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ABSTRACT 
The increasing number of devices running Android has resulted in a rise in the complexity and variety of 

Android malware. Traditional signature-based detection techniques find it difficult to keep up with how these 

dangerous apps are changing. With an emphasis on API call analysis, this study presents an approach that 

combines machine learning and swarm intelligence to improve the detection accuracy of Android malware. 

Through the utilization of a swarm's collective decision-making power, this methodology maximizes the 

identification of relevant API calls linked to malware activity. The enhanced feature selection that follows helps 

to strengthen and improve malware detection systems, therefore tackling the urgent security issues brought on 

by contemporary Android threats. 

Keywords — Gradient Boosting (GB), Support Vector Machines (SVM), and Logistic Regression (LR), API, 

CIA, KNN  

 

I. INTRODUCTION 

Information, networks, and system security are 

significantly at danger from malware. The 

proliferation of malware originating from diverse 

sources presents a noteworthy peril to the 

confidentiality, integrity, and availability (CIA) of 

persons and organizations alike. Defense-in-depth 

strategies must include both malware identification 

and mitigation [1]. Malware detection is 

accomplished using a range of techniques, such as 

static, dynamic, and hybrid approaches, depending 

on the particular platforms being used. One 

prominent source of malware is the mobile 

platform, particularly the popular Android 

platform. Desktop PCs are at serious danger from 

Windows viruses [2]. Researchers have been hard 

at work developing and putting into practice 

incredibly efficient methods for malware 

identification. This study looks at a number of 

malware detection solutions for Windows and 

Android and makes creative recommendations for 

improving the efficacy of malware detection 

systems for Windows Portable Executable (PE) and 

Android [3]. 

According to a poll that was just carried out, 

Android has become the most popular platform 

worldwide. Andy Rubin is largely acknowledged as 

the person who earned the moniker "Father of 

Android" because of his work on the "Camera" 

project, which outperformed the Symbian operating 

system. Google has been in charge of Android since 

August 2005, when Rubin turned over the reigns 

[4]. The Linux kernel serves as the foundation for 

the Android operating system (OS), which is 

distinguished by its open-source design. It is made 

especially to meet the requirements of touchscreen 

gadgets, namely tablets and smartphones. 2008 saw 

the release of the HTC Dream, which was the first  

 

 

Android device. According to the International 

Data Corporation (IDC) [5], 286 million 

smartphones were shipped to the global market in 

2022. 

Mobile smartphones have become an essential part 

of peoples' everyday lives. Users of these devices 

can take advantage of a number of digital services, 

such as email, social media sites like Facebook, 

online banking, and the ability to tweet [6]. Users 

are favoring mobile devices over home PCs due to 

the widespread availability of sophisticated mobile 

applications that come with features like GPS and 

maps. However, there are risks involved with using 

mobile devices, even with its convenience. 

Sensitive information such as credit card numbers, 

contact lists, and passwords are commonly stored 

on mobile devices, making them a desirable target 

for hackers attempting to gain unauthorized access. 
Unfortunately, it is necessary to provide adequate 

consideration to the security threats related to 

mobile devices, which means that hackers' 

activities must be given more attention [7]. 

A.  Android Operating System 

One of the most widely used mobile operating 

systems for smartphones and tablets is the Android 

Operating System (OS). The software in issue is 

distinguished by its Linux kernel basis and open-

source nature [8]. It has a web browser, a Graphical 

User Interface (GUI), and end-user software 

download functionality. While the initial Android 

demos showed off the operating system's 

compatibility with QWERTY cellphones with large 

VGA displays, the core operating system was 

designed with low-cost mobile devices with 

conventional numeric keypads in mind [9]. A 

variety of operating system versions designed for 

different hardware platforms—such as gaming 

consoles and digital cameras—can be used with the 
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Apache v2 open-source license. Google Maps, 

YouTube, Chrome, Gmail, and other proprietary 

apps are pre-installed on most Android devices 

[10]. 

Fig. 1 depicts the android architecture, which is 

made up of a stack of software components 

assembled to fulfill the standards of mobile 

devices. An application, a runtime, a set of C/C++ 

libraries accessed through application framework 

services, and a Linux kernel make up the Android 

software stack [11]. 

The Android platform's central component, the 

Linux Kernel, gives mobile devices access to 

critical operating system functions, while the 

Dalvik Virtual Machine (DVM) is in charge of 

overseeing the execution of mobile apps. 

Fig. 1  - Android Architecture 

If your program has install-time rights, it can access limited data within a particular bound or do activities that 

will not significantly harm the system or other apps [12]. The process by which an application store notifies a 

user for permission when they interact with an app's details page and install-time permissions are included in the 

app's declaration is illustrated in Fig. 2 The system instantly grants the app the necessary rights after installation 

[13]. 

Fig. 2 - Install-Time Permission 

Standard permissions and signature permissions are two of the install-time permission subcategories that the 

Android operating system includes. 
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Runtime permissions, also known as hazardous permissions, give your program more authority to view 

restricted information or carry out prohibited actions that might seriously harm the system and other apps. 

Runtime rights must be requested from inside the program in order to access restricted data or carry out 

restricted activities. Prior to every access, it is essential to confirm and, if needed, get the relevant permissions 

[14]. Assuming that such permissions have already been given is not a prudent move. When an application 

requests runtime permission, the system responds with a runtime permission prompt, as seen in Fig. 3 There are 

several runtime rights that have the ability to access private user data, which is a different kind of restricted data 

that could contain sensitive data. Private user data includes a variety of personal data, including location and 

contact information [15]. 

Fig. 3 - Runtime Permission 

 

II. METHODOLOGY 
 As seen in Fig. 4, characteristics are chosen for wrapper features according to search criteria, and their efficacy 

is assessed by grouping, analyzing, and contrasting different feature combinations. By using clustering 

techniques, wrapper approaches may be used to find possible interactions between variables, which will enhance 

feature selection [16]. 

By choosing the most ideal characteristics, the feature selection algorithm in the wrapper approach functions as a 

wrapper around the predictive model algorithm. This method produces better outcomes, despite its high 

processing costs and vulnerability to overfitting. Typical techniques for machine learning feature selection  

Fig. 4 - Feature Selection Using Wrapper Method 

comprise a number of other strategies, such as Boruta feature selection, recursive feature removal, forward 

feature selection, and backward feature elimination [17]. 

A. Forward Selection: The model is started with no attributes using the incremental procedure. The 

method of repeatedly improving the model entails adding the feature that results in the biggest boost in 

performance until adding a new variable no longer produces an increase in performance [18]. 

B. Backward Elimination: To improve the model's performance, we start the procedure with all the 

features present and then remove those that are thought to be less significant. Until the previously 

indicated characteristics are gone and no appreciable improvement or advancement is seen, the 

previously described procedure is repeated repeatedly [19]. 

C. Recursive Feature Elimination (RFE): The goal of this greedy optimization method is to find the 

feature subset with the best performance. Iteratively, the procedure creates models, ignoring the feature 

that performs the best or worse on each iteration. The leftover features are used to create the model 

after all of the accessible features have been used. The attributes are then listed in a hierarchical order 

according to how excluded they are [20]. 

An optimization problem requires the methodical selection of input values from a feasible set in order to 

optimize a particular function. This is followed by the computation of the associated function value. One notable 

area in applied mathematics is the extension of optimization theory and techniques to new formulations [21]. 

More broadly, optimization is the process of figuring out what values of an objective function are ideal within a 

given domain (or input). There is a wide range of target functions and areas where this approach can be applied. 
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To find the best solution, traditional optimization techniques for differentiable and continuous functions can be 

applied. To determine the ideal locations, these analytical techniques rely on differential procedures, which rely 

on differential calculus. The challenges posed by objective functions without continuity and/or differentiability 

limit the efficiency of traditional optimization techniques in real-world situations [22]. It is important to 

remember, nonetheless, that most numerical optimization techniques are derived from an analysis of calculus 

problem optimization techniques. The best solution for a single variable function, a multivariable function 

without constraints, a multivariable function with equality constraints, and a multivariable function with 

inequality constraints must be found using complex techniques [23]. Computational optimization is the study 

and solution of complicated optimization problems that might be discrete or continuous. The use of robust 

optimization strategies, interior-point approaches, and handling optimization issues in the face of uncertainty are 

all highly valued in this field of research [24]. The research includes fundamental methodological questions and 

real-world applications in a number of fields, including manufacturing, financial engineering, labor planning, 

healthcare systems, terminal operations, and weather forecasting [25]. Some of the current fields of research 

include the development of algebraic modeling software for mathematical programming, machine learning 

kernel approaches, network algorithms, and mathematical decomposition algorithms for large-scale decision 

issues.  

Scientists and engineers have paid close attention to nature since it is a great source of inspiration for creating 

intelligent systems and algorithms. Careful observation reveals that many phenomena in our immediate 

surroundings are examples of optimization, including biological and various other systems. Because the natural 

world is infinite, it is conceivable to come up with an infinite number of computer optimization strategies that 

are inspired by different natural events and techniques. Recent studies have connected metaphors like ant colony 

optimization, simulated annealing, and genetic algorithms to different metaheuristic optimization techniques. 

Teaching-Learning-Based Optimization (TLBO), Swarm Optimization, Bat Optimization Method, Cuckoo 

Optimization Method, Honey Bee Algorithm, Firefly Optimization, Search Strategy in Harmony, Optimization 

of Water Evaporation, and Passing the Search Algorithm for Vehicles are just a few of the optimization 

algorithms that are examined in this study [26]. In the field of optimization, these algorithms are frequently 

employed to raise the efficacy and efficiency of search tactics. Several examples of metaheuristic optimization 

algorithms are the Fruit Fly Algorithm, Runner-Root Algorithm (RRA), Intelligent Water Drops (IWD) 

Algorithm, Tabu Search, Crow Search Algorithm, and Imperialist Competitive Algorithm. 

The field of metaheuristic optimization revolves around the utilisation of metaheuristic methods to tackle 

optimization problems. The notion of optimization is widely applied in a variety of industries, including Internet 

routing, engineering, economics, and vacation scheduling. Because of the intrinsic limits of time, money, and 

resources, it is essential to make the most of what is available [27]. Most optimization problems that arise in 

real-world circumstances include several modes and nonlinearities, often combined with intricate restrictions. 

Conflicts arise frequently from divergent goals, when the best course of action could be exclusive to one goal. 

Finding an ideal or even less-than-ideal solution might provide serious challenges. 

A relatively new family of optimization methods that use metaphors is called metaheuristic optimization 

techniques. In order to incorporate probabilistic methodologies, metaheuristic algorithms often use random 

numbers at different stages of the optimization cycle. The term "metaheuristic optimization" is frequently 

employed to characterize more recent metaheuristic optimization techniques, including simulated annealing, ant 

colony optimization, and genetic algorithms (GAs). These methods depart from conventional methods for 

nonlinear programming [28]. While approaches like simulated annealing, ant colony optimization, and genetic 

algorithms have shown convergence, the convergence of the most recent metaheuristic optimization techniques 

is yet unknown. While various approaches may have different names, some academics contend that the 

fundamental ideas behind the most recent metaheuristic optimization techniques don't change [29]. 

 

III. CODING AND IMPLEMENTATION 
The Python programming language and Python Library were utilized in the Jupiter Notebook experiments 

on the machine learning techniques discussed in this work. It is compatible with NumPy, pandas, 

matplotlib, seaborn, and scipy, which are Python scientific and numerical libraries. It contains several 

methods like as K-NN, Naïve Bayes, and support vector machines for classification, regression, and 

clustering [29].  

• Numpy :Base n-dimensional array package. 

• Pandas : Data structures and analysis. 

• Matplotlib : Comprehensive 2D/3D plotting. 

• IPython :Enhanced interactive console 

• Scipy : Fundamental library for scientific computing. 

• Sympy : Symbolic mathematics. 
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IV. RESULTS AND DISCUSSIONS 
One popular method for evaluating a machine learning system is to split the dataset into three separate sets: the 

test dataset (15%), the validation dataset (20%), and the training dataset (65%). To make sure that each set is 

reflective of the whole data distribution, the dataset must be randomly divided before being divided into smaller 

sets. Furthermore, in order to minimize any kind of data leakage that might provide skewed findings, it is 

imperative to refrain from including the validation and test datasets into the training dataset. 

