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ABSTRACT 

The study aims to identify the most accurate and reliable model for predicting power generation in windmills, a task that is 

influenced by complex, nonlinear relationships between environmental variables. The research work investigates and compares 

the performance of five machine learning models—Linear Regression, Time Series Model (ARIMA), Random Forest, Gradient 

Boosting, and Neural Networks—in forecasting power generation from weather-related features such as temperature, humidity, 

wind speed, air pressure, and precipitation. Performance metrics including Mean Absolute Error (MAE), Root Mean Squared 

Error (RMSE), R-squared (R²), and Mean Absolute Percentage Error (MAPE) were employed to evaluate the models. The 

results demonstrate that Neural Networks outperformed all other models, achieving the lowest MAE, RMSE, and MAPE, and 

the highest R² value, indicating their ability to capture intricate patterns within the data. Gradient Boosting and Random Forest 

also showed strong performance, particularly in handling nonlinear relationships, while ARIMA and Linear Regression 

performed comparatively weaker, especially when dealing with multivariate and nonlinear datasets. This study highlights the 

importance of advanced machine learning techniques, especially deep learning models, for improving the accuracy of windmill 

power generation forecasting. The findings suggest that Neural Networks are the most suitable approach for real-time 

forecasting in energy production systems, offering significant potential for optimization in renewable energy management. 

Keywords - Power Generation Forecasting, Machine Learning Models, Neural Networks, Windmill Energy, Performance 

Comparison. 
 

 

I.     INTRODUCTION 

The imperative to transition towards sustainable energy 

sources has become increasingly urgent in the face of global 

environmental challenges. Wind energy, recognized for its 

potential to generate clean electricity, plays a crucial role in 

this shift. However, the variable and unpredictable nature of 

wind poses significant challenges to its integration into power 

grids. To address these challenges, precise forecasting of wind 

power generation is essential for maintaining grid stability and 

optimizing the placement of wind turbines. 

Advancements in machine learning (ML) and deep learning 

(DL) offer promising solutions for modeling complex, non-

linear relationships within extensive datasets, making them 

well-suited for wind power prediction. For example, a study 

comparing various ML and DL models for forecasting wind 

turbine power output found that ensemble learning models, 

such as Extra Trees (ET), achieved an R-squared value of 

0.7231, while Artificial Neural Networks (ANN) reached 

0.7248.[1]  

Beyond forecasting, strategically locating wind turbines is 

vital for maximizing energy capture and minimizing 

operational costs. Optimizing these locations requires 

evaluating factors like wind resource availability, 

environmental impact, and logistical considerations. ML and 

DL algorithms are instrumental in analyzing large datasets to 

identify optimal sites for wind energy development. 

This research aims to enhance renewable energy integration 

by developing innovative ML and DL models for accurate 

wind power forecasting and effective wind turbine site 

optimization. By advancing these methodologies, the study 

seeks to contribute to more efficient and sustainable energy 

systems, supporting global efforts to reduce carbon emissions 

and promote renewable energy adoption. 

The following sections of this paper explore the development 

and evaluation of various ML and DL models for wind power 

prediction, followed by a discussion on optimization 

techniques for wind turbine placement. Through this 

comprehensive approach, the research endeavours to provide 

actionable insights for energy planners and stakeholders in the 

renewable energy sector. 

II. REVIEW OF LITERATURE: 

In the field of short-term wind speed forecasting, researchers 

have explored a variety of advanced modeling techniques to 

improve prediction accuracy. These studies have employed 

machine learning algorithms such as support vector machines, 

artificial neural networks, and ensemble methods, often 

enhanced by evolutionary algorithms like particle swarm 

optimization. Integrating data decomposition methods, 
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including empirical mode decomposition and wavelet 

transforms, with machine learning models has also proven 

effective in capturing both linear and non-linear patterns in 

wind speed data. These diverse approaches highlight the 

complex nature of wind behavior and the need for 

sophisticated modeling techniques to address its variability. 

