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ABSTRACT 
In a dynamic database, discovery and maintenance of frequent patterns and rules is a critical issue. To address this issue, several 

algorithms for incremental mining of temporal frequent patterns like ITARM, IndxTAR, etc. have been developed. However, 

these incremental algorithms suffer from performance bottlenecks due to larger candidate sets, excessive I/O and extensive 

computation, huge memory usage, etc. In this paper, an incremental temporal frequent pattern mining algorithm is proposed that 

discovers temporal associations among the items in reasonably lesser time in comparison to other similar algorithms. The 

proposed algorithm identifies changes in the behavior of data with time and discovers global as well as local frequent-patterns. 

It eliminates anomalies of earlier algorithms by applying a pruning technique in incremental mining. The proposed algorithm 

selects a few frequent 2-itemsets from an incremental database that have the probability of being frequent in the entire database 

that reduces the number of candidate 2-itemsets. Besides, pruning candidates at the time of candidate generation eliminates the 

chance of generating redundant supersets and powersets from infrequent itemsets. Consequently, search space is reduced to a 

great extent. The proposed algorithm considers negative border itemsets in mining incremental database; therefore, it utilizes 

two support measures for mining frequent and pre-frequent itemsets. Application of pruning technique in the candidate 

generation process is a novel approach that reduces candidates, making it better than existing incremental mining algorithms. 

The result of experiments also validates its better performance over other incremental mining algorithms. 

Keywords — Temporal frequent pattern, Incremental mining, Candidate Pruning, Global and local patterns, Dense and sparse 

dataset 

I.     INTRODUCTION 

Temporal association rule mining is a data mining 

technique that discovers association rules within a specified 

time period. Temporal association rules are of the form: 

 where, X and Y are items and TP is specified time 

period. The rules generated by mining a temporal database is 

valuable for identifying time-dependent associations between 

items [1].  and for making decisions. The abundance of 

temporal data has spurred researchers to uncover various types 

of time-variant patterns and regularities hidden within these 

databases. Temporal association rule mining [2-3] enhances 

strategies and decision-making capabilities by acquiring 

temporal knowledge [4-5]. Thus, it has gained importance in 

discovering co-occurrence relationships in different domains 

like Cancer treatment [5], Fault detection to enhance 

performance[6], anomaly detection[7], Outlier detection[8], 

crime detection [9], network intrusion detection [01], retail 

business [11], etc. 

 In real-life applications, databases often exhibit dynamic 

behavior. In such an evolving  database, identification and 

maintenance of rules becomes an issue of paramount 

importance as it changes over time. Generally, new 

transactions are updated at a regular interval. With each newly 

added transaction, a deviation in the behavior of the database 

may occur. Due to which it is most likely that the patterns of 

associations are altered after the update of the database. Some 

new patterns emerge and some of the existing patterns become 

void in the updated database. Therefore, this research work 

incorporates an innovative idea that can be pragmatically  

 

 

implemented in an incremental database to identify global 

patterns and local patterns. 

Many studies have been performed to suggest a method 

that needs minimum time and cost in mining dynamic 

database. Several algorithms for mining temporal association 

rules in an incremental database have been developed. 

Generally, incremental mining algorithms either follow level-

wise approaches [12-14] or pattern-growth concept [15-17] to 

maintain the reliability of patterns and rules discovered. 

Cheung et al. [18] have introduced an incremental mining 

technique for the maintenance of patterns in an updated 

database. Subsequently, the concept of rule maintenance was 

extended by employing a sliding window filtering approach. 

However these algorithms are plagued by several limitations, 

such as their ability to only uncover global patterns, meaning 

patterns that are frequent during their maximum common 

exhibition period (MCP). Additionally, other issued include 

redundancy within rule sets, large candidate itemsets repeated 

scanning, and substantial requirements for internal memory 

space.  

