
International Journal of Computer Science Trends and Technology (IJCST) – Volume 13 Issue 2, Mar-Apr 2025

ISSN: 2347-8578 www.ijcstjournal.org Page 204

Hybrid Intrusion Detection System with Flask Framework

Ms. Veda Swetha S*, Mr. Marimuthu R**
*(Department of Computer Science and Engineering, Dr. M.G.R. Educational and Research Institute, Chennai, India)

** (Assistant Professor, Center Of Excellence in Digital Forensics, Chennai, India)

ABSTRACT

The increasing intricacy of network traffic and the rising frequency of cyberattacks, ensuring effective network security has

become a formidable task. Intrusion Detection Systems (IDS) are essential tools for spotting and responding to suspicious

activity, yet many traditional IDS approaches fall short when it comes to identifying novel or advanced threats. This study aims

to overcome those limitations—specifically, the tendency for high false alarm rates and poor adaptability in dynamic

environments. The research proposes a hybrid IDS approach that harnesses the strengths of machine learning algorithms to

boost both detection accuracy and real-time responsiveness. By combining Random Forest, Support Vector Machine (SVM),

and Neural Network models, and deploying them within a Flask-based web interface, the system offers both analytical power

and practical usability. Trained and evaluated using the NSL-KDD dataset, the model undergoes thorough preprocessing and

feature selection to enhance performance. The final system not only achieves high accuracy across multiple attack categories

but also delivers an intuitive, real-time dashboard for actionable network monitoring.

Keywords:- Intrusion Detection System, Machine Learning, Random Forest, Support Vector Machine, Flask Application,

Cybersecurity, Real-Time Threat Detection.

I. INTRODUCTION

 The rapid growth of digital technologies has made

network security a critical concern. Traditional Intrusion

Detection Systems (IDS) are struggling to cope with the

complexity of modern cyberattacks. Hybrid Intrusion Detection

Systems (HIDS) that integrate multiple machine learning

techniques have shown potential to improve detection accuracy

[1]. These systems learn from data patterns and can adapt to

new attack types, offering a promising solution for modern

network security [2].

 Hybrid IDS are important because they combine

various machine learning models to enhance security by

reducing false positives and improving detection rates. As

cyber threats evolve, a hybrid approach can adjust to new attack

patterns, ensuring more accurate and reliable detection.

Integrating such systems with frameworks like Flask makes

them scalable and efficient for real-time applications [3].

 This research focuses on developing a hybrid IDS

using Flask combined with machine learning techniques. It

involves analyzing existing hybrid models, selecting the best

machine learning algorithms, and building a Flask-based

application. The performance of the proposed system will be

evaluated using standard datasets to assess its accuracy and

efficiency [4].

 Various hybrid intrusion detection systems have been

developed, such as those by Meryem and El Ouahidi (2021),

which combine different learning methods to improve accuracy

[5]. Bhagya (2020) also developed a system using Flask and

Random Forest for real-time intrusion detection [3]. However,

challenges like scalability, false positives, and adaptation to

new attacks remain, and this paper aims to address these

limitations.

II. LITERATURE REVIEW
Rasmitha et al. [5] introduce a Hybrid Intrusion

Detection System (HIDS) developed using the Flask

framework, which integrates various machine learning

techniques to strengthen the detection capabilities for network

intrusions. The model utilizes a combination of classifiers to

provide real-time protection. It demonstrates high accuracy and

low latency when detecting malicious activities, showcasing its

suitability for real-world deployment in dynamic environments.

This hybrid approach aims to overcome the limitations of

single-classifier models, especially in evolving network

conditions.

Karthik [6] presents a Flask-based Network Intrusion

Detection System (NIDS) that uses the KDDCUP'99 dataset for

both training and evaluation. Built on the Flask framework, the

system ensures a lightweight deployment for real-time

applications. Karthik’s method focuses on machine learning

algorithms like Random Forest and Support Vector Machines

(SVM) to detect both known and novel intrusions in network

traffic. The outcomes emphasize the system's ability to achieve

high detection accuracy, particularly in identifying Distributed

Denial-of-Service (DDoS) attacks.

Abhiram et al. [7] examine the integration of Machine

Learning (ML) techniques with Flask for creating a highly

effective Intrusion Detection System. Their approach employs

classification algorithms such as Decision Trees and Naive

Bayes to identify network intrusions. The combination of Flask

and machine learning techniques enables the system to provide

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 13 Issue 2, Mar-Apr 2025

ISSN: 2347-8578 www.ijcstjournal.org Page 205

real-time predictions and alerts, making it well-suited for

practical applications. The approach is evaluated on standard

datasets, demