
International Journal of Computer Science Trends and Technology (IJCST) – Volume 13 Issue 2, Mar - Apr 2025

ISSN: 2347-8578 www.ijcstjournal.org Page 86

Node.js Research Paper
ARYAN- 2302310140023

SHAILY- 2302310140085

SONIKA-230231014009

TANISHK-2302310140104
Department of Computer Applications

APJ Abdul Kalam University

Lucknow, Uttar Pradesh

ABSTRACT
Node.js has led to a complete stack developer who can manage the server and client side themselves. With event-

controlled and non-blocking and asynchronous approaches, the approach is quick and reliable for heavy files and

heavy network applications that developers can maintain a complete project on individual pages (SPAs) and use

for IoT. The results of this study conclude with an overview of the field of research and literature implementation

and the challenges in node.js. Finally, suggestions are provided to improve the challenge.

Keywords: JavaScript, Node.js, event-driven, single-threaded, non-blocking, asynchronous.

1. INTRODUCTION

 Node.js is a JavaScript terminology environment. Based on the Chroms V8 JavaScript engine. This is a cross-

platform running time environment originally developed by Ryan Dahl in 2009 for server-side application

development. Knots allow you to easily create scalable, fast and easy applications. V8 and knots are primarily

written in C and C++, focusing on low memory consumption and performance. The server side can be considered

JavaScript. This was created to fix an issue where you can have a platform with performance over the network

communication period, which means spending excessive time processing web requirements and answers. With

node.js, JavaScript can be used on both the client and server edges. JavaScript is very well developed, highlighting

the domination of server-side scripts [1] [2].

Full stack developers are jacks of all stores and they are the ones who do everything. In most cases, backend

developers must have the skills of frontend developers and vice versa, putting an additional burden on learning

additional skills [4]. Thus, developers of three types of languages, namely JavaScripts, JavaScripts, CSS, servers,

client-side languages such as SERC, d. H. Client-side languages such as Java Script, Java Script, Java Script, Java,

Java, Java, CSS, Servs, and more. Like SQL Server, MySQL Server, Oracle. As shown in Figure 1.

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 13 Issue 2, Mar - Apr 2025

ISSN: 2347-8578 www.ijcstjournal.org Page 87

2. Node.js Libraries

The library modules in node.js, such as FS, HTTP, paths, ciphers, etc are very consistent and in the end mostly

reference features that live in Libuv projects, so you don't have direct access to your C++ code. Install node.js.

The idea for the NPM module is pretty much similar to the idea of Ruby Gems. This is a group of publicly

reusable components that can be used by easy installation through a web repository with version and dependency

management. Fig 2.

The library module in Node.js like fs, http, path, crypto etc. are very consistent API’s and they all ultimately refer to

a functionality that are mostly live inside the libuv project so that you do not have access directly to C++ code

written in it.

3.1 NPM-

The NPM website often finds a complete list of package modules or is accessed with the NPM CLI CLI tool.

The module ecosystem is kind and anyone can expose their own modules listed in the NPM repository. Some of

the most important useful NPM modules are today. Express-Express -Express.js is a Sinatra-inspired Node.js

framework for the facto standard node.js for most of Node.js applications. Connect -Connect -Connect is an

extensible HTTP -Server -Framework in node.js, providing high-performance plugins. Two most common web

socket components: Socket.io and Sockjs-A server-side components. mongodb and mongojs - Provides the API

of the mongodb object database in node.js Bluebird - a fully presented promise/A+ implementation with

particularly good performance. Wait - A JavaScript data library for data validation, analysis, manipulation, and

formatting. The list continues. There are many really useful packages available to everyone (there are no

shaming to those I have left here) [6].

4. Key Features of Node.js

4.1 blocking e/a:

The e/a method of the node.js standard library provides an unblocked asynchronous version and accepts

backgruff functions. Some methods may even block name counterparts that end in sync.

const content = fs.readfilesync('/file.txt);

// Here we block the file konsrosol.log(content) until it is read.

morework(); // console.log

asynchrones example:

const fs = request('fs'); fs.readfile('/file.txt, (err, content)=> {if(err)throw err; console.log(content);});

morework(); // console.log

Called before console.log. The ability to perform more work (without expecting to be able to read the file can be

a key design choice that allows for higher activation

5. CONCLUSION

 Node has transformed the usability of JavaScript, making Node a complete programming language. From browsers

to server-side scripting outside of browsers, Node has made possible the availability of a runtime environment, a

library full of free useful modules that can be imported by using an in-built tool named NPM. Node.js uses

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 13 Issue 2, Mar - Apr 2025

ISSN: 2347-8578 www.ijcstjournal.org Page 88

eventdriven I/O, non-blocking asynchronous programming to be lightweight and be efficient. Essentially, any

business utilizing Node can: utilize fewer servers, utilize less engineers and abatement page load times.

6. REFERENCES

[1] https://Node.js.org/en/docs

[2] Node.js in Action by Mike Cantelon, Marc Harter, T.J. Holowaychuk, Nathan Rajlich.

 [3] https://brainhub.eu/blog/9-famous-apps-usingnode-js

[4] https://insights.stackoverflow.com/survey/2019

[5]https://www.journaldev.com/7462/node-jsarchitecture-single-threaded-event-loop

[6] https://www.toptal.com/nodejs/why-the-hell-wouldi-use-node-js

[7] https://nodejs.org/api

[8] A Comparative Analysis of Node.js (Server-Side JavaScript) Nimesh Chhetri

http://www.ijcstjournal.org/