Frequent pattern mining plays a vital role in temporal 

association rule mining as frequent patterns identified within 

temporal databases serve as the basis for generating temporal 

association rules. The present paper has adopted an approach 

with intent to generate temporal frequent patterns. It   

eliminates redundancy in a frequent pattern set that was 

observed in previous mining techniques [19-20]. The 

proposed candidate generation based algorithm ‘Incremental 

temporal frequent pattern mining (ITFPM)’ works on the 
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sliding window concept and explores temporal frequent 

itemsets. It incorporates a negative border concept to identify 

frequent and pre-frequent itemsets. Experimental results 

indicate that the proposed method yields more precise (non-

redundant) temporal frequent patterns compared to traditional 

approaches. Moreover, the inclusion of the pruning technique 

in the suggested method reduces the computational 

complexity more effectively than traditional approaches. The 

candidates generated by the ITFPM are significantly smaller 

than those generated by earlier state-of-the-art algorithms. 

Thus, the algorithm resolves the issue of performance 

bottleneck to a great extent. The proposed approach is more 

versatile and is capable of dealing with different datasets.  

The major features of the proposed work are; 

• The proposed algorithm discovers frequent patterns 

along with time period. 

• The introduction of pruning technique in incremental 

mining, leading to the reduction of candidate set is a 

novel idea presented in the paper. 

• Further, the algorithm reduces search space by 

verifying and selecting only those frequent 2-itemsets 

that has a high support count thus expected to be 

frequent in its MCP. 

• Algorithm discovers global as well as local frequent-

patterns (newly frequent-patterns). Hence, it is 

capable of mining temporal frequent itemsets from 

seasonal and publication databases also. 

The rest of the paper is structured as follows: Section 2 

renders related works. Section 3 delves into the proposed 

algorithm and its implementation details.. Further, Section 4 

presents a comprehensive experimental analysis of the 

proposed algorithm on various datasets. Lastly, Section 5 

provides concluding remarks. 

II.     RELATED WORKS 

 To deal with the maintenance of rules in a dynamic 

database, initially, some Apriori based algorithms [21] were 

proposed [18-12]. FUP (stands for Fast Update) algorithm [18] 

was first among rule maintenance algorithms. The FUP 

algorithm uses the large itemsets from the original database to 

discover large itemsets in the updated database. The original 

database is scanned solely to identify new large itemsets. 

Furthermore, updated database is decreased in each cycle by 

removing infrequent items from transactions within updated 

database. However, FUP does not lower the need of multiple 

scanning of the original database. Another incremental mining 

algorithm called FUP2 [12], which is capable of updating 

association rule in case of insertion or deletion of transactions 

in the original database. It also utilizes the mined result from 

previous mining to reduce computation time and cost. 

The concept of the sliding window was introduced by 

[22] in a publication database to deal with items having 

various exhibition period. The sliding window filtering (SWF) 

approach splits the database into small segment and explores 

frequent patterns progressively from one segment to another. 

SWF algorithm applies a cumulative filtering threshold to 

generate candidate 2-itemsets and implements a scan 

reduction technique for generating candidate k-itemsets 

thereby reducing CPU cost and memory usage. The SWF 

algorithm performs well on a sparse dataset. However, in 

dense databases, its performance declines due to higher 

associations, and there is always a chance of combinatorial 

explosion. 

Many incremental algorithms [23-24] employed a sliding 

window filtering approach to discover frequent patterns. The 

New Fast Update Method (NFUP) algorithm [23], an 

extension of FUP[18], aims to minimize the database 

scanning. It achieves this by logically partitioning the 

incremental database based on predetermined time intervals 

and scanning these partitions in reverse order, thus 

minimizing the overall number of scans. It utilizes the 

frequent patterns generated in the original database and 

eliminates the need to scan the original database. 

Nevertheless, the NFUP algorithm follows the Apriori 

algorithm concept; hence it suffers from large candidate 

generation. TWo end AssocIation miNer (Twain) algorithm 

proposed in [24] divides the incremental database according to 

the pre-defined time period and finds maximum frequent with 

a more precise exhibition period. 

Nevertheless, the algorithm compares the end time of 

MCP of items with current partition time, MCP of itemsets 

must be known in advance. ITARM algorithm [19] generates 

candidate 2-itemsets by combining the candidate 2-itemsets 

from previous mining and present partition. Scanning of the 

original database is conducted once to identify all large 

itemsets, regardless of whether there are any new frequent 

itemset in incremental database. If there is a non-trivial 

difference between original and incremental database, the 

algorithm may suffer from large candidate generation 

problem.  

An algorithm proposed by Li et al. [25] called a three-

way decision update pattern (TDUP), uses three support 

thresholds, one to find frequent itemsets and rest two to divide 

the itemsets into three sections. TDUP updates frequent 

itemsets real-time. It employs a synchronization mechanism 

for amending the variation caused by TDUP. This mechanism 

triggers at regular intervals to re-compute the frequent itemset 

offline. 

To reduce execution time, FP-tree [26] like algorithms 

for incremental mining [27, 28,29] has been suggested by 

different researchers. Dafa-Alla et al. [28] have used the 

Apriori-TFP-tree [30] structure for developing an algorithm 

IMTAR to explore  temporal association rules in publication 

databases. It creates T-tree for storing itemsets information 

and P-tree for stores partial support for itemsets. The 

algorithm builds the tree partition wise in one scan. Since the 

algorithm first creates the entire tree and then filters out 

infrequent itemsets; its memory requirement is very large.  

To maintain the large itemsets against the incremental 

data and reduce the number of the scan, various algorithms 

[31] based on the concept of negative border [32], have been 

developed. Hong et al. [13] suggested two support thresholds 

and reduced database rescan by implementing a safety 
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threshold measure. Safety threshold is determined by lower 

support, upper support and original database size. 

Theoretically, an itemset from an incremental database cannot 

qualify as a large itemset in the entire database until the 

number of transactions in the incremental database surpasses 

the safety threshold. Further, this concept was extended in the 

Pre-FUFP maintenance algorithm [33] that maintains 

information from a previous scan on FUFP-tree. It keeps the 

results of previous mining to avoid recounting of large and 

pre-large itemsets of previous database that causes an increase 

in its memory requirement. Fouad et al. [20] have suggested 

an incremental algorithm called IndxTAR that explores 

frequent temporal itemsets in items’ lifetime period. It is 

extended from the FP-tree [26] concept and used a data 

structure TIndex that contains tree-structure. The tree is 

constructed in one scan considering each item of the 

transactions and items temporal information and traverses k 

times to count the support of k-itemsets. It also utilizes the 

frequent itemsets of previous mining. Unfortunately, its 

memory requirement increases immensely with every update, 

and so the algorithm is not suitable for the large database with 

the number of partitions. 

III. INCREMENTAL TEMPORAL 

FREQUENT PATTERN MINING 

In this section, problem definition and terminologies 

associated with temporal frequent pattern mining are 

discussed. 

A. Problem Definition and Basic Concept 

In a growing database, rule maintenance is an issue of 

paramount importance due to the fact that with every newly 

added transaction, a deviation in behavior of database may 

occur. The paper incorporates an innovative idea that can 

pragmatically be implemented on incremental database to 

maintain global patterns (itemsets frequent in their MCP) and 

to explore local frequent patterns (itemsets frequent in a short 

time period). It scans the entire updated database just the once. 

Proposed algorithm ITFPM uses minimum support and 

probable support thresholds to recognize frequent and 

especially pre-frequent itemsets, and eliminate outliers (items 

with lower support) at the very beginning. Pre-frequent 

itemsets are negative border sets that have a greater 

probability of becoming frequent following a database update.  

Definition 1 (Temporal frequent pattern mining):  

Frequent pattern mining [34] is discovering associations 

among the items in a database. Temporal frequent pattern 

mining, an extension of frequent pattern mining, is discovery 

of time-dependent associations [x] and represented as 

. 

Definition 2 (Temporal Frequent Patterns): Set of items or 

Pattern that appears together frequently in a database in a 

specified time frame are called temporal frequent patterns. For 

instance, a collection of items, like “Cake”, “Candles” and 

“Christmas Tree” that frequently occur together in a 

transaction dataset during December, can be called temporal 

frequent itemset or temporal frequent pattern for December. 

Temporal pattern mining can be conducted on a binary 

database where items are represented as present(true) or 

absent(false).  

The temporal frequent patterns can be stated 

mathematically as:  

Given a database D with transactions (t1, t2, ..., tn), discovery 

of all patterns P that are present in at least a fraction  of the 

transactions in a particular time interval T. The fraction  

denotes minimum frequency needed to classify a pattern 

frequent, and is referred to as the minimum support threshold. 

Support value of a pattern can be calculated as: 

 

    (1) 

Patterns with frequency or support value more or equal to 

minimum support thresholds are  

            (2)         

Temporal frequent itemset or temporal frequent pattern 

are indeed synonymous terms, both referring to frequent 

combinations of items. To streamline the discussion, the 

attributes of the database are referred to as items and term  

temporal frequent itemset is consistently employed for 

convenience.  

Let a set of items database be denoted as I, and each 

transaction t I. If  and δ are minimum support threshold 

and minimum probable support (negative border) thresholds. 

Definition 3 (Temporal Frequent Itemset): Temporal 

Frequent Itemset (TFI) is an itemset that is frequent in a time 

interval (s,n). An itemset Xs,n  can be expressed as TFI under 

the constraint:  

a) X I 

b) From  partition Ps to Pn, it satisfies 

                (3)                                       

i.e., a ratio of the sum of all transactions containing X and 

sum of all transactions in time interval (s,n) is not less than 

minimum support . 

Definition 4( Pre-frequent Itemset): Pre-frequent Itemset 

(PFI) is an itemset that is expected to be frequent in a time 

interval (s, n). An itemset Xs,n can be expressed as PFI under 

the constraint:  

a) XI 

b) From  partition Ps to Pn,  it satisfies 

 

                         (4)                                                        

i.e., a ratio of the sum of all transactions containing X and 

sum of all transactions in time interval (s,n) is not less than 

minimum probable support . 

Hence, the relative  and δ values in the updated database are  

                        (5)                

                         (6)                                                   
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Since the anti-monotone property cannot hold on updating 

database, following properties are proposed and introduced in 

the algorithm to reduce candidate itemsets. 

Property 1. In an updated database, subsets of a temporal 

frequent itemset remain frequent within the same time 

interval. For example, if an itemset X is frequent in the 

updated database in a time interval [s,t],  then x  X must be 

frequent in the same time interval [s,t]. 

For  

Property 2. . In an updated database, if an itemset contains at 

least one infrequent subset within a specified time interval, 

then the items itself is always infrequent in that same time 

interval. For example, if an itemset X is infrequent in the 

updated database in the time interval [s,t],  then  x X must 

be infrequent in the time interval [s, t]. 

Property 3. If itemsets are frequent in different time duration 

ta and tb with no overlapping of time, then their superset 

cannot be frequent.  

The prime objective of the algorithm is to minimize search 

space (candidate k-itemsets) and maintain maximal frequent 

itemsets. Unlike traditional incremental algorithms, the 

proposed method entails two major improvements toward 

reduction of search space: 

• Frequent 2-itemsets  and pre-frequent 2-itemsets  from  

original database (DB) are carried over to the next partition 

(db) as candidate set for incremental mining. As a result, 

there is the least chance of new frequent 2-itemset in db 

that is not itemized in candidate set obtained from previous 

mining. 

TABLE I 

POSSIBLE STATES AND THEIR CONSEQUENCES 

 Case: Original- New Results in the updated 

database 

1 Original=Frequent, 

New= Frequent 

Updated=Frequent 

2 Original=Frequent  

New=Pre-frequent  

Updated ≥ Pre-frequent 

3 Original=Frequent 

New= Infrequent 

Cannot be predicted 

4 Original=Pre-frequent 

New=Frequent  

Updated ≥ Pre-frequent 

5 Original=Pre-frequent 

New=Pre-frequent 

Updated=Pre-frequent 

6 Original=Pre-frequent  

New=Infrequent 

Updated=Pre-frequent 

or Infrequent 

7 Original=Infrequent 

New=Frequent  

Updated ≥ Pre-frequent  

8 Original=Infrequent  

New=Pre-frequent 

Updated=Pre-frequent 

or Infrequent 

9 Original=Infrequent  

New=Infrequent 

Updated=Infrequent 

• It adopts the property 1, 2 and 3, i.e., for an itemset X 

 I to be frequent in time-interval [ts, te], all Y  X and Y 

 I  is frequent on the same time-interval [ts, te]. The 

algorithm filters outs infrequent itemsets in updated 

database at the very beginning.  

Therefore, during the candidate generation process 

db, any itemset containing infrequent subset in updated 

database (UB) is immediately pruned (Property 2). The 

state of itemsets may change in the UB. Table I shows all 

possible outcomes after updating the database. The 

outcome of cases 1,2,4 and 5  is known since the supports 

of all such itemsets are already available from previous 

mining Case 3 shows frequent itemset in original database. 

TABLE III 

SYMBOLS USED IN THE ALGORITHM AND THEIR MEANING 

Symbol Meaning 

N Current partition number 

DB , db, UB Original, Incremental, Updated 

database 

X,Y Items 

XMCP(X) Itemset with MCP 

 Minimum support 

δ Probable support 

C2
DB, C2

db, 

Ck
UB 

Candidate 2-itemsets in DB, db and 

UB 

F2
UB Frequent 2-itemsets in UB 

LF2
UB Support of X in db 

CPF Pre-frequent 2-itemsets in UB 

|Pp| No. of transactions in Pp 

TI Candidate temporal k-itemsets 

SI Candidate subsets of TI 

X.supDB, 

X.supdb 

Support of X in DB and db 

X.supUB Support of X in UB 

X.supp Support of X in partition p 

TFI Temporal frequent itemset 

This scenario represents the case of seasonal item when 

season comes to an end. Case 6, 8 and 9 is not interesting as 

itemsets cannot be frequent.  Only in case 7, there is a little 

probability of an infrequent itemset to become frequent after 

updating. With every update the chances of support value to 

become frequent increases linearly (from Eq. (5) and Eq. (6)). 

In case, the transaction behavior in changes abruptly, the 

algorithm handles it and distinguishes itemsets that are 

expected to be frequent. Table II depicts symbols and its 

description used in the proposed algorithm. 

Amongst all such itemsets that are infrequent in DB but 

frequent in incremental database (db), the algorithm selects 

only frequent 2-itemsets X for candidate generation that 

satisfies following equation: 

           (7)        (7) 

The present approach causes a reduction in frequent 2-

itemsets. In addition, it reduces the candidate k-itemsets to be 

searched in UB. 

Nevertheless, itemsets that are frequent in db and do not 

satisfy Eq. (7) are seasonal items or publication items in the 

itemset. In incremental mining, three possible categories (α,  

and ) of frequent itemsets appear.   

α - In this category, itemsets are frequent in the UB. These 

are global itemsets.  
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 - In this category, itemsets frequent in the db, but not 

frequent in the DB. These itemsets contain seasonal or 

publication items. 

 - In this category, itemsets are frequent in the DB, and 

not frequent in db. These itemsets are seasonal, but no 

longer frequent. 

The ITFPM explores frequent itemsets of categories:  and .  

B. The Algorithm: ITFPM 

The algorithm ITFPM shown in Fig.1 and Fig.2 

discovers TFI from the UB after db is appended in DB. All the 

2-itemsets present in db is taken in the mining process. The 

reason is, in an updating database, there are few itemsets that 

are frequent in DB but not frequent in db. However, they 

contribute to increasing the support count in the entire 

database. The algorithm works on three primary tasks.  

Initially, it discovers candidate 2-itemsets in db to 

merges with candidate 2-itemsets achieved in previous 

mining. The entire candidate 2-itemsets present, either in 

or in both, are investigated by implementing Eq. (5) to 

confirm whether itemsets qualify frequent itemset criteria in 

UB. Here, itemsets that have no existence in db are removed 

even if they are frequent in DB. Such itemsets are type  

itemsets. The candidates that are frequent in UB are global 

itemsets. 

 Secondly, if itemsets fail to be frequent in UB though 

frequent in db are considered as  category itemsets, i.e. local 

frequent itemset. For local itemsets start time and end time are 

reset by the partition number in which they belong, i.e. it set 

to n. All frequent itemsets of category α and  are considered 

for candidate k-itemset generation. The candidate generation 

process utilizes pruning technique based on properties 1-3 and 

generates only a few candidate k-itemsets satisfying the above 

properties. Third, after the generation of pruned candidate k-

itemsets, it counts the support of candidates in the updated 

database. The UB is scanned once in the incremental mining 

process for counting the support of generated candidate k-

itemsets. Itemsets with support more than or equal to relative 

minimum support threshold along with their time interval are 

TFI in the updated database. Finally, the algorithm discovers 

all α and  (global and local frequent) itemsets. 

 

Fig. 1 Steps of proposed incremental algorithm 
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Fig. 2 Steps of candidate generation and pruning 

C.  Illustrative Example 

To visualize operation of the algorithm, a transaction 

database, shown in Table III, is considered. It models a 

publication database where items have different exhibition 

times. This section aims to show what itemsets arrive at the  

 

TABLE IIIII 

A TRANSACTIONAL DATABASE 

Partition Month TID Itemset 

P1 Oct-17 00101 A B 

00102 A B D 

00103 B C D 

00104 B C 

00105 B D 

P2 Nov-17 00106 B C E 

00107 A B D E 

00108 A D E 

00109 B C D 

00110 A C E 

P3 Dec-17 00111 A D 

00112 A B C 

00113 A B D E 

00114 D E 

00115 A B F 

 

next partition after mining; and how it influences the 

performance of successive mining. The frequent itemsets 

obtained after processing of each incremental database are 

either global itemsets or local. Let us consider  40% and δ at 

20%. The step-by-step change in the state of itemsets after 

incremental mining of partition is described here: 

Mining of P1: Initially, transactions in partition P1 have items 

{A, B, C, D}. After scanning P1 first time, {AB, BC, BD} are 

found frequent 2-itemsets and {AD, CD} are found pre-

frequent 2-itemsets for given threshold values. These itemsets 

{AB, BC, BD, AD, CD} are carried forwarded for mining of 

next partition P2. Fig.3 shows frequent, and pre-frequent 2-

itemsets discovered in P1. Pre-frequent 2-itemsets are 

depicted by shaded area throughout in rest of the paper. 

Frequent 2-itemsets are used to generate candidate k-itemsets. 

Here, {BCD} is the only candidate k-itemset generated by 

{AB, BC, BD}. But, since {CD}{BCD} is not in frequent 

itemset list, hence, owing the property 1, {BCD} cannot be 

frequent thus it is pruned.  

 
Fig. 3 Candidate 2-itemsets generated in P1 

Since the support of frequent 2-itemsets is already 

counted, therefore, candidate k-itemsets in the database P1 are 

only supersets of frequent 2-itemsets.  

Mining of P2: Table III shows a new item E in the 

transactions of P2. When E is combined with other items that 

appeared in P1, their common exhibition period is {2, 2}, the 

minimum support value for these itemsets to become frequent 

depends on the size of P2, i.e.   |P2|. For the rest of the 

itemsets,  and are calculated by Eq. (3) and Eq. 

(4).Candidate 2-itemsets obtained from previous mining {AB, 

BC, BD, AD, CD} when merged with candidate itemsets of 

P2, {AE, BC, BD, BE, CE, DE} are obtained as frequent and 

{AB, AD, CD} as pre-frequent itemsets. The frequent and 

pre-frequent itemsets are further carry forwarded for mining 

of partition P3 (Fig. 4(a)). Here, {BC, BD} are global 

frequent itemsets while {AE, BE, CE, DE} are local frequent 

itemsets. Further, AD is  frequent in P2. However, it is pre-

frequent itemset in P1, and its cumulative support is 3. It is 

again a pre-frequent itemset since  ≤ 3 ≤. . 

