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ABSTRACT 
Botnet attacks may result in unauthorised access, Distributed Denial-of-Service (DDoS) attacks, and data breaches 

on Internet of Things devices. Because botnets are dynamic and IoT devices have limited resources, traditional 

security solutions often fail. This review offers an in-depth analysis of deep learning and machine learning 

techniques for detecting and preventing botnet attacks in Internet of Things environments. It looks at deep learning, 

supervised, and unsupervised models, highlighting how they may improve network security, automate anomaly 

detection, and predict new threats. The study highlights AI's potential to enhance IoT security while examining 

many important issues, such as unbalanced datasets, adversarial threats, computational constraints, and data privacy 

issues. Advanced methods like federated learning, explainable AI, hybrid deep learning models, and transfer 

learning are being researched to overcome these problems. The efficacy of the model is further evaluated by 

reviewing assessment metrics, feature extraction methods, and frequently used datasets. In order to improve IoT 

security, future research approaches will include adaptive security mechanisms, ethical AI frameworks, and real-

time threat intelligence. This paper highlights the revolutionary potential of AI-driven security solutions and 

promotes more innovation for real-world application by synthesising previous research. 
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I. INTRODUCTION 
Society is undergoing a significant transformation due 

to the Internet & the corresponding digital revolution. 

These days, the majority of people's daily activities, 

including banking, communication, trade, education, 

entertainment, and information sharing, are done 

online. A parallel movement of criminal and malicious 

entities to cyberspace is occurring as a result of the 

relocation of these economic and social activities on 

the Internet as well as the rise in their use. Malware 

trends released by several organisations, such as 

Symantec[l], show an ever-increasing quantity of 

malware and assaults recorded year, demonstrating 

how these criminal elements take advantage of weak 

systems and people for financial benefit. Since 

cyberattacks just need a computer & an Internet 

connection, they are less expensive to execute than 

physical attacks since, unlike in the real world, the 

target's geographic location is not a barrier to attack. 

Botnets are networks of hacked computers, each of 

which is referred to as a "bot" and is managed by a 

botmaster via a Control and Command (C&C) 

channel. Bots use a variety of infection techniques to 

infect host computers linked to the network, such as 

searching for susceptible computers, compromising 

websites and infecting users of those hacked sites (a 

process known as drive-by downloads), or, more 

recently, social media accounts. The botmaster uses 

the C&C channel to send instructions and binary 

updates to these infected zombie devices. Individual 

bots carry out assaults including spam generation, 

keylogging, phishing, Distributed Denial of Service 

attacks, creating phoney clicks to advertising websites, 

and more based on the orders they get. Additionally, 

without the genuine users' knowledge, bot computers 

are utilised to host illicit information and operate as 

proxy servers. Under the concept of Crimeware as a 

Service (CaaS), botnets are hired out for illicit 

purposes [2]. Up to 20% of ad clicks and over 85% of 

spam emails are thought to be caused by botnets [3]. 

As shown by the Russian government-sponsored 

botnet-driven denial-of-service attacks on the 

government websites of [4] & [5], botnets also 

represent a serious danger to national security. The 

most recent instance of botnet-based cybercrime was 

the May 2014 discovery by Intel Crawler of the 

massive Point-of-Sale (PoS) network known as 

Nemanja [5]. PoS systems were home to the Nemanja 

botnet, which gathered credit card information and 
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other login credentials in order to access other 

systems. Research on botnet detection has to be done 

immediately and actively because of the wide variety 

of assaults that botnets may be used for and the amount 

of harm they can do. 

A botnet, as defined by [7] and [8], is an overlay 

network made up of several hosts infected with bots 

that are controlled by an attacker to carry out harmful 

actions. According to [9], bot masters have the 

authority to instruct the server to execute a variety of 

cyberattacks. These threats include DDoS attacks, 

spam, phishing, click fraud, and data theft. One of the 

biggest security threats associated with the internet is 

these cyberattacks. Given the security risks presented 

by the spread of botnets, both academic and 

commercial research continues to place a high priority 

on the detection and identification of these harmful 

networks, particularly those that are still in the early 

phases of development. First, there are a number of 

complex and unique features that distinguish botnet 

control and command techniques. In particular, 5G, 

the Internet of Things, intelligent terminals, cloud 

platforms, & social media sites like Facebook and 

Twitter have all been gradually compromised by 

botnets. [10] [11] [12] Numerous technologies, such 

as peer-to-peer networks, phishing, rapid flux, 

anonymised networks, bitcoin networks, lightning 

networks, zero-day vulnerabilities, and more, are used 

and disseminated by botnets.  

II. BACKGROUND AND 

MOTIVATION 
By providing smooth communication between smart 

devices, from industrial control networks to home 

automation systems, the Internet of Things  has 

completely transformed a number of sectors. 

However, this quick growth has also made IoT devices 

vulnerable to serious cybersecurity risks, of which 

botnet attacks are now among the most deadly. 

Cybercriminals may use a botnet, which is a collection 

of infected devices, to conduct extensive attacks 

including Distributed Denial-of-Service (DDoS), data 

breaches, and unauthorised access. High-profile 

attacks, such as the Mirai botnet, have shown how 

destructive these threats may be, resulting in 

compromised personal data, malfunctioning systems, 

and financial losses. IoT devices have limited 

computing capabilities, and botnet attacks are 

constantly changing, thus traditional security methods 

like firewalls, signature-based intrusion detection 

systems, and encryption often fail. Detecting zero-day 

attacks is difficult for rule-based security methods, and 

keeping threat signatures current is difficult. This 

makes the need for automated, intelligent, and flexible 

security systems that can quickly identify and 

neutralise botnet threats critical.  

Deep Learning and Machine Learning have become 

effective methods for behaviour analysis, anomaly 

detection, and predictive security in Internet of Things 

networks in response to these issues. Instead of 

depending on preset criteria, machine learning models 

may identify anomalies in network data, learn from 

past attack patterns, and identify risks that haven't been 

identified before, unlike conventional approaches. 

Adaptive defence mechanisms, network traffic 

analysis, and real-time botnet detection are made 

possible by supervised, unsupervised, and deep 

learning approaches. 
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Figure Error! No text of specified style in document..1 Flow Diagram for Botnet Detection  

Unbalanced datasets, adversarial AI attacks, high computing costs, and the need for explainability in security choices 

are some of the obstacles that still exist despite the encouraging developments. Potential remedies are provided by 

cutting-edge technologies such as explainable AI, hybrid deep learning models, federated learning, and edge-based 

security frameworks. The purpose of this review is to examine the difficulties associated with ML and DL approaches, 

assess their efficacy in preventing botnet attacks, and suggest future lines of inquiry. The revolutionary importance of 

AI-driven cybersecurity in safeguarding IoT networks is highlighted by this study, which bridges the gap between 

research and practical application. 

III. AI-BASED MACHINE LEARNING APPROACHES FOR BOTNET DETECTION   
Machine learning methods driven by artificial intelligence are becoming crucial for identifying botnet networks of 

infected devices being utilised maliciously. AI-driven strategies provide flexibility, automation, and improved 

accuracy in detecting changing threats in contrast to conventional rule-based techniques. Analysing network traffic 

patterns, identifying irregularities, and categorising malicious actions are the foundations of AI-based botnet detection. 

These methods fall under the following categories: 

Supervised Learning 

Labelling training data is a technique used in supervised learning. The computer "learns" from the labelled patterns to 

build the classifier, which then uses those patterns to predict labels for future data [13,14]. The training data in 

unsupervised learning are not labelled. In this method, the classifier is created by the computer "learning" by 

examining data attributes. The most widely used machine learning algorithms are Decision Tree, BayesNet, J48, Naive 

Bayes, and Support Vector Machine [13,14]. SL and UL are combined in semi-supervised learning. When using this 

method, the input training dataset generally has a big number of unlabelled data and a small amount of labelled data 

with labels. Every strategy has its own application area, advantages, and disadvantages [13,15]. 

• Logistic Regression: A simple but powerful approach for botnet identification, logistic regression is very 

useful for spotting unwanted network activity. It uses extracted data such as packet size, flow length, and 

communication patterns to estimate the likelihood that a network flow is botnet-infected. With well-defined 

feature selection, LR can differentiate between benign & malicious behaviour since botnets often display 

unique traffic fingerprints. Its linear design, however, restricts its ability to identify intricate botnet systems, 

particularly in adaptive botnets that exhibit dynamic behaviour. Because of its ease of use and interpretability, 

LR is often used as a baseline classifier in intrusion detection systems. 

http://www.ijcstjournal.org/


International Journal of Computer Science Trends and Technology (IJCST) – Volume 13 Issue 2, Mar - Apr 2025 

 

ISSN: 2347-8578                               www.ijcstjournal.org                                                  Page 71 

• Random Forest: Because Random Forest can manage high-dimensional network traffic and recognise 

intricate assault patterns, it is often used for botnet detection. It is robust to noisy or incomplete data by 

constructing numerous decision trees using randomly chosen network parameters including connection 

length, protocol kinds, and packet intervals. Both centralised and peer-to-peer (P2P) botnets may be 

successfully detected using RF, which offers excellent accuracy while reducing overfitting. However, parsing 

large-scale network records may be computationally demanding. For security analysts working with intrusion 

detection systems (IDS), its interpretability and feature relevance rating make it useful. 

• KNN: K-Nearest Neighbours is a simple yet effective method for detecting botnets that groups network data 

according to how closely it resembles known botnet behaviours. KNN compares labelled network traffic 

samples to distance metrics like cosine or Euclidean similarity to identify malicious flows. When trained on 

well-structured datasets, it performs effectively, especially when identifying botnets that exhibit recurring 

communication patterns. However, real-time applications may be limited by its sensitivity to feature selection 

and high computational cost in large-scale network systems. Approximate Nearest Neighbours and KD-Trees 

are two optimised variants that aid in enhancing performance in high-dimensional network traffic analysis. 

• Decision Tree: By recursively separating characteristics like packet time, source-destination relationships, 

and protocol use, decision trees are able to categorise network traffic. They work well for rule-based botnet 

identification because botnets often display recognisable traffic patterns. Because DTs provide data that are 

easy to read, cybersecurity researchers may utilise them to better analyse attack patterns. Deep trees, however, 

have a propensity to overfit, which might result in false positives or decreased effectiveness on novel botnet 

variations. Nevertheless, decision trees are the basis for more resilient ensemble techniques, such as Random 

Forest, which increase detection precision while preserving botnet classification efficiency. 

• SVM: By identifying an ideal decision boundary, Support Vector Machine, a reliable classification model 

for botnet detection, successfully separates botnet traffic from normal network flows. It is helpful for 

identifying covert botnets that imitate typical user behaviour since it can employ nonlinear kernels to capture 

complicated traffic behaviours. SVM has trouble scaling in big network datasets but does well in high-

dimensional feature spaces. For the best detection performance, hyperparameter adjustment and kernel 

selection are essential. SVM has been effectively used in intrusion detection systems (IDS) to identify zero-

day botnet attacks, despite its processing demands. 

• MLP: Because it can recognise complex assault patterns, the Multilayer Perceptron, a kind of artificial neural 

network, is very good at detecting botnets. MLP distinguishes between legitimate and botnet traffic by 

examining characteristics such as packet frequency, traffic entropy, and domain name system (DNS) 

requests. Backpropagation-trained MLP is very effective in identifying adaptive botnets, which alter their 

behaviour to avoid detection. But it needs a lot of processing power and big datasets. Dropout and 

regularisation help to reduce the problem of overfitting. MLP increases resistance to changing cyberthreats 

by providing a solid basis for intrusion detection systems based on deep learning. 

Unsupervised Learning 

Because unsupervised learning techniques don't need labelled data, they can effectively identify botnet behaviours 

that haven't been seen before. These methods examine network traffic patterns and spot irregularities that can point 

to botnet activity. 

• K-Means : Botnet identification in unlabelled datasets may benefit from the use of the K-Means clustering 

technique, which classifies network traffic according to feature similarity. While botnet activity creates 

distinct clusters or outliers, regular traffic is clustered together to identify aberrant behaviours. Botnet activity 

may be distinguished by characteristics such as protocol use, flow size, and packet timing. K-Means, on the 

other hand, makes the assumption that cluster numbers are fixed, which may not match changing botnet 

trends. It requires pre-processing and tweaking and works well with structured datasets but has trouble with 

dynamic botnet behaviours. K-Means is often employed for anomaly identification in intrusion detection 

systems (IDS) in spite of these difficulties. 

• DBSCAN: Because it detects dense traffic clusters and marks sparse or odd network flows as anomalies, 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a useful tool for botnet 

identification. It is appropriate for identifying botnets with different communication patterns since, in contrast 

to K-Means, it does not need a set number of clusters. Peer-to-peer (P2P) botnets with decentralised traffic 
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architectures benefit greatly from DBSCAN. It is susceptible to parameter manipulation, however, and might 

mistakenly identify normal low-density traffic as botnet activity. Notwithstanding its drawbacks, DBSCAN 

is often used in intrusion detection systems to spot covert and hidden botnet activity. 

• Autoencoders: Neural networks such as autoencoders pick up on typical network behaviours and use 

reconstruction mistakes to spot abnormalities. The autoencoder reconstructs network traffic characteristics 

after compressing them into a latent space during training. A significant reconstruction error indicates 

possible botnet activity by implying departures from typical patterns. Zero-day botnet assaults may be 

successfully detected by autoencoders without the need for labelled data. However, they need high-quality 

normal traffic samples for training in order to function well. Poor generalisation may result from overfitting, 

and large false-positive rates are frequent. In spite of this, autoencoders are essential to anomaly detection 

systems that rely on deep learning. 

Deep Learning 

• Recurrent Neural Networks (RNNs):  Because recurrent neural networks examine sequential network 

traffic data to spot suspicious patterns, they are useful for botnet identification. RNNs analyse packet flows, 

timestamps, and behavioural sequences to identify abnormalities since botnet activity often displays temporal 

relationships. Nevertheless, vanishing gradient problems plague conventional RNNs, which restricts their 

capacity to identify long-term relationships. RNNs demand a lot of computer power and vast datasets, even 

if they increase detection accuracy over conventional techniques. They are useful in intrusion detection 

systems, especially for identifying changing botnet communication patterns, because of their capacity to 

simulate dynamic botnet behaviours. 

• Long Short-Term Memory (LSTMs) : By identifying long-term dependencies in network traffic sequences, 

Long Short-Term Memory (LSTM) networks—a subset of RNNs—are very good at identifying botnets. By 

addressing the vanishing gradient issue, LSTMs are able to identify persistent botnet behaviours over time. 

LSTMs can differentiate between legitimate and botnet traffic by examining packet interarrival delays, 

connection durations, and traffic quantities. They are quite good at identifying covert botnets that use sporadic 

or sluggish communication patterns. But LSTMs need a lot of labelled training data and are computationally 

demanding. In spite of this, they are often used in botnet categorisation in deep learning-based intrusion 

detection systems. 

• Convolutional Neural Networks (CNNs) : By considering network data as a structured feature map, 

Convolutional Neural Networks (CNNs), which are mainly employed in picture recognition, have been 

modified for botnet detection. CNNs discover patterns suggestive of botnet activity by extracting spatial 

associations from protocol distributions, flow sequences, and packet headers. They can handle encrypted 

communication without requiring thorough packet inspection and are especially useful for high-dimensional 

traffic data. CNNs classify botnets with great accuracy, but they need a lot of computing power and training 

data. For more thorough botnet detection systems, they are often paired with RNNs or LSTMs to improve 

time-series analysis. 

• Federated Learning (FL) : A decentralised method for detecting botnets, federated learning (FL) enables 

many devices or organisations to work together to build a model without exchanging raw network traffic 

data. This technique allows for large-scale botnet identification in various situations while improving user 

security and privacy. FL is especially helpful for IoT-based botnets, because dispersed devices help with 

training without disclosing private data. Communication cost, model synchronisation, and vulnerability to 

hostile assaults are obstacles, nevertheless. FL is becoming more popular in cybersecurity applications 

despite these drawbacks since it offers scalable and private botnet detection in edge and cloud-based 

networks. 

IV. DATASETS  

In SDN-based networks, a number of publicly accessible statistics are utilised for botnet and DDoS detection. 

Researchers may create and evaluate machine learning as well as deep learning models for botnet detection using 

these datasets, which combine simulated and real-world attack traffic. Some of the most widely used datasets are 

shown here, arranged according to their areas of interest. 
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1. Bot-IoT Dataset 

• Description: A dataset designed to study botnet behavior in IoT environments, including DDoS floods 

targeting SDN infrastructures. 

• Key Features: Includes large-scale IoT traffic data with centralized and P2P botnets. 

• Strengths: Highly relevant for IoT security research, focusing on emerging threats in smart networks. 

• Limitations: Due to its high data volume, real-time processing can be challenging. 

• Availability: Publicly available at University of New South Wales (UNSW) and IEEE DataPort. 

2. CIC-DDoS2019 Dataset 

• Description: A large-scale dataset designed for DDoS attack detection, covering modern attack vectors in 

SDN environments. 

• Key Features: Contains multiple DDoS attack types such as UDP flood, SYN flood, HTTP flood, and more, 

with labeled network traffic. 

• Strengths: Extensively used in intrusion detection systems (IDS) and anomaly-based DDoS detection for 

SDN networks. 

• Limitations: Due to its large dataset size, it requires efficient data preprocessing and feature selection for 

ML/DL models. 

• Availability: Publicly available on the UNB CIC website. 

3. TON_IoT Dataset 

• Description: This dataset integrates IoT, network traffic, and system logs, making it useful for detecting both 

DDoS and botnet attacks in SDN-based networks. 

• Key Features: Includes network flow records, system logs, and telemetry data, allowing multi-dimensional 

threat detection. 

• Strengths: Useful for next-generation IDS solutions, particularly in IoT-SDN security research. 

• Limitations: Requires data fusion techniques due to its diverse data sources. 

• Availability: Can be accessed on IEEE DataPort and Kaggle. 

4. UNSW-NB15 Dataset 

• Description: A hybrid dataset containing normal and attack traffic, including DDoS and botnet samples. 

• Key Features: Provides 49 network features, such as protocol types, traffic analysis, and attack labels, making 

it useful for IDS research. 

• Strengths: Covers a wide range of cyberattacks beyond botnets, making it beneficial for general intrusion 

detection in SDN. 

• Limitations: The dataset contains synthetic attack data, which may not fully represent real-world botnet 

behaviors. 

• Availability: Publicly available via Australian Centre for Cyber Security (ACCS). 

5. CTU-13 Dataset 

• Description: One of the earliest datasets focused on real-world botnet detection, collected from Czech 

Technical University. 

• Key Features: Contains 13 botnet scenarios with real-world botnet communication and attack behaviors. 

• Strengths: Useful for flow-based anomaly detection in SDN and traditional networks. 

• Limitations: Some attack traces are outdated, requiring feature selection and preprocessing for modern IDS 

applications. 
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• Availability: Available at Czech Technical University and research platforms like Kaggle. 

V. RELATED WORK 
A comprehensive analysis of existing research is essential to understand the developments and challenges in a specific 

field. This paper explores advancements in botnet attack prevention in Internet of Things (IoT) devices using Artificial 

Intelligence (AI) by systematically reviewing recent studies. As IoT devices become more prevalent, they face 

increasing security threats, particularly botnet attacks that compromise device integrity and user privacy. AI-driven 

techniques, including machine learning and deep learning, have shown promising results in detecting and preventing 

such attacks in real time. This review aims to evaluate current approaches, identify research gaps, and highlight the 

effectiveness of AI-based security solutions in protecting IoT ecosystems from evolving cyber threats. 

David Concejal Muñoz et. al [16] Intrusion detection systems (IDS) have been widely explored for detecting botnet 

attacks, with cloud-based machine learning and deep learning models playing a key role. However, the rapid growth 

of the Internet of Things (IoT) demands a more decentralized approach due to high data volume and latency concerns. 

This study proposes an anomaly-based IDS deployed at the IoT-edge, utilizing software-defined networking (SDN). 

In this architecture, IoT-edge devices request behavioral insights from the SDN controller, representing device activity 

as communication graphs rather than traditional network traffic analysis. This method reduces data volume while 

improving detection accuracy. The proposed approach is validated using botnet attack simulations with the IoT-23 

dataset. Experimental results demonstrate high detection accuracy with minimal memory and storage requirements, 

making it suitable for resource-constrained IoT devices. By integrating edge computing and SDN, this approach 

enhances efficiency, real-time detection, and scalability in IoT network security. 

Khalid Alissa et. al [17] With the increasing number of Internet of Things (IoT) devices connected to networks, 

security threats and cyberattacks, such as botnets, have become more sophisticated and pose significant risks. These 

attacks disrupt network operations and services, compromising the reliability and security of IoT ecosystems. To 

address this challenge, recent studies have explored machine learningand deep learning techniques for detecting and 

classifying botnet attacks in IoT environments. This study focuses on implementing machine learning methods for 

binary classification using the publicly available UNSW-NB15 dataset. To overcome the class imbalance issue, the 

SMOTE OverSampling technique was applied. A complete machine learning pipeline was developed, including 

exploratory data analysis to gain insights into the dataset, followed by a structured preprocessing approach with six 

essential steps. Three machine learning models decision tree, XGBoost, and logistic regression—were trained, tested, 

and evaluated based on multiple performance metrics, including accuracy, F1-score, recall, and precision. 

Experimental results indicate that the decision tree model achieved the highest performance, with a 94% test accuracy, 

demonstrating its effectiveness in classifying botnet attacks in IoT networks. 

Table 1 Related Work on Malware and Botnet Detection Techniques  

Study Focus Area Methodology Key Findings Limitations 

Alsmadi & Alqudah 

(2021)[18] 
Cyber Attacks 

Analysis of modern 

attack trends and 

malware types 

Rise in malware 

attacks due to 

increased internet 

speed and evolving 

threats 

Detection is 

difficult due to rapid 

changes in attack 

architectures 

Tran et al. (2018) 

[19] 
Zero-Day Attacks 

Research on 

malware detection 

techniques 

Emphasized 

challenges in 

detecting advanced 

malware types (e.g., 

ransomware, DDoS) 

Malware 

continuously 

evolves, making 

detection harder 

Ianelli & 

Hackworth (2005) 

[20] 

Botnets 

Study of botnet 

threats 

Botnets facilitate 

cybercrime like 

DDoS, phishing, 

and fraud 

Hard to detect due 

to their hidden 

nature 

Li et al. (2009) [21] Botnet Evolution 
Review of botnet 

history (e.g., 

P2P botnets 

emerged as a more 

Detection 

techniques need to 
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Eggdrop, Sinit, 

Phatbot) 

sophisticated attack 

method 

evolve with botnet 

structures 

Taylor (2019) [22] 
Behavior-based 

Detection 

Evaluates program 

code and executed 

actions 

Detects malware 

based on access to 

critical files and OS 

instructions 

Ineffective if 

malware alters its 

code dynamically 

Kugisaki et al. 

(2007) [23] 

Botnet 

Communication 

IRC-based botnet 

detection 

Differentiates 

client-server from 

bot-server 

communication 

Fails if bots use 

non-IRC 

communication 

Zhao et al. (2013) 

[24] 
BotMiner Model 

Clusters bot 

behavior into 

communication (C-

plane) and activity 

(A-plane) 

Detects similar bot 

behaviors in 

network traffic 

Less effective for 

highly dynamic 

botnets 

Ji et al. (2015) [25] BotCatch Model 

Combines signature 

and behavior-based 

detection 

Uses multi-feedback 

mechanism for 

malware detection 

Requires continuous 

updating of 

malware signatures 

Strayer et al. (2008) 

[26] 

Botnet Traffic 

Analysis 

Filters and clusters 

botnet-related traffic 

based on packet 

timing and 

bandwidth 

Effectively groups 

botnet flows based 

on similarities 

May miss botnets 

with irregular traffic 

patterns 

Barsamian (2009) 

[27] 

Synchronous Bot 

Behavior 

Detects periodic 

botnet activity 

Identifies 

predictable bot 

behaviors in 

network traffic 

Not effective for 

botnets that change 

behavior 

dynamically 

Torres et al. (2016) 

[28] 

RNN for Botnet 

Detection 

Uses RNN and k-

fold validation for 

anomaly detection 

Achieves minimal 

false alarms 

Struggles with 

traffic imbalance 

and 

indistinguishable 

patterns 

Rehak et al. (2009) 

[29] 

Cooperative 

Adaptive Detection 

Multi-stage 

approach (anomaly, 

trust model, 

collector) 

Reduces false 

positive predictions 

Performance 

depends on accurate 

anomaly definitions 

García et al. (2014) 

[30] 
BClus Framework 

Uses known bot 

behaviors to cluster 

similar threats 

Recognizes bot 

behaviors based on 

IP clusters 

May not detect 

novel botnet 

patterns 

 