The machine learning model is trained using the training dataset, which enables it to identify patterns and 

correlations in the data. The model's performance is then assessed using the validation dataset, and any 

necessary hyperparameter adjustments, such changing the regularization strength or learning rate, are made. By 

doing this, overfitting is prevented, a condition in which a model performs well on training data but is unable to 

generalize to new, untested data. Ultimately, the test dataset functions as a stand-alone collection to evaluate the 

overall performance of the model following training and validation. As seen in fig. 5, this final evaluation offers 

an objective assessment of the model's expected performance on fresh, untested data in real-world 

circumstances. 

Researchers and practitioners may make sure their machine learning models are thoroughly tested and have 

good cross-validation and new data generalization capabilities by using this strategy and keeping a distinct 

division between the training, validation, and test datasets. 

 
Fig. 5- Partition of dataset 

The model will be trained when the datasets have been defined. Following training, the model is assessed using 

the validation dataset. This is iterative and may accommodate any modifications or adjustments required for a 

model depending on outcomes that can be carried out and reassessed. By doing this, it is ensured that the test 

dataset is not wasted and may be utilized to test an assessed model. 
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Fig. 6- Iterative process to evaluate machine learning model 

Following the completion of the model evaluation, the model with the lowest error rate and highest accuracy in 

approximating outcomes is chosen for additional testing with a different test dataset. This phase is essential to 

guarantee that the model's performance stays stable and is consistent with the findings from the validation 

dataset, as Fig. 6 illustrates.  

Verifying that the chosen model's performance with the test dataset is still robust and equivalent to its 

performance with the validation dataset is the main goal of testing it. This procedure acts as a last check to 

validate the extension of the model to new, untested data and its dependability. 

It is essential to remember that, should the model demonstrate high accuracy in the testing phase, it is crucial to 

confirm that the test and validation datasets were not accidentally incorporated into the training dataset. If these 

datasets are accidentally leaked during training, the model's performance measures may be falsely inflated, 

which would provide a false impression of the model's actual predictive power. As a result, as seen in fig. 7, 

maintaining rigorous separation between training, validation, and test datasets is essential for getting trustworthy 

and dependable results from the machine learning model. 

 
Fig .7-An iterative workflow of training, evaluating, and testing of ML models 

A. Performance Comparison 

Six classification algorithms were used: Decision Trees (DT), Random Forest (RF), k-Nearest Neighbors 

(KNN), Gradient Boosting (GB), Support Vector Machines (SVM), and Logistic Regression (LR) to evaluate 

the models' classification performance using the ALO and WOA wrapper-based feature selection algorithms. 

Table 1 presents the detailed results of the trials carried out for each of these methods, and Fig. 8 provides the 

related visual representations. The ideal hyperparameters for the ALO and WOA algorithms are also included in 

Table 2, which was essential in obtaining the best outcomes in all of the tests. This extensive assessment makes 

it possible to fully comprehend how various classification algorithms function in conjunction with the ALO and 

WOA feature selection methods, offering insightful information for additional research and comparison. 

TABLE I 
Hyper parameters of ALO & WOA 

WOA ALO 

epsilon = 0.001 epsilon = 0.001 

beta = 0.95 beta = 0.95 

threshold = 0.5 alpha = 0.6 

no_whales = 10 no_ants = 10 

no_iter = 10 no_iter = 10 
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TABLE 2 

 Accuracy comparison of DT, RF, KNN, GB, SVM & LR with ALO & WOA 

S. 

No 
Classifier 

Feature 

Selection 

Method 

Acc. Before 

Feature 

Selection 

Acc. After 

Feature 

Selection 

% Change 

in 

Accuracy 

Features 

Selected 

% 

Decrease 

in 

Features 

Time 

Taken 

in Sec. 

