
 International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 2, Mar - Apr 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 1

Integrating Swarm Intelligence with Machine Learning Techniques

for Android Malware Detection through API Call Analysis

Thottadi Lakshmi Prasanna [1], Madugula Murali Krishna [2]

[1] PG Scholar, Dept. of CSE, Sri Sivani College of Engineering, Srikakulam, AP - India.
[2] Assistant Professor, Dept. of CSE, Sri Sivani College of Engineering, Srikakulam, AP - India.

ABSTRACT
The increasing number of devices running Android has resulted in a rise in the complexity and variety of

Android malware. Traditional signature-based detection techniques find it difficult to keep up with how these

dangerous apps are changing. With an emphasis on API call analysis, this study presents an approach that

combines machine learning and swarm intelligence to improve the detection accuracy of Android malware.

Through the utilization of a swarm's collective decision-making power, this methodology maximizes the

identification of relevant API calls linked to malware activity. The enhanced feature selection that follows helps

to strengthen and improve malware detection systems, therefore tackling the urgent security issues brought on

by contemporary Android threats.

Keywords — Gradient Boosting (GB), Support Vector Machines (SVM), and Logistic Regression (LR), API,

CIA, KNN

I. INTRODUCTION

Information, networks, and system security are

significantly at danger from malware. The

proliferation of malware originating from diverse

sources presents a noteworthy peril to the

confidentiality, integrity, and availability (CIA) of

persons and organizations alike. Defense-in-depth

strategies must include both malware identification

and mitigation [1]. Malware detection is

accomplished using a range of techniques, such as

static, dynamic, and hybrid approaches, depending

on the particular platforms being used. One

prominent source of malware is the mobile

platform, particularly the popular Android

platform. Desktop PCs are at serious danger from

Windows viruses [2]. Researchers have been hard

at work developing and putting into practice

incredibly efficient methods for malware

identification. This study looks at a number of

malware detection solutions for Windows and

Android and makes creative recommendations for

improving the efficacy of malware detection

systems for Windows Portable Executable (PE) and

Android [3].

According to a poll that was just carried out,

Android has become the most popular platform

worldwide. Andy Rubin is largely acknowledged as

the person who earned the moniker "Father of

Android" because of his work on the "Camera"

project, which outperformed the Symbian operating

system. Google has been in charge of Android since

August 2005, when Rubin turned over the reigns

[4]. The Linux kernel serves as the foundation for

the Android operating system (OS), which is

distinguished by its open-source design. It is made

especially to meet the requirements of touchscreen

gadgets, namely tablets and smartphones. 2008 saw

the release of the HTC Dream, which was the first

Android device. According to the International

Data Corporation (IDC) [5], 286 million

smartphones were shipped to the global market in

2022.

Mobile smartphones have become an essential part

of peoples' everyday lives. Users of these devices

can take advantage of a number of digital services,

such as email, social media sites like Facebook,

online banking, and the ability to tweet [6]. Users

are favoring mobile devices over home PCs due to

the widespread availability of sophisticated mobile

applications that come with features like GPS and

maps. However, there are risks involved with using

mobile devices, even with its convenience.

Sensitive information such as credit card numbers,

contact lists, and passwords are commonly stored

on mobile devices, making them a desirable target

for hackers attempting to gain unauthorized access.
Unfortunately, it is necessary to provide adequate

consideration to the security threats related to

mobile devices, which means that hackers'

activities must be given more attention [7].

A. Android Operating System

One of the most widely used mobile operating

systems for smartphones and tablets is the Android

Operating System (OS). The software in issue is

distinguished by its Linux kernel basis and open-

source nature [8]. It has a web browser, a Graphical

User Interface (GUI), and end-user software

download functionality. While the initial Android

demos showed off the operating system's

compatibility with QWERTY cellphones with large

VGA displays, the core operating system was

designed with low-cost mobile devices with

conventional numeric keypads in mind [9]. A

variety of operating system versions designed for

different hardware platforms—such as gaming

consoles and digital cameras—can be used with the

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 2, Mar - Apr 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 2

Apache v2 open-source license. Google Maps,

YouTube, Chrome, Gmail, and other proprietary

apps are pre-installed on most Android devices

[10].

Fig. 1 depicts the android architecture, which is

made up of a stack of software components

assembled to fulfill the standards of mobile

devices. An application, a runtime, a set of C/C++

libraries accessed through application framework

services, and a Linux kernel make up the Android

software stack [11].

The Android platform's central component, the

Linux Kernel, gives mobile devices access to

critical operating system functions, while the

Dalvik Virtual Machine (DVM) is in charge of

overseeing the execution of mobile apps.

Fig. 1 - Android Architecture

If your program has install-time rights, it can access limited data within a particular bound or do activities that

will not significantly harm the system or other apps [12]. The process by which an application store notifies a

user for permission when they interact with an app's details page and install-time permissions are included in the

app's declaration is illustrated in Fig. 2 The system instantly grants the app the necessary rights after installation

[13].

Fig. 2 - Install-Time Permission

Standard permissions and signature permissions are two of the install-time permission subcategories that the

Android operating system includes.

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 2, Mar - Apr 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 3

Runtime permissions, also known as hazardous permissions, give your program more authority to view

restricted information or carry out prohibited actions that might seriously harm the system and other apps.

Runtime rights must be requested from inside the program in order to access restricted data or carry out

restricted activities. Prior to every access, it is essential to confirm and, if needed, get the relevant permissions

[14]. Assuming that such permissions have already been given is not a prudent move. When an application

requests runtime permission, the system responds with a runtime permission prompt, as seen in Fig. 3 There are

several runtime rights that have the ability to access private user data, which is a different kind of restricted data

that could contain sensitive data. Private user data includes a variety of personal data, including location and

contact information [15].

Fig. 3 - Runtime Permission

II. METHODOLOGY
 As seen in Fig. 4, characteristics are chosen for wrapper features according to search criteria, and their efficacy

is assessed by grouping, analyzing, and contrasting different feature combinations. By using clustering

techniques, wrapper approaches may be used to find possible interactions between variables, which will enhance

feature selection [16].

By choosing the most ideal characteristics, the feature selection algorithm in the wrapper approach functions as a

wrapper around the predictive model algorithm. This method produces better outcomes, despite its high

processing costs and vulnerability to overfitting. Typical techniques for machine learning feature selection

Fig. 4 - Feature Selection Using Wrapper Method

comprise a number of other strategies, such as Boruta feature selection, recursive feature removal, forward

feature selection, and backward feature elimination [17].

A. Forward Selection: The model is started with no attributes using the incremental procedure. The

method of repeatedly improving the model entails adding the feature that results in the biggest boost in

performance until adding a new variable no longer produces an increase in performance [18].

B. Backward Elimination: To improve the model's performance, we start the procedure with all the

features present and then remove those that are thought to be less significant. Until the previously

indicated characteristics are gone and no appreciable improvement or advancement is seen, the

previously described procedure is repeated repeatedly [19].

C. Recursive Feature Elimination (RFE): The goal of this greedy optimization method is to find the

feature subset with the best performance. Iteratively, the procedure creates models, ignoring the feature

that performs the best or worse on each iteration. The leftover features are used to create the model

after all of the accessible features have been used. The attributes are then listed in a hierarchical order

according to how excluded they are [20].

An optimization problem requires the methodical selection of input values from a feasible set in order to

optimize a particular function. This is followed by the computation of the associated function value. One notable

area in applied mathematics is the extension of optimization theory and techniques to new formulations [21].

More broadly, optimization is the process of figuring out what values of an objective function are ideal within a

given domain (or input). There is a wide range of target functions and areas where this approach can be applied.

