSTM)

architecture, within the broader context of Recurrent Neural

Networks, addresses the vanishing gradient problem

encountered in regular RNNs trained on extended

sequences. Through gating mechanisms and memory cells,

LSTMs selectively remember or forget information, making

them well-suited for applications requiring sequential

patterns, time series prediction, and natural language

processing. The design's input, output, and forget gates

regulate information flow through the cell over time.

H. ESP8266 NodeMCU

 The ESP8266 NodeMCU represents an iconic leap

in IoT solution development. It is a versatile and cost-

effective development board that combines the capabilities

of the ESP8266 Wi-Fi module with the ease of use of

NodeMCU software. This combination results in a strong

platform that allows researchers and developers to easily

build wireless communication. The ESP8266 NodeMCU

acts as a cornerstone in applications ranging from home

automation to sensor networks, offering a basis for efficient

and networked devices. Its small size conceals its powerful

capabilities, making it a key component in the execution of

revolutionary Internet of Things concepts.

I. DHT22 Sensor

 The DHT22 sensor is a high-precision temperature

and humidity measurement tool. The DHT22, known for its

precision and durability, uses digital signal output to offer

real-time data with little mistake. Its use in research

initiatives improves their capacities by providing precise

and timely environmental data. The DHT22 sensor becomes

an important tool whether used in temperature control

systems, agricultural research, or smart home applications,

recording and conveying crucial information that enables

educated decision-making and automation.

III. METHODOLOGY

A. Proposed Method

The study takes a comprehensive approach to

constructing a real-time weather monitoring and forecast

system by integrating sensors and machine learning

algorithms. Using sensors, the system actively collects real-

time meteorological data, which is then processed and

evaluated using deep learning techniques, namely the Long

Short-Term Memory (LSTM) model. This technique allows

the system to provide accurate seven-day temperature

forecasts by orchestrating an architecture that smoothly

blends data processing and machine learning for effective

real-time weather monitoring and prediction.

Figure 2.1: Block Diagram of AtmoSphere

B. Data Collection

Initiating with historical weather data acquisition,

the recognition system employs a dataset sourced from

Kaggle. Sensors capture environmental data at regular

intervals, generating a continuous stream of measurements.

The collected data is merged with the historical dataset for

comprehensive analysis.

C. Pre-processing

The data pre-processing stage entails arranging

gathered weather data into certain forms and separating it

into training, testing, and validation datasets.

Standardization is used to calculate the average and

standard deviation of these datasets. Before being sorted

into a specific format for analysis and model training, the

data travels through many forms to test prediction

performance.

D. Feature Extraction

Feature extraction is critical in the development of

a comprehensive weather monitoring and prediction system

because it identifies and selects the most relevant factors

that contribute to weather changes. This stage guarantees

that the model is trained on the dataset's most relevant and

informative features.

E. Time Series Forecasting

Matplotlib in Python is employed for a

comprehensive visualization of the dataset. The time series

plot illustrates temperature evolution over the years,

presenting a clear depiction of temporal trends. This visual

representation complements subsequent discussions on the

neural network architecture.

Figure 2.2.1: Time Series Forecasting Graph

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 1, Jan - Feb 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 38

F. Model Architecture

A sophisticated neural network architecture is

designed for sequential data processing, combining local

pattern recognition and capturing long-term

interdependence. This hybrid model incorporates

components from both a recurrent neural network (RNN)

and a convolutional neural network (CNN).

1. Convolutional Layers

Initiating with two Conv1D layers, local patterns

in the input sequence are identified. The first layer employs

256 filters, followed by 128 filters in the second layer.

Small kernels (size 2) and Rectified Linear Unit (ReLU)

activation function capture complex patterns.

2. Pooling Layer

A MaxPooling1D layer with a pool size of 2 down

samples spatial dimensions from the convolutional layers,

reducing computational load without compromising vital

information.

3. Flatten and Repeat Vector

After convolutional and pooling layers, a Flatten

layer converts the output into a 1D vector. A Repeat Vector

layer replicates this vector 30 times, a common strategy in

sequence-to-sequence tasks requiring output for each

element in the input sequence.

4. LSTM Layers

Three 100-unit Long Short-Term Memory (LSTM)

layers capture long-term dependencies in sequential data,

training hierarchical representations. Dropout layers, with a

rate of 0.2, mitigate overfitting.

5. Bidirectional LSTM

A Bidirectional wrapper applied to an LSTM layer

with 128 units enables processing the input sequence in

both forward and backward directions, enhancing

contextual capture.

6. Dense Layers

Post-LSTM layers, a Dense layer with 100 units

and ReLU activation provides a high-level representation.

The final Dense layer with 1 unit serves as the output layer

for regression tasks, predicting a single value for

continuous variables.

7. Model Compilation

Compiled with Mean Squared Error (MSE) loss

function and Adam optimizer, the model dynamically

adjusts learning rates during training for effective gradient

descent.

8. Callbacks

Enhancing training efficiency, an Early Stopping

callback monitors training loss and halts training after a set

number of epochs (patience=7), minimizing overfitting

risks.

 This methodology lays the groundwork for an

advanced weather monitoring and prediction system,

integrating data collection, pre-processing, feature

extraction, and a hybrid neural network model for robust

forecasting capabilities. The architecture seamlessly

combines information processing and machine learning,

forming an effective framework for real-time weather

monitoring and prediction.

IV. IMPLEMENTATION

A. ESP8266 NodeMCU Workflow:

1. Sensor Data Acquisition: The DHT22

sensor connected to the NodeMCU module

collects temperature and humidity data from

the environment.

2. Arduino IDE Programming: Arduino IDE

is used to write the code that instructs the

NodeMCU on how to interact with the

DHT22 sensor. This code includes

instructions for reading sensor data and

formatting it for transmission.

3. NodeMCU and XAMPP Integration: The

NodeMCU module is programmed to

communicate with the XAMPP server. It

sends the collected sensor data to the server

for storage.

4. Data Storage on XAMPP Server: The

XAMPP server receives the data from the

NodeMCU and stores it, creating a log

of temperature and humidity readings over

time. Data stored on the XAMPP server can

be accessed and monitored remotely from

anywhere with internet access.

B. Building the Machine Learning Model

It involves a series of steps, including data

preparation, model building, training, and

evaluation. The overall process can be

summarized as follows:

i. Data Preparation:

1. Loading and Cleaning Data: The

necessary libraries are imported, and the

dataset containing historical temperature

data is loaded from a specified location.

Missing values are handled

appropriately, and the data is pre-

processed to ensure its suitability for

modeling.

2. Exploratory Data Analysis: The data

is analysed to gain insights into the

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 1, Jan - Feb 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 39

3. distribution of temperature values, the

frequency of different weather

conditions, and the relationship between

temperature and other factors such as

time of year and wind direction.

4. Feature Engineering: New features,

such as year and month, are extracted

from the date information to better

capture temporal patterns in the data.

ii. Model Building and Training:

1. Time Series Forecasting: The

temperature feature is extracted from the

dataset, along with the corresponding

date information as the index. The data

is resampled to ensure consistent time

intervals.

2. Scaling Data: To address the issue of

outliers and ensure numerical stability,

the temperature data is scaled using

MinMaxScaler. This process transforms

the data into a range between -1 and 1.

3. Creating Training and Testing Sets:

The scaled data is split into training and

testing sets. The training set is used to

train the model, while the testing set is

used to evaluate its performance.

4. Model Definition: A Long Short-Term

Memory (LSTM) model is defined.

LSTM is a type of recurrent neural

network (RNN) well-suited for time

series forecasting tasks. The model

architecture consists of multiple LSTM

layers, along with other layers like

convolutional and dense layers, to

capture complex temporal patterns and

relationships in the data.

5. Model Compilation: The LSTM model

is compiled using the mean squared

error (MSE) loss function and the Adam

optimizer.

6. Model Training: The model is trained

on the training set for a specified

number of epochs. Early stopping is

implemented to prevent overfitting and

improve the model's generalization.

iii. Model Evaluation and Prediction:

1. Model Evaluation: The trained model

is evaluated on the testing set. The

mean squared error (MSE) and R-

squared (r2) metrics are used to assess

the model's performance.

2. Making Predictions: The model is

used to make predictions for future

temperature values. The predictions are

then transformed back to the original

scale using the inverse transform of the

MinMaxScaler.

3. Visualizing Results: The predicted

temperature values are compared to the

actual temperature values from the

testing set to visualize the model's

performance.

By following these steps, the model is evaluated and

found to perform well on the testing set,

demonstrating its ability to generalize and make

accurate predictions.

b. Integration with IoT System

This model is seamlessly incorporated into the pre-

specified IoT system through the modification of

NodeMCU firmware. It transmits historical

temperature data to the LSTM model, through

which predictions are generated. Subsequently,

these predictions are retrieved and securely stored in

the XAMPP server.

c. Web Interface Design

A visually appealing interface is designed for the

display of both real-time and predicted data using

HTML, CSS, and JavaScript.

1. Real-Time and Predicted Data Display:

JavaScript is implemented to fetch and

showcase real-time sensor data, along with

the presentation of predicted minimum and

maximum temperatures.

2. Testing: The system is tested to ensure the

accuracy of predicted values and effective

handling of any errors or edge cases.

V. RESULT

A. Model Accuracy

Model accuracy is a pivotal metric, gauging the

precision of a predictive model by comparing its output to

actual values. A high accuracy signifies close alignment

between model predictions and real-world outcomes. In the

case of the AtmoSphere LSTM model, an impressive

accuracy rate of 90.459% is achieved.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 1, Jan - Feb 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 40

B. Model Evaluation and Prediction

The evaluation employs Mean Squared Error

(MSE), a key performance metric in machine learning that

quantifies the average squared difference between predicted

and actual values in regression problems. Computed by

summing squared residuals and dividing by the number of

observations, MSE offers insight into the model's accuracy.

A lower MSE indicates superior performance with minimal

prediction errors. The LSTM model exhibits a

commendable 3.227 Mean Squared Error value.

Figure 7.2.1: MSE and Accuracy of the model

C. Visualization

Critical to model evaluation, a graphical

representation is generated to visually compare actual

temperature values (Y_testing) in blue with corresponding

predicted temperature values (predict) in red. This graphical

illustration facilitates a comprehensive understanding of the

model's performance, allowing immediate visual inspection

of alignment between predicted and actual data points. The

visualization reveals patterns, trends, and potential

discrepancies, contributing to an intuitive and insightful

interpretation of the model's predictive capabilities.

Figure 5.1: Forecast Results of the LSTM Model

D. Predictions

The model provides temperature and humidity

forecasts for the next 7 days. Analysing historical

temperature data, the model discerns trends and patterns,

enabling accurate and tailored predictions for the immediate

future. This data-driven forecasting mechanism ensures

adaptation to dataset nuances, enhancing the model's

precision in forecasting temperatures.

The LSTM model exhibits outstanding accuracy

(90.459%) and minimal Mean Squared Error (3.227).

Visualizations enhance interpretability, showcasing the

model's prowess in forecasting, making it a robust tool for

real-time weather predictions.

VI. CONCLUSION

This study explores a comprehensive approach to

weather monitoring and prediction by combining Machine

Learning (ML), the Internet of Things (IoT), and

sophisticated neural networks. Our adaptable solution

enables real-time weather forecasting by combining IoT

sensors, ML algorithms, and web development. Our design

shines by using Convolutional and Recurrent Neural

Networks, with a focus on the Long Short-Term Memory

(LSTM) model. The ESP8266 NodeMCU collects data in

real time, while careful data preparation, feature extraction,

and time series forecasting improve ML model

performance. The successful integration of ML into the IoT

system creates a solid framework for both real-time and

forecast meteorological data. The suggested approach

represents a big step forward in the development of precise

and adaptable weather forecasting, promoting

improvements in environmental intelligence.

REFERENCE

[1] Huang, Zi-Qi; Chen, Ying-Chih; and Wen, Chih-Yu,

“Real-Time Weather Monitoring and Prediction Using City

Buses and Machine Learning. Sensors”, (2020).

[2] Patkar, Uday. “Weather Prediction Using Machine

Learning”, (2022).

[3] Khoa Lai, “Time Series Analysis and Weather Forecast

in Python”, (2020).

[4] Random Nerd Tutorial. ESP8266 DHT11/DHT22

Temperature and Humidity Web Server with Arduino IDE

[5] Taron Foxworth, “Getting Started with the ESP8266 and

DHT22 Sensor”, (2017).

[6] Mark Holmstrom; Dylan Liu; and Christopher Vo,

“Machine Learning Applied to Weather Forecasting”,

(2016).

[7] Gaurav Verma; Pranjul Mittal; and Shaista Farheen,

“Real Time Weather Prediction System Using IOT and

Machine Learning”, (2020).

[8] Anubha Parashar, “IoT Based Automated Weather

Report Generation and Prediction Using Machine

Learning”, (2019).

[9] C.K.Gomathy; and V.Geetha, “Weather Forecasting

Application Using Python” (2022).

http://www.ijcstjournal.org/
https://ieeexplore.ieee.org/author/37085348981
https://ieeexplore.ieee.org/author/37088492241
https://ieeexplore.ieee.org/author/37088490114
https://ieeexplore.ieee.org/author/37087321704