VI. EVALUATION METRICS 

To effectively detect botnet attacks in Internet of Things environments using Artificial Intelligence, various 

performance metrics are employed to evaluate detection models. These metrics provide insights into a model’s 

correctness, reliability, and practicality, allowing researchers and practitioners to compare approaches and select the 

most suitable one for their needs. Common metrics include F1-score, recall, precision, and area under the receiver 

operating characteristic curve (AUC-ROC), each representing a different aspect of the model's performance. Precision 

measures the proportion of correctly identified botnet attacks among all predicted attacks and is calculated as the 

number of true positives (TP) divided by the sum of true positives and false positives (FP). Since investigating false 

positives can be costly, a model with a low false alarm rate is preferred, though being overly cautious may result in 

undetected threats. Recall, also known as sensitivity or the true positive rate, evaluates how many actual botnet attacks 

the model correctly identifies and is determined by dividing true positives by the sum of true positives and false 

negatives (FN). A high recall indicates strong detection capability, which is crucial in security-sensitive applications 

where undetected attacks can have severe consequences. However, high recall may lead to excessive false positives, 

http://www.ijcstjournal.org/


International Journal of Computer Science Trends and Technology (IJCST) – Volume 13 Issue 2, Mar - Apr 2025 

 

ISSN: 2347-8578                               www.ijcstjournal.org                                                  Page 76 

causing unnecessary alerts and disruptions. The F1-score, which is the harmonic mean of precision and recall, helps 

balance these trade-offs, making it particularly useful for handling imbalanced datasets common in botnet detection.  

It is calculated as F1 = 2 × (precision × recall) / (precision + recall), with a high score indicating a good balance 

between identifying threats and minimizing false positives. Another key metric, AUC-ROC, evaluates a model’s 

ability to differentiate between botnet and normal traffic at different thresholds. The ROC curve compares recall and 

false positive rate (FPR), where an AUC value of 0.5 indicates no discriminative ability, and 1.0 represents perfect 

classification. This metric is useful when the ideal classification threshold is uncertain or varies across different 

applications. Additional metrics such as specificity, accuracy, and the Matthews correlation coefficient (MCC) further 

help assess model performance. Accuracy measures the proportion of correct predictions but can be misleading in 

imbalanced datasets where botnet traffic is rare. Specificity quantifies the percentage of correctly identified normal 

traffic, complementing recall. MCC, a correlation coefficient between actual and predicted classifications, is 

particularly useful for unbalanced datasets, providing a comprehensive performance measure. Selecting the 

appropriate evaluation metrics depends on the specific goals and constraints of botnet detection systems. In critical 

security applications, recall may be prioritized to ensure all botnet threats are detected, even at the cost of false 

positives. Conversely, in resource-constrained environments, precision may be more important to reduce unnecessary 

investigations. Since false positives and false negatives impact security differently, no single metric fully captures the 

real-world consequences of classification errors. By carefully analyzing these trade-offs, researchers and practitioners 

can select the best combination of metrics to develop and improve AI-driven botnet detection systems, ensuring 

optimal security in IoT networks. 

Table 2 Metrics Used in Classification Problems 

 

 

VII. CHALLENGES AND LIMITATIONS 
The efficacy of AI-driven botnet detection in IoT systems is impacted by a number of important issues. Data imbalance 

is one of the main issues since botnet assaults are far less common than regular network traffic. A significant 

percentage of false negatives, in which real botnet infections go unnoticed, might arise from biassed algorithms that 

are unable to identify minority-class threats. The growth of attack methods is another significant obstacle, as fraudsters 

are always creating more complex botnets that may evade detection systems. AI models that have been trained on 

historical data may not be able to identify novel attack patterns, necessitating frequent updates and retraining—a 

process that may be costly and time-consuming. Accurate detection also depends heavily on feature selection and data 

quality. Large volumes of diverse data are produced by IoT devices, making it challenging to identify the most relevant 

characteristics for categorisation. Model performance is further deteriorated by poor data quality, such as noise and 

missing values. Due to the high processing power and memory requirements of sophisticated AI models, especially 

those based on deep learning, computational cost & scalability are also major challenges. Complex models for real-

time detection are difficult to deploy on many IoT devices due to their restricted hardware resources. 
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The actual implementation of AI-based botnet detection systems is further limited by a number of constraints. 

Interpretability and explainability are two major drawbacks; many AI models, particularly deep neural networks, 

operate as "black boxes," making it difficult for security analysts to comprehend how they arrive at their conclusions. 