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 2, Mar - Apr 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 4

To find the best solution, traditional optimization techniques for differentiable and continuous functions can be

applied. To determine the ideal locations, these analytical techniques rely on differential procedures, which rely

on differential calculus. The challenges posed by objective functions without continuity and/or differentiability

limit the efficiency of traditional optimization techniques in real-world situations [22]. It is important to

remember, nonetheless, that most numerical optimization techniques are derived from an analysis of calculus

problem optimization techniques. The best solution for a single variable function, a multivariable function

without constraints, a multivariable function with equality constraints, and a multivariable function with

inequality constraints must be found using complex techniques [23]. Computational optimization is the study

and solution of complicated optimization problems that might be discrete or continuous. The use of robust

optimization strategies, interior-point approaches, and handling optimization issues in the face of uncertainty are

all highly valued in this field of research [24]. The research includes fundamental methodological questions and

real-world applications in a number of fields, including manufacturing, financial engineering, labor planning,

healthcare systems, terminal operations, and weather forecasting [25]. Some of the current fields of research

include the development of algebraic modeling software for mathematical programming, machine learning

kernel approaches, network algorithms, and mathematical decomposition algorithms for large-scale decision

issues.

Scientists and engineers have paid close attention to nature since it is a great source of inspiration for creating

intelligent systems and algorithms. Careful observation reveals that many phenomena in our immediate

surroundings are examples of optimization, including biological and various other systems. Because the natural

world is infinite, it is conceivable to come up with an infinite number of computer optimization strategies that

are inspired by different natural events and techniques. Recent studies have connected metaphors like ant colony

optimization, simulated annealing, and genetic algorithms to different metaheuristic optimization techniques.

Teaching-Learning-Based Optimization (TLBO), Swarm Optimization, Bat Optimization Method, Cuckoo

Optimization Method, Honey Bee Algorithm, Firefly Optimization, Search Strategy in Harmony, Optimization

of Water Evaporation, and Passing the Search Algorithm for Vehicles are just a few of the optimization

algorithms that are examined in this study [26]. In the field of optimization, these algorithms are frequently

employed to raise the efficacy and efficiency of search tactics. Several examples of metaheuristic optimization

algorithms are the Fruit Fly Algorithm, Runner-Root Algorithm (RRA), Intelligent Water Drops (IWD)

Algorithm, Tabu Search, Crow Search Algorithm, and Imperialist Competitive Algorithm.

The field of metaheuristic optimization revolves around the utilisation of metaheuristic methods to tackle

optimization problems. The notion of optimization is widely applied in a variety of industries, including Internet

routing, engineering, economics, and vacation scheduling. Because of the intrinsic limits of time, money, and

resources, it is essential to make the most of what is available [27]. Most optimization problems that arise in

real-world circumstances include several modes and nonlinearities, often combined with intricate restrictions.

Conflicts arise frequently from divergent goals, when the best course of action could be exclusive to one goal.

Finding an ideal or even less-than-ideal solution might provide serious challenges.

A relatively new family of optimization methods that use metaphors is called metaheuristic optimization

techniques. In order to incorporate probabilistic methodologies, metaheuristic algorithms often use random

numbers at different stages of the optimization cycle. The term "metaheuristic optimization" is frequently

employed to characterize more recent metaheuristic optimization techniques, including simulated annealing, ant

colony optimization, and genetic algorithms (GAs). These methods depart from conventional methods for

nonlinear programming [28]. While approaches like simulated annealing, ant colony optimization, and genetic

algorithms have shown convergence, the convergence of the most recent metaheuristic optimization techniques

is yet unknown. While various approaches may have different names, some academics contend that the

fundamental ideas behind the most recent metaheuristic optimization techniques don't change [29].

III. CODING AND IMPLEMENTATION
The Python programming language and Python Library were utilized in the Jupiter Notebook experiments

on the machine learning techniques discussed in this work. It is compatible with NumPy, pandas,

matplotlib, seaborn, and scipy, which are Python scientific and numerical libraries. It contains several

methods like as K-NN, Naïve Bayes, and support vector machines for classification, regression, and

clustering [29].