1 
DT 

WOA 
85.01% 

85.89% 1.04% 613 85.10% 17.61 

2 ALO 91.54% 7.67% 3709 9.87% 235.98 

3 
GB 

WOA 
81.50% 

83.29% 2.20% 362 91.20% 864.84 

4 ALO 88.40% 8.46% 3336 18.93% 832.42 

5 
KNN 

WOA 
81.28% 

83.70% 2.97% 1332 67.63% 102.03 

6 ALO 88.28% 8.61% 4000 2.79% 358.85 

7 
LR 

WOA 
80.03% 

82.45% 3.02% 609 85.20% 170.63 

8 ALO 84.34% 5.39% 3102 24.62% 355.67 

9 
RF 

WOA 
86.45% 

94.04% 8.79% 73 98.23% 371.86 

10 ALO 91.42% 5.75% 659 83.99% 610.93 

11 
SVM 

WOA 
82.40% 

86.83% 5.38% 1357 67.02% 1727.1 

12 ALO 81.50% 1.09% 1659 59.68% 1170.5 

 

The wrapper-based ant lion optimized feature selection method effectively shrunk the feature search space, 

according to an analysis of the experiment findings. By using the suggested deep neural classifier, this decrease 

was made without sacrificing the classification accuracy. Fig. 9 provides a thorough description of the 

evaluation metrics for the Whale Optimization Algorithm (WOA) using the Random Forest classifier. These 

measures offer a thorough grasp of the WOA's performance when used in tandem with the Random Forest 

classifier, illuminating how well it manages feature selection to preserve classification accuracy. 

 
Fig. 8- Performance comparison of six different classifiers with ALO & WOA 

 

http://www.ijcstjournal.org/


     International Journal of Computer Science Trends and Technology (IJCST) – Volume 12 Issue 2, Mar - Apr 2024 
 

ISSN: 2347-8578                                www.ijcstjournal.org                                               Page 11 

 
Fig. 9-Evaluation metrics of WOA with Random Forest 

V. CONCLUSION 
Smartphones are becoming a necessary component of 

everyday life and are used for a wide range of tasks. 

The security of Android smartphones has grown 

increasingly important due to the growing reliance on 

them. As a result of the dynamic Android operating 

system's constant introduction of new features and 

APIs, machine learning-based approaches have 

become indispensable instruments in the detection of 

Android malware. 

The sophisticated feature selection method used in 

this research study makes API calls to differentiate 

between Android apps that are harmful and those that 

are not. Wrapper-based swarm intelligence 

algorithms, including Ant Lion Optimizer (ALO) and 

Whale Optimization Algorithm (WOA), are utilized 

to optimize this feature selection procedure. Then, to 

classify apps as either malicious or benign, the chosen 

features are combined with a variety of classification 

algorithms, such as Decision Trees (DT), Random 

Forest (RF), K-Nearest Neighbors (KNN), Gradient 

Boosting (GB), Support Vector Machines (SVM), and 

Logistic Regression (LR). 

The Random Forest classifier performs the best out of 

all the classifiers evaluated, with accuracy of 94.04% 

with WOA and 91.42% with ALO. This classifier 

performs noticeably better than the others, with 

noticeably higher accuracy. Notably, the wrapper-

based WOA swarm intelligence optimizer is able to 

achieve a 98% decrease in the search space 

dimensionality by successfully lowering the number 

of features from 4115 to 73. The Random Forest 

classifier's increased accuracy is mostly due to this 

feature reduction. 

To sum up, this research study offers an enhanced 

method for detecting Android malware. It selects 

features using wrapper-based swarm intelligence 

techniques and achieves impressive outcomes with 

the Random Forest classifier. The results of the study 

demonstrate how these methods may be used to 

enhance the precision and effectiveness of Android 

malware detection systems while taking into account 

the dynamic nature of threats in today's smartphone 

environment. 

VI. FUTURE WORK 
In order to increase the effectiveness of detecting and 

categorizing Android malware, research is 

concentrated on creating and utilizing hybrid 

architectures that include cutting-edge deep learning 

algorithms. The purpose of these hybrid designs is to 

improve the precision and speed of malware detection 

on Android devices by utilizing the advantages of 

several deep learning techniques. In addition, future 

research will examine the application of different 

optimization strategies to systematically lower the 

feature count in high-dimensional feature spaces. The 

objective of this endeavor is to enhance the detection 

system's overall effectiveness and expedite the 

process of identifying malware. The project aims to 

improve the state-of-the-art in Android malware 

detection and contribute to the creation of more 

reliable and efficient cybersecurity solutions for 

mobile devices by fusing deep learning with 

optimization techniques. 
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