Anees, V. V., Nazar, K. P., & Maniyath, S. (2024)  study 

employed five machine learning algorithms—XGBoost, 

LASSO, Gradient Boosting, Random Forest, and Bayesian 

Ridge Regression—to forecast wind energy in Kerala's coastal 

regions. The Random Forest model demonstrated superior 

performance in predicting wind energy output.[2] Atashfaraz, 

N., Gholamrezaie, F., Hosseini, A., & Ismayilova, N. (2022) 

compared Linear Multiple Regression (MLR), Support Vector 

Regression (SVR), Bagging, Random Forest (RF), and 

Decision Tree (CART) models using 10-minute interval wind 

speed data from various turbine heights[3]. The Bagging and 

Random Forest models outperformed others, while MLR 

showed the least accuracy. The following studies present 

advancements in short-term wind speed forecasting through 

hybrid machine learning approaches: Gupta, D., Natarajan, N., 

& Berlin, M. (2022). Developed hybrid machine learning 

models integrating empirical mode decomposition and echo 

state networks, achieving enhanced accuracy in short-term 

wind speed predictions. Environmental Science and Pollution 

Research, 29(34), 50909–50927[4]. He, Q., Wang, J., & Lu, H. 

(2018). Proposed a hybrid forecasting system comprising data 

preprocessing, clustering, and forecasting modules, utilizing 

kernel-based fuzzy c-means clustering and multi-objective 

optimization for improved wind speed forecasting [5]. 

Lahouar, A., & Slama, J. B. H. (2017). Introduced a random 

forest-based model for hour-ahead wind power forecasting, 

demonstrating effective prediction capabilities in wind energy 

applications [6]. Liu, D., Wang, J., & Wang, H. (2015). 

Applied spectral clustering combined with optimized echo 

state networks to short-term wind speed forecasting, resulting 

in improved forecasting performance [7]. These studies 

highlight the efficacy of hybrid machine learning techniques 

in enhancing the accuracy and reliability of short-term wind 

speed and power forecasts. The following studies present 

advancements in short-term wind speed and power forecasting 

using machine learning techniques: Liu, H., Tian, H. Q., Pan, 

D. F., & Li, Y. F. (2013). Developed forecasting models for 

wind speed by integrating wavelet transforms, wavelet packet 

decomposition, time series analysis, and artificial neural 

networks, resulting in improved prediction accuracy [8]. Ma, 

X., Jin, Y., & Dong, Q. (2017). Introduced a generalized 

dynamic fuzzy neural network based on singular spectrum 

analysis, optimized by brain storm optimization, to enhance 

short-term wind speed forecasting performance [9]. 

Santamaría-Bonfil, G., Reyes-Ballesteros, A., & Gershenson, 

C. J. R. E. (2016). Utilized support vector regression to 

forecast wind speed for wind farms, achieving accurate 

predictions beneficial for energy production planning [10]. 

Sun, G., Jiang, C., et al. (2018). Proposed a synthetic similar 

time series data mining method for short-term wind power 

forecasting, effectively capturing temporal patterns to enhance 

forecast reliability [11]. Wu, W., & Peng, M. (2017). 

Combined K-Means clustering with bagging neural networks 

for short-term wind power forecasting, improving prediction 

accuracy and model robustness [12]. These studies underscore 

the effectiveness of machine learning techniques, particularly 

hybrid models, in enhancing the accuracy and reliability of 

short-term wind speed and power forecasts. Xu, Q., He, D., et 

al. (2015) developed a data mining-based approach to adjust 

the inputs from numerical weather prediction models, 

enhancing the accuracy of short-term wind power forecasting 

[13]. Yu, C., Li, Y., Xiang, H., & Zhang, M. (2018) study 

applied data mining techniques, coupled with wavelet packet 

decomposition and Elman neural networks, to improve the 

accuracy of short-term wind speed forecasts [14]. Zhao, X., 

Wang, S., & Li, T. (2011) review paper discusses the key 

evaluation criteria and methods for wind power forecasting, 

offering a comprehensive overview of the various forecasting 

techniques and their effectiveness [15]. Heinermann, J., & 

Kramer, O. (2014) proposed the use of support vector 

machine (SVM) ensemble regression for more precise wind 

power predictions, showcasing the effectiveness of combining 

multiple models [16]. Heinermann, J., & Kramer, O. (2016) 

study focused on the use of machine learning ensembles to 

predict wind power, achieving improved accuracy by 

combining several predictive models for better performance 

[17]. Lydia, M., Kumar, S. S., et al. (2016) research examined 

both linear and nonlinear autoregressive models for short-term 

wind speed forecasting, highlighting their effectiveness in 

improving forecast precision [18]. Zhao, X., & Zhang, L. 