• Numpy :Base n-dimensional array package.

• Pandas : Data structures and analysis.

• Matplotlib : Comprehensive 2D/3D plotting.

• IPython :Enhanced interactive console

• Scipy : Fundamental library for scientific computing.

• Sympy : Symbolic mathematics.

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 2, Mar - Apr 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 5

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 2, Mar - Apr 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 6

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 2, Mar - Apr 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 7

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 2, Mar - Apr 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 8

IV. RESULTS AND DISCUSSIONS
One popular method for evaluating a machine learning system is to split the dataset into three separate sets: the

test dataset (15%), the validation dataset (20%), and the training dataset (65%). To make sure that each set is

reflective of the whole data distribution, the dataset must be randomly divided before being divided into smaller

sets. Furthermore, in order to minimize any kind of data leakage that might provide skewed findings, it is

imperative to refrain from including the validation and test datasets into the training dataset.

The machine learning model is trained using the training dataset, which enables it to identify patterns and

correlations in the data. The model's performance is then assessed using the validation dataset, and any

necessary hyperparameter adjustments, such changing the regularization strength or learning rate, are made. By

doing this, overfitting is prevented, a condition in which a model performs well on training data but is unable to

generalize to new, untested data. Ultimately, the test dataset functions as a stand-alone collection to evaluate the

overall performance of the model following training and validation. As seen in fig. 5, this final evaluation offers

an objective assessment of the model's expected performance on fresh, untested data in real-world

circumstances.

Researchers and practitioners may make sure their machine learning models are thoroughly tested and have

good cross-validation and new data generalization capabilities by using this strategy and keeping a distinct

division between the training, validation, and test datasets.

Fig. 5- Partition of dataset

The model will be trained when the datasets have been defined. Following training, the model is assessed using

the validation dataset. This is iterative and may accommodate any modifications or adjustments required for a

model depending on outcomes that can be carried out and reassessed. By doing this, it is ensured that the test

dataset is not wasted and may be utilized to test an assessed model.

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 2, Mar - Apr 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 9

Fig. 6- Iterative process to evaluate machine learning model

Following the completion of the model evaluation, the model with the lowest error rate and highest accuracy in

approximating outcomes is chosen for additional testing with a different test dataset. This phase is essential to

guarantee that the model's performance stays stable and is consistent with the findings from the validation

dataset, as Fig. 6 illustrates.

Verifying that the chosen model's performance with the test dataset is still robust and equivalent to its

performance with the validation dataset is the main goal of testing it. This procedure acts as a last check to

validate the extension of the model to new, untested data and its dependability.

It is essential to remember that, should the model demonstrate high accuracy in the testing phase, it is crucial to

confirm that the test and validation datasets were not accidentally incorporated into the training dataset. If these

datasets are accidentally leaked during training, the model's performance measures may be falsely inflated,

which would provide a false impression of the model's actual predictive power. As a result, as seen in fig. 7,

maintaining rigorous separation between training, validation, and test datasets is essential for getting trustworthy

and dependable results from the machine learning model.

Fig .7-An iterative workflow of training, evaluating, and testing of ML models

A. Performance Comparison

Six classification algorithms were used: Decision Trees (DT), Random Forest (RF), k-Nearest Neighbors

(KNN), Gradient Boosting (GB), Support Vector Machines (SVM), and Logistic Regression (LR) to evaluate

the models' classification performance using the ALO and WOA wrapper-based feature selection algorithms.

Table 1 presents the detailed results of the trials carried out for each of these methods, and Fig. 8 provides the

related visual representations. The ideal hyperparameters for the ALO and WOA algorithms are also included in

Table 2, which was essential in obtaining the best outcomes in all of the tests. This extensive assessment makes

it possible to fully comprehend how various classification algorithms function in conjunction with the ALO and

WOA feature selection methods, offering insightful information for additional research and comparison.

TABLE I
Hyper parameters of ALO & WOA

WOA ALO

epsilon = 0.001 epsilon = 0.001

beta = 0.95 beta = 0.95

threshold = 0.5 alpha = 0.6

no_whales = 10 no_ants = 10

no_iter = 10 no_iter = 10

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 2, Mar - Apr 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 10

TABLE 2

 Accuracy comparison of DT, RF, KNN, GB, SVM & LR with ALO & WOA

S.

No
Classifier

Feature

Selection

Method

Acc. Before

Feature

Selection

Acc. After

Feature

Selection

% Change

in

Accuracy

Features

Selected

%

Decrease

in

Features

Time

Taken

in Sec.

1
DT

WOA
85.01%

85.89% 1.04% 613 85.10% 17.61

2 ALO 91.54% 7.67% 3709 9.87% 235.98

3
GB

WOA
81.50%

83.29% 2.20% 362 91.20% 864.84

4 ALO 88.40% 8.46% 3336 18.93% 832.42

5
KNN

WOA
81.28%

83.70% 2.97% 1332 67.63% 102.03

6 ALO 88.28% 8.61% 4000 2.79% 358.85

7
LR

WOA
80.03%

82.45% 3.02% 609 85.20% 170.63

8 ALO 84.34% 5.39% 3102 24.62% 355.67

9
RF

WOA
86.45%

94.04% 8.79% 73 98.23% 371.86

10 ALO 91.42% 5.75% 659 83.99% 610.93

11
SVM

WOA
82.40%

86.83% 5.38% 1357 67.02% 1727.1

12 ALO 81.50% 1.09% 1659 59.68% 1170.5

The wrapper-based ant lion optimized feature selection method effectively shrunk the feature search space,

according to an analysis of the experiment findings. By using the suggested deep neural classifier, this decrease

was made without sacrificing the classification accuracy. Fig. 9 provides a thorough description of the

evaluation metrics for the Whale Optimization Algorithm (WOA) using the Random Forest classifier. These

measures offer a thorough grasp of the WOA's performance when used in tandem with the Random Forest

classifier, illuminating how well it manages feature selection to preserve classification accuracy.

Fig. 8- Performance comparison of six different classifiers with ALO & WOA

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 2, Mar - Apr 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 11

Fig. 9-Evaluation metrics of WOA with Random Forest

V. CONCLUSION
Smartphones are becoming a necessary component of

everyday life and are used for a wide range of tasks.

The security of Android smartphones has grown

increasingly important due to the growing reliance on

them. As a result of the dynamic Android operating

system's constant introduction of new features and

APIs, machine learning-based approaches have

become indispensable instruments in the detection of

Android malware.

The sophisticated feature selection method used in

this research study makes API calls to differentiate

between Android apps that are harmful and those that

are not. Wrapper-based swarm intelligence

algorithms, including Ant Lion Optimizer (ALO) and

Whale Optimization Algorithm (WOA), are utilized

to optimize this feature selection procedure. Then, to

classify apps as either malicious or benign, the chosen

features are combined with a variety of classification

algorithms, such as Decision Trees (DT), Random

Forest (RF), K-Nearest Neighbors (KNN), Gradient

Boosting (GB), Support Vector Machines (SVM), and

Logistic Regression (LR).

The Random Forest classifier performs the best out of

all the classifiers evaluated, with accuracy of 94.04%

with WOA and 91.42% with ALO. This classifier

performs noticeably better than the others, with

noticeably higher accuracy. Notably, the wrapper-

based WOA swarm intelligence optimizer is able to

achieve a 98% decrease in the search space

dimensionality by successfully lowering the number

of features from 4115 to 73. The Random Forest

classifier's increased accuracy is mostly due to this

feature reduction.

To sum up, this research study offers an enhanced

method for detecting Android malware. It selects

features using wrapper-based swarm intelligence

techniques and achieves impressive outcomes with

the Random Forest classifier. The results of the study

demonstrate how these methods may be used to

enhance the precision and effectiveness of Android

malware detection systems while taking into account

the dynamic nature of threats in today's smartphone

environment.