This lack of transparency makes it harder to comply with regulations and erodes confidence in AI-driven security 

solutions. The possibility for adversarial assaults, in which attackers alter input data to trick AI algorithms, resulting 

in misclassification and possible security breaches, is another significant drawback. As a result, AI-based detection 

systems become less reliable. Analysing network traffic also raises privacy issues since handling private user data 

may be necessary for data packet inspection and monitoring. When implementing AI-driven security solutions, ethical 

and legal issues pertaining to data protection and adherence to laws like GDPR must be addressed. Lastly, because 

AI-based detection systems must cooperate with conventional cybersecurity measures like firewalls and intrusion 

detection systems, integration with current security frameworks continues to be a constraint. Maintaining high 

detection accuracy while minimising false alarms and ensuring smooth interoperability is still a difficult task that calls 

for constant innovation and research. 

VIII. RECENT TRENDS AND FUTURE DIRECTIONS 

In recent years, AI-driven botnet detection in IoT contexts has advanced quickly, and a number of new developments 

are influencing cybersecurity going forward. Combining deep learning (DL) with reinforcement learning (RL) for 

real-time botnet identification is one of the most prominent developments. While deep learning methods like 

convolutional neural networks (CNNs) & recurrent neural networks (RNNs) automatically identify intricate patterns 

from network traffic data, increasing detection accuracy, traditional machine learning models need human feature 

selection. By allowing models to develop adaptive defence techniques against changing botnet threats, reinforcement 

learning significantly improves security. The use of federated learning for decentralised security is another significant 

development. This approach addresses privacy issues while preserving detection efficacy by enabling AI models to 

be trained across several IoT devices without exchanging raw data. 

Since moving detection techniques closer to IoT devices lowers latency and improves real-time threat mitigation, edge 

computing & AI-driven anomaly detection are also becoming more popular. By processing data locally, edge AI 

models reduce dependency on cloud computing and enhance scalability for extensive IoT networks. Furthermore, a 

viable avenue for botnet protection is the integration of blockchain technology. By limiting unwanted access and 

guaranteeing transparent monitoring of network activity, blockchain's decentralised and impenetrable nature improves 

security. The use of generative adversarial networks (GANs) for adversarial attack resistance is another expanding 

trend. In GANs, artificial intelligence (AI) models are taught to recognise and counteract complex evasion strategies 

that attackers use to get around detection systems. 

Future studies will concentrate on creating self-learning AI models that can identify unidentified botnet variations 

without the need for regular retraining. Explainable AI will also be prioritised as it will increase regulatory compliance 

and foster confidence by making detection models easier to understand and comprehend. Furthermore, by allowing 

AI models to analyse enormous volumes of data at previously unheard-of rates, the use of quantum computing might 

completely transform botnet detection. A multi-layered security strategy that combines AI with conventional 

cybersecurity techniques will be crucial to improving resistance against botnet assaults as cyber threats continue to 

change. AI-driven botnet detection solutions will become more effective, flexible, and safe by using these 

developments, guaranteeing strong defence for IoT networks going forward. 

IX. CONCLUSION 

In this research, we investigate cutting-edge AI-powered methods for detecting botnets and their revolutionary 

potential to improve cybersecurity. Real-time botnet activity detection, anomaly detection, and network traffic analysis 

have all been made possible by machine learning &  deep learning approaches. These models are essential for 

protecting contemporary networks because they continually learn and adapt to changing attack patterns, outperforming 

conventional rule-based systems. However, a number of obstacles prevent their broad use. AI models may be 

manipulated by adversarial assaults, which can result in incorrect categorisation and detection evasion. Furthermore, 

the deployment of sophisticated ML models is constrained by the resource limitations of IoT devices. Concerns about 

trust and transparency in cybersecurity applications are also raised by the inability to comprehend AI-driven 

conclusions. Promising answers to these problems are provided by recent developments. By improving model 

transparency, explainable AI (XAI) enables security analysts to comprehend and have faith in AI-based judgements. 

Decentralised training is made possible by federated learning, which enhances detection accuracy over dispersed IoT 

networks while protecting data privacy. Furthermore, transfer learning methods and hybrid deep learning models 
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improve flexibility and resistance to changing botnet tactics. To guarantee reliable and responsible botnet 

identification, future research should concentrate on combining cost-sensitive learning, real-time adaptive security 

measures, and ethical AI frameworks. The effect and expense of cyberattacks will be decreased by proactive threat 

mitigation made possible by developments in incremental learning. A secure digital environment may be ensured by 

cybersecurity by tackling these issues and using AI advancements to create more robust, scalable, and efficient botnet 

defence systems. 
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