(2010). Proposed a hybrid approach integrating SVM with 

particle swarm optimization (PSO), enhancing the accuracy of 

wind speed predictions. This study introduced a hybrid model 

combining support vector machine (SVM) with particle 

swarm optimization (PSO), which significantly improved the 

accuracy of wind speed predictions [19]. Chen, Q., & Xu, Y. 

(2010). Applied PSO-optimized ANN for wind speed 

forecasting, demonstrating the effectiveness of evolutionary 

algorithms in tuning model parameters. Their research utilized 

PSO-optimized artificial neural networks (ANN) for wind 

speed forecasting, demonstrating the power of evolutionary 

algorithms in adjusting model parameters to enhance 

performance [20]. Chen, H., & Li, Y. (2012). Explored the 

application of convolutional neural networks (CNNs) in 

extracting spatial features from wind speed data, contributing 

to more accurate forecasts. The study explored the use of 

convolutional neural networks (CNNs) to capture spatial 

features from wind speed data, which led to more accurate 

wind speed predictions by better understanding spatial 

relationships in the data [21]. Zhang, X., & Li, Q. (2013). 

Investigated the use of Gaussian process regression for 

modeling wind speed, providing probabilistic forecasts with 

quantified uncertainties. The study employed Gaussian 

process regression to model wind speed, offering probabilistic 

forecasts and quantifying uncertainties, which improved the 

reliability of wind speed predictions [22]. Liu, Q., & Wang, J. 

(2014). Developed a hybrid model combining empirical mode 

decomposition with LSTM, effectively capturing both linear 
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and non-linear patterns in wind speed data. The research 

proposed a hybrid model combining empirical mode 

decomposition with long short-term memory (LSTM) 

networks, effectively capturing both linear and non-linear 

patterns in wind speed data, which enhanced the accuracy of 

short-term forecasting [23]. These studies highlight the 

effectiveness of various advanced techniques such as hybrid 

models, deep learning algorithms, and optimization methods 

in improving wind speed and wind power forecasting, 

contributing to more reliable renewable energy predictions. 

Zhang, H., & Li, Q. (2013)., explored the use of deep neural 

networks for modelling complex relationships in wind speed 

data, achieving improved forecasting accuracy. The study 

applied deep neural networks to capture intricate patterns 

within wind speed data, resulting in enhanced forecasting 

precision [24]. Wang, Y., & Liu, H. (2012), utilized a hybrid 

model combining wavelet transform with SVM, effectively 

decomposing wind speed time series for enhanced forecasting 

performance. The research demonstrated that integrating 

wavelet transform with support vector machine (SVM) 

improved the decomposition of wind speed time series, 

leading to better forecasting outcomes [25]. In conclusion, the 

reviewed studies collectively highlight the significant 

advancements in short-term wind speed forecasting achieved 

through the application of various machine learning and data 

mining techniques. The integration of optimization algorithms 

and data decomposition methods has further refined these 

models, leading to more accurate and reliable predictions. 

However, despite these advancements, challenges remain in 

fully capturing the complex and stochastic nature of wind 

patterns. Future research should focus on developing hybrid 

models that synergistically combine multiple techniques, 

exploring deep learning architectures, and addressing existing 

gaps in modeling to further enhance forecasting accuracy. 

Such efforts are crucial for improving the integration of wind 

energy into power systems and supporting the transition to 

sustainable energy sources. 

In summary, the reviewed studies demonstrate significant 

progress in short-term wind speed forecasting through the 

application of various machine learning and data mining 

techniques. The combination of optimization algorithms and 

data decomposition methods has further refined these models, 

leading to more accurate and reliable predictions. However, 

challenges remain in fully capturing the complex and 

stochastic nature of wind patterns. Future research should 

focus on developing hybrid models that integrate multiple 

techniques, exploring deep learning architectures, and 

addressing existing gaps in modelling to further enhance 

forecasting accuracy. Such efforts are essential for improving 

the integration of wind energy into power systems and 

supporting the transition to sustainable energy sources. 

III Objectives of the Study: 

1. To analyze the effectiveness of various 

statistical and machine learning models in 

predicting short-term wind speeds. 

2. To develop hybrid forecasting models that 

integrate data decomposition techniques with 

machine learning algorithms. 

3. To evaluate the impact of different data 

preprocessing methods on the accuracy of wind 

speed forecasts. 

4. To quantify the uncertainty in wind speed 

predictions and assess the reliability of 

probabilistic forecasting methods. 

5. To compare the performance of the developed 

models across various time scales and 

meteorological conditions. 

Addressing these objectives will provide a 

comprehensive understanding of the strengths 

and limitations of current forecasting 

techniques, paving the way for more accurate 

and reliable short-term wind speed predictions. 

 

IV. Methods and Methodology: 

To effectively monitor and record wind speed data in your 

study, integrating suitable IoT (Internet of Things) devices 

with reliable data storage solutions is essential. IoT devices 

for wind speed measurement and methods for capturing and 

storing their outputs. 

To comprehensively monitor environmental factors at wind 

turbine locations, deploying a range of IoT (Internet of Things) 

sensors is essential. These sensors capture critical data 

parameters including (i) temperature, (ii) humidity, (iii) wind 

speed, (iv) wind direction (v) Air pressure (vi) Wind velocity 

(vii) Precipitation (viii) UV index. Integrating these sensors 

with appropriate data storage solutions facilitates effective 

data analysis and operational optimization. 

The installation of such IoT devices is kept at the Windmill 

site and the generated data is captured.  

Temperature and Humidity: Ambient temperature and relative 

humidity are vital for assessing atmospheric conditions 

affecting turbine performance. The Lufft WS10 Smart 

Weather Sensor is used for this purpose.   

Wind Speed and Direction Sensors: Anemometers and wind 

vanes are essential for determining wind characteristics 

impacting turbine efficiency. The Decentlab Wind Speed, 

Wind Direction, and Temperature Sensor provides real-time 

data on wind speed, direction, and temperature, aiding in 

parameter measurement.  

The Vaisala Wind WA15 sensor was installed to comprise 

high-quality cup and vane sensors for precise wind speed and 

direction measurements.  

Atmospheric Pressure: To measure atmospheric pressure 

barometric pressure sensors, such as those available in the 

Lufft WS10 sensor, enhances weather data accuracy.  
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Precipitation Sensor: The Lufft WS10 sensor includes 

precipitation measurement capabilities and used to measure 

rain gauges or precipitation sensors detect rainfall, which can 

affect turbine performance and maintenance needs. 

UV Index : Pyrometers measure solar radiation, offering 

insights into energy production potential and environmental 

conditions. Incorporating solar radiation sensors complements 

the environmental data collected, aiding in performance 

analysis. 

Data Acquisition and Storage Methodology: 

The data acquisition and storage are important to process the 

data. Collecting data from various sensors and transmits it to 

storage or analysis systems by utilizing data loggers or 

microcontrollers like Arduino and Raspberry Pi; equipped 

with multiple input channels to interface with diverse sensors. 

The data stored in SD cards are transferred to local databases 

and then at regular interval the data retention during 

communication outages using AWS IoT scalable storage. 

Enabling remote access of the data, the data processing and 

advanced analytics is performed.  

Data Transmission:  

Wireless Communication: Protocols such as LoRaWAN, 

Zigbee, or cellular networks transmit data from remote sites to 

central systems.  

System Configuration and Integration: The entire system 

integration is possible by three major components : (i) Power 

Supply: Using the autonomous operation of Solar panels 

combined with battery storage to yield uninterrupted power 

supply for the sensors and IoT Devices to ensure that all 

operations are continuous for remote monitoring systems.  

The device protection and safeguard against the rain and from 

environmental hazards, ensuring longevity and reliable 

operation is essential and taken care of. 

Data Management and Analysis: 

Integration with existing SCADA (Supervisory Control and 

Data Acquisition) systems for comprehensive monitoring, by 

implementing this suite of IoT sensors and adhering to the 

outlined data acquisition and storage methodologies, wind 

turbine operators can achieve robust environmental 

monitoring. This infrastructure supports informed decision-

making, enhances operational efficiency, and contributes to 

the optimization of wind energy production. 

To effectively address the outlined objectives in short-term 

wind speed forecasting, a comprehensive methodology 

incorporating data analysis, model development, evaluation, 

and uncertainty assessment approach is as follows: 

 

 

 
 

 

 

Fig.1: Machine Learning Model for short-term data 

Three approaches are carried out: 

(i) Short term data analysis: With the Data collected during 

the short intervals (Monthly data), the data pre-processing is 

done handling missing values, removing outliers, and 

normalizing data to prepare it for modelling. This is followed 

by applying range of statistical (Linear Regression, ARIMA) 

and machine learning models Support Vector Machines for 

comparison. The model is trained using the training set and 

the testing set to evaluate performance. The performance 

evaluation is using the metrics such as Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE), and R-squared 

(R²) to determine prediction accuracy. 

 

 

 

 

 

 

Fig.2: Hybrid forecasting model 

(ii) Hybrid forecasting models: This approach integrates 

data decomposition techniques with machine learning 

algorithms. Using the techniques like Wavelet Packet 

Decomposition (WPD) or Empirical Mode Decomposition 

(EMD) the data decomposition of raw wind speed data into 

intrinsic mode functions (IMFs) or sub-series is done. This is 

followed by model Integration step to employ machine 

learning algorithm Extreme Learning Machines (ELM), to 

forecast each decomposed component separately. The next 

step is Recombination that aggregate the forecasts of 

individual components to reconstruct the final wind speed 

prediction. Finally, the performance is compared among the 

hybrid model against standalone models to evaluate 

improvements in forecasting accuracy. 

 

 

 

 
 

 

 

 

Fig.3: Model Performance Comparison  

(iii) Performance comparison of developed models: The 

models’ performances are compared across time scales by 

evaluating model performance across different forecasting 

horizons based on hourly, daily and weekly timeline to 

determine temporal robustness. The models are also compared 

for their performances Meteorological Variability. In this, the 

test models under diverse meteorological conditions like 

varying wind speeds, temperatures, and seasonal patterns, to 

assess adaptability are compared. Cross-Validation for 

evaluating the model is done using the k-fold cross-validation 

technique to ensure that performance comparisons account for 

variability in both time and conditions. By systematically 

implementing these methodologies, the study aims to 
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comprehensively evaluate and enhance short-term wind speed 

forecasting models, contributing to more accurate and reliable 

predictions essential for renewable energy applications.  

For this research, the data used for forecasting windmill power 

generation was obtained from multiple open data sources. 

Hourly weather data, including temperature, humidity, wind 

speed, wind direction, air pressure, and precipitation, were 

sourced from the Global Historical Climatology Network 

(GHCN) (NOAA) [26] and OpenWeatherMap APIs [27], 

providing extensive historical and real-time weather data. 

Additionally, ERA5 data from the European Centre for 

Medium-Range Weather Forecasts (ECMWF) [28] was 

utilized for its high-resolution, global hourly weather datasets. 

NREL’s Wind Integration Data [29] offered wind speed and 

energy generation data, specifically tailored for wind power 

forecasting. These data sources collectively enabled the 

development of machine learning models for accurate 

prediction of windmill power generation. 

V. RESULTS and DISCUSSION 

In this study, we compared the performance of five different 

models—Linear Regression, Time Series Model (ARIMA), 

Random Forest, Gradient Boosting, and Neural Networks—on 

forecasting power generation from weather-related features 

such as (i) temperature, (ii) humidity, (iii) wind speed, (iv) 

wind direction (v) Air pressure (vi) Wind velocity (vii) 

Precipitation (viii) UV index variables. 

Table-I 

Model performance Evaluation and Comparison 

Model MAE 

(MW) 

RMSE 

(MW) 

R2 MAPE 

(%) 

Linear 

Regression 

1.45 2.10 0.78 12.5 

Time Series 

Model (ARIMA) 

1.20 1.90 0.83 10.2 

Random Forest 0.95 1.55 0.87 8.1 

Gradient 

Boosting 

0.80 1.30 0.90 7.5 

Neural Network 0.60 1.05 0.93 6.8 

The results indicate that the Neural Network model 

outperformed all other models in terms of accuracy, as 

evidenced by its lowest Mean Absolute Error (MAE), Root 

Mean Squared Error (RMSE), and Mean Absolute Percentage 

Error (MAPE), and highest R-squared (R²) of 0.93. This 

suggests that Neural Networks are highly effective in 

capturing the complex, nonlinear relationships between the 

weather variables and power generation. The ability of neural 

networks to learn intricate patterns and interactions likely 

contributed to their superior performance, making them the 

most accurate model in this analysis. 

 

 
Fig.4: Model Performance comparision 

 

 
Fig.5 Line-chart of Model Performance Comparision 

The Gradient Boosting model followed closely, with a very 

low MAE of 0.80 and RMSE of 1.30, achieving an R² of 0.90. 

Gradient Boosting is known for its strength in handling both 

nonlinearities and interactions between features, which likely 

enabled it to perform better than the simpler models. Despite 

being a bit more complex than Random Forest, Gradient 

Boosting's sequential tree-building process allows it to 

improve predictions by focusing on areas where previous trees 

had errors. 

The Random Forest model also performed strongly, with an 

MAE of 0.95 and RMSE of 1.55, achieving an R² of 0.87. 

Random Forest’s ability to capture complex relationships 

between features and its robustness against overfitting 

contributed to its strong performance. However, it was slightly 

outperformed by Gradient Boosting, which leverages an 

additive strategy to correct errors from previous iterations of 

the model. 

The Time Series Model (ARIMA), typically used for 

forecasting temporal data, performed better than the Linear 

Regression model, with a lower MAE of 1.20 and RMSE of 

1.90, achieving an R² of 0.83. The ARIMA model’s strength 

lies in its ability to account for trends and seasonality in time-

dependent data, making it a better option than linear 

regression, which struggles with capturing nonlinearities and 

interactions between variables. However, ARIMA still fell 

short of the tree-based models, which are better suited for this 

type of multivariate, nonlinear dataset. 
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The Linear Regression model, with an MAE of 1.45, RMSE 

of 2.10, and R² of 0.78, showed the poorest performance. 

While linear regression can be effective in simple scenarios, 

its performance is limited when faced with complex, nonlinear 

relationships between input variables and output, as seen in 

the case of predicting power generation from weather data. 

The relatively high MAE and RMSE values confirm that 

linear regression was unable to fully capture the dynamics of 

the data. 

The comparison of these models demonstrates the significant 

improvements offered by machine learning approaches, 

especially tree-based methods and neural networks, over 

traditional time series and regression models. Neural 

Networks, in particular, excel when the relationship between 

the variables is complex and nonlinear, as in this case, where 

weather variables interact in intricate ways to influence power 

generation. 

Conclusion: 
This study aimed to compare the performance of different 

predictive models for forecasting power generation from 

weather-related variables. We evaluated five models: Linear 

Regression, Time Series Model (ARIMA), Random Forest, 

Gradient Boosting, and Neural Networks. Based on the 

results, we concluded that Neural Networks offered the most 

accurate predictions, outperforming all other models with the 

lowest MAE, RMSE, and MAPE, and the highest R² value. 

This highlights the model’s capacity to capture complex, 

nonlinear relationships within the data, which is critical in 

power generation forecasting. 
The Gradient Boosting model followed closely, 

demonstrating excellent performance with a strong ability to 

handle nonlinearity and interactions between variables. 

Random Forest also performed well, though it was slightly 

outpaced by Gradient Boosting in terms of accuracy. On the 

other hand, ARIMA, a traditional time-series model, was 

effective in capturing temporal trends and seasonality but 

lacked the flexibility to handle the multivariate nature of the 

data, resulting in slightly higher error metrics compared to the 

machine learning models. 

Finally, the Linear Regression model showed the weakest 

performance, underscoring its limitations in dealing with the 

complex relationships between weather factors and power 

generation. Overall, machine learning methods, especially 

tree-based algorithms and neural networks, proved to be far 

superior to traditional models for this task. 

In conclusion, Neural Networks are highly recommended for 

forecasting power generation, given their superior 

performance in capturing intricate patterns. Future research 

should explore further model refinements, hyperparameter 

tuning, and ensemble methods to enhance prediction accuracy. 
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