VI. FUTURE WORK
In order to increase the effectiveness of detecting and

categorizing Android malware, research is

concentrated on creating and utilizing hybrid

architectures that include cutting-edge deep learning

algorithms. The purpose of these hybrid designs is to

improve the precision and speed of malware detection

on Android devices by utilizing the advantages of

several deep learning techniques. In addition, future

research will examine the application of different

optimization strategies to systematically lower the

feature count in high-dimensional feature spaces. The

objective of this endeavor is to enhance the detection

system's overall effectiveness and expedite the

process of identifying malware. The project aims to

improve the state-of-the-art in Android malware

detection and contribute to the creation of more

reliable and efficient cybersecurity solutions for

mobile devices by fusing deep learning with

optimization techniques.

REFERENCES

[1] Dhalaria and Gandotra, "A Framework for

Detection of Android Malware using Static

Features," in 2020 IEEE 17th India Council

International Conference (INDICON), New

Delhi, India, 2020, pp. 1-7.

[2] Jiang, Baolei, Guan, and Huang, "Android

Malware Detection Using Fine-Grained

Features," Hindawi, vol. 2020, Jan 2020.

[3] Jung, Kim, Shin, Lee, Hyunjae, Cho,

Kyoungwon, "Android Malware Detection

Based on Useful API Calls and Machine

Learning," in 2018 IEEE First International

Conference on Artificial Intelligence and

Knowledge Engineering (AIKE), Laguna Hills,

CA, USA, pp. 175-178, 2018.

[4] Jayakrishna, M., Selvakumar, V., Kumar, A.,

Dilip, S. M., & Maaliw, R. R. (2023,

February). Multi-scale Memory Residual

Network Based Deep Learning Model for

Network Traffic Anomaly Detection. In

International Conference on Intelligent

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 2, Mar - Apr 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 12

Computing and Networking (pp. 475-482).

Singapore: Springer Nature Singapore.

[5] R. B. Hadiprakoso, I. K. S. Buana, and Y. R.

Pramadi, "Android Malware Detection Using

Hybrid-Based Analysis & Deep Neural

Network," in 2020 3rd International

Conference on Information and

Communications Technology (ICOIACT),

Yogyakarta, Indonesia, pp. 252-256, 2021.

[6] Q. Han, V. S. Subrahmanian and Y. Xiong,

"Android Malware Detection," IEEE

Transactions on Information Forensics and

Security, vol. 15, pp. 3511-3525, 2020.

[7] A. D. Lorenzoa, F. Martinellib, E. Medveta, F.

Mercaldobc and A. Santone, "Visualizing the

outcome of dynamic analysis of Android

malware with VizMal," Journal of Information

Security and Applications, vol. 50, pp. 1-8,

2020.

[8] J. Xu, Y. Li, R.Deng and K. Xu, "SDAC: A

slow-gging solution for android malware

detection using semantic distance based API

clustering," IEEE Transactions on Dependable

and Secure Computing, vol. 19, no. 3, pp. 1-

15, 2020.

[9] Jawarneh, M., Jayakrishna, M., Davuluri, S.

K., Ramanan, S. V., Singh, P. P., & Joseph, J.

A. (2023, February). Energy Efficient

Lightweight Scheme to Identify Selective

Forwarding Attack on Wireless Sensor

Networks. In International Conference on

Intelligent Computing and Networking (pp.

425-436). Singapore: Springer Nature

Singapore.

[10] H. Hasan, B. T. Ladani and B. Zamani,

"MEGDroid: A model-driven event generation

framework for dynamic android malware,"

Information and Software Technology, vol.

135, no. 106569, pp. 1-16, 2021.

[11] X. Liu, X. Du, Q. Lei and K. Liu,

"Multifamily Classification of android

malware with a fuzzy strategy to resist

polymorphic familial variants," IEEE Access,

vol. 8, pp. 156900-156914, 2020.