 
(a) Search itemsets -BC2,2, BD2,2, BCE2,2, BDE2,2 

Itemset pruned –BCD 

 

 
 

(b) Search itemsets-Empty search space 

Itemset pruned –ABE 

Fig. 4 Candidates generated in (a) P2and (b) P3 
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It also lists itemsets that are to be searched in the entire 

updated database, and are pruned at some point in the k-

itemset generation process. 

Mining of P3: Here, item F appears the first time in P3; 

therefore MCP of itemsets containing F is {3, 3}.Similar to 

mining of P2, candidate set obtained from P2 {AE, BC, BD, 

BE, CE, DE, AB, AD, CD} when merged with candidate set 

of P3, {AB, AE, BD, DE} become frequent itemsets and {AD, 

AF, BF, BC, BE} as pre-frequent itemsets. Here also, AB and 

AD frequent in db, are not required to be searched in entire 

database P1+P2+P3 for counting their support, as it is 

forwarded from previous mining, hence its support is known 

in advance. Itemset CE was frequent inP1+P2, but neither 

frequent nor pre-frequent in P1+P2+P3. It falls in category . 

Supersets of itemsets in  are not frequent in the updated 

database. All frequent itemsets in updated database 

P1+P2+P3 fall in category . 

 

IV. EXPERIMENTAL RESULTS AND 

DISCUSSION 

 

To judge the performance of the proposed algorithm and 

to compare it with state-of-the-art algorithms, experiments 

have been performed on different datasets. Those experiments 

have been performed on Intel(R) Core(TM) i3-3217U 

machine in Windows 8.1 platform by simulating in Java. The 

parameters that have been considered for comparison are the 

number of candidate set generated and memory utilization, 

execution time and scalability. 

A. Description of Dataset 

Experiments have been performed on datasets from 

available data repository [35] shown in Table IV.  

TABLE IVV 

DESCRIPTION OF DATASETS 

 

These databases exhibit varying sizes and also differ in 

the average number of items present in transactions; as a result,  

they are characterized as sparse and dense. Here, Retail and 

T10D100 are sparse datasets and Mushroom and T40D100 are 

dense datasets. For incremental mining, each database is 

partitioned into two sub-databases as original, and other as the 

incremental. The algorithms ITFPM, ITARM and IndxTAR 

have been applied on the same datasets to assess their 

comparative performance. 

Experiments have also been performed to set value for δ 

for different. It is observed that the median of  is most 

suitable for δ and shows consistent performance, hence, taken 

throughout the experiment. 

 

B. Candidates Generation and Memory 

Utilization 

The performance of an algorithm depends on the number 

of candidates generated by the algorithm. Therefore, a number 

of candidates generated by each algorithm in different datasets 

is recorded. It is observed from the experiments that the  

TABLE V 

NO. OF CANDIDATES GENERATED 

 

 No. of candidates 
generated 

Data
set 

IT
ARM 

Ind
xTAR 

I
TFPM Retai

l 
3

59437 
 

39
897 

 

1
2682 

 
T10D

100kd10k 
 

1
08460 

 

78
595 

 

1
6467 

 
T40D

100kd10k 
 

3
50277 

 

16
0685 

 

1
2051 

 
Mus

hroom 
1

77315
6 

 

55
2107 

 

1
7839 

 
TABLE VI 

MEMORY UTILIZED 

 Memory utilized (in 
MB) 

Datas
et 

I
TARM 

In
dxTAR 

I
TFPM Retail 4

7.65 
 

11
4.5 

1
.15 T10D

100kd10k 
 

1
4.79 

 

48 
 

2
.68 T40D

100kd10k 
 

4
8.1 

 

12
4.56 

 

2
.27 

 
Mush

room 
2

15 
 

18
7 

 

1
.83 

 
 

 
(a) 

Dataset DB db Items Average 

Transaction 

Retail 85,162 3,000 16,470 13 

Mushroom 6,124 2,000 119 23 

T10D100 90,000 10,000 1,000           10 

T40D100 90,000 10,000 1,000 10 
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(b) 

 
Fig. 5 (a) Candidates generated (b) memory utilized in Retail, 

T10D10k, T40D10k, and Mushroom dataset. 

number of candidates generated in dense datasets is very 

large compared to sparse datasets. Table V, Table VI and 

Fig.5 depict the disparity in the size of candidates set  and 

memory utilized. 

In both dense and sparse datasets, algorithm ITFPM has 

generated lesser candidates than ITARM and IndxTAR. 

ITARM considers all frequent itemsets of updated as well as 

incremental database.  

Because of the level-wise approach, it generates a lesser 

number of itemsets than ITARM. Nevertheless, ITFPM 

generates a number of candidates that is close to the count of 

frequent itemsets. The process of candidate set generation 

takes a number of cycles in IndxTAR, while ITARM and 

ITFPM generate the candidate set twice only. Fig.5 (a) shows 

the maximum number of candidates generated by different 

algorithms. Since IndxTAR keeps individual database 

separately under the root node, its memory Utilization to store 

transactions is very high as compared to ITARM, but memory 

utilization of ITARM is more than ITFPM. A comparative 

graph is shown in Fig. 5(b) depicts the memory utilization. 

C. Execution Time Performance 

Execution times of algorithms under various minimum 

support thresholds have been recorded. Based on the 

characteristics of the datasets, varying range of minimum 

support is usual for each datasets. The four panels of Fig.6 

shows two major behavior in the results of the algorithms: 

Initially, the execution time of ITARM demonstrate a sharp 

increase with decreasing minimum support. However, 

IndxTAR shows a gradual increase while the execution time 

of ITFPM remains relatively constant across all minimum 

support values. Secondly, ITARM takes a longer time to mine 

dense datasets compared to sparse datasets, as it needs to 

search through a large number of candidates. Similarly, 

IndxTAR is also time-consuming relative to ITFPM algorithm 

because it appends tree with incremental data, maintains 

TIndex data structure and conducts Apriori like operation. But, 

ITFPM performs well in sparse and dense datasets both. The 

performance difference of the algorithms is always better 

throughout, and the runtime of ITFPM is lesser than ITARM  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 6 Execution time in dataset (a) Retail, (b) Mushroom, (c) 

T10D100k and (d) T40D100k 

(b) 
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and IndxTAR. Hence ITFPM outperformed ITARM and 

IndxTAR. 

D. Scalability 

Experiments with different minimum support for 

different DB sizes have been performed on T10D100k dataset 

to analyze the scalability of the algorithm. Fig.7 shows the 

results obtained on conducting experiments on progressive 

DB for minimum support of 0.5% and 0.7% respectively. At 

0.5%support threshold shown in Fig.7 (a), ITARM shows a 

fast increase in execution time compared to IndxTAR and 

proposed algorithm. At 0.7% support threshold shown in Fig.7 

(b), there is a continuous increase in execution time. However, 

it is observed that the proposed algorithm is more stable in 

comparison to other algorithms. 

 

 

 

(a) 

 

(b) 

Fig. 7 Scalability of the algorithm for minimum support of 0.5% and 

0.7% respectively 

V. CONCLUSION 

The algorithm introduced in this paper explores and 

maintains global temporal frequent patterns and local 

temporal frequent  patterns in the latest time window that can 

further be employed to derive temporal association rules. The 

present research work has a major focus on reducing the risk 

of combinatorial explosion, which is a major issue in the 

candidate generation technique when implemented in 

incremental mining. The threshold values implemented in the 

algorithm ITFPM are used to optimize search space. 

Moreover, the incorporation of pruning during candidate 

generation is an innovative idea in this pursuit which further 

reduces the candidate itemsets in turn and makes the proposed 

approach more versatile and accurate. These actions primarily 

affect the execution time in discovering temporal frequent 

itemsets to a great extent. The algorithm is capable of 

handling publication and seasonal database and discovers 

global as well as local frequent-patterns. 

The algorithm can be implemented in future for 

discovering global and temporal patterns in different domains 

like Retail, Financial Analysis, etc. 
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