[12] S. I. Hani and N. M. Sahib, "Detection of

malware under android mobile application," in

2020 3rd International Conference on

Engineering Technology and its Applications,

pp. 179-184, 2020.

[13] J. Jiang, S. Li, M. Yu, G. Li, C. Liu et al.,

"Android malware family classification based

on sensitive opcode," in IEEE Symposium on

Computers and Communications (ISCC), pp.

1-7, 2019.

[14] W. Wang, Y. T. Li, T. Zou, X. Wang, J. Y. You

et al., “A novel image classification approach

via Dense-MobileNet models,” Mobile

Information Systems,

https://doi.org/10.1155/2020/7602384, 2020.

[15] N. Daoudi, K. Allix, T. F. Bissyandé and J. J.

Klein, "Lessons learnt on reproducibility in

machine learning based android malware

detection," Empirical Software Engineering,

vol. 74, pp. 1-53, 2021.

[16] Z. H. Qaisar and R. R. Li, "Multimodal

information fusion for android malware

detection using lazy learning," Multimed Tools

Appl, vol.81, pp. 12077–12091, 2021.

[17] H. Rathore, S. K. Sahay, P. Nikam and M.

Sewak, "Robust android malware detection

system against adversarial attacks using q-

learning," Information Systems Frontiers, vol.

23, pp. 867-882, 2021.

[18] D. Tehrany and A. Rasoolzadegan, "A new

machine learning-based method for android

malware detection on imbalanced dataset,"

Multimed Tools Appl, vol.80, pp. 24533–

24554, 2021.

[19] V. P. Dharmalingam and P. Visalakshi, "A

novel permission ranking system for android

malware detection-the permission grader,"

Journal of Ambient Intelligence and

Humanized Computing, vol. 12, pp. 5071–

5081, 2021.

[20] O. Yildiz and I. A. Doğru, "A novel

permission-based Android malware detection

system using feature selection based on linear

regression," International Journal of Software

Engineering and Knowledge Engineering, vol.

29, no. 2, pp. 245-262, 2019.

[21] N. A. Sarah, F. Y. Rifat, Md. S. Hossain and H.

S. Narman, "An Efficient android malware

prediction using ensemble machine learning

algorithms," Procedia Computer Science, vol.

191, pp. 184-191, 2021.

[22] O. N. Elayan and A. M. Mustafa, "Android

malware detection using deep learning,"

Procedia Computer Science, vol. 184, pp. 847-

852, 2021.

[23] J. M. Arif, M. F. A. Razak, S. R. T.Mat, S.

Awang and N. S. N. Ismail, "Android mobile

malware detection using fuzzy AHP," Journal

of Information Security and Applications, vol.

61, pp. 1-35, 2021.

[24] W. Wang, J. Wei, S. Zhang and X. Luo,

"LSCDroid: Malware detection based on local

sensitive API invocation sequences," IEEE

Transactions on Reliability, vol. 69, no. 1, pp.

174-187, 2019.

[25] H. Gao, S. Cheng and W. Zhang, "GDroid:

Android malware detection and classification

with graph convolutional network," Computers

& Security, vol. 106, no. 102264, pp. 1-14,

2021.

[26] A. A. Taha and S. S. J. Malebary, "Hybrid

classification of Android malware based on

fuzzy clustering and the gradient boosting

machine," Neural Computing and

Applications, vol. 33, pp. 6721–6732, 2021.

[27] M. Seyedali, "The Ant Lion Optimizer,"

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 2, Mar - Apr 2024

ISSN: 2347-8578 www.ijcstjournal.org Page 13

Advances in Engineering Software, vol. 83,

pp. 80-98, 2015.

[28] X. S. Yang and S. Deb, "Cuckoo search via

levy flights," in World Congress on Nature &

Biologically Inspired Computing (NaBIC),

pp.210-214, 2009.

[29] G. Lindfield and J.Penny," Nature-inspired

optimization algorithms," Academic Press, pp.

85-100, 2017.

http://www.ijcstjournal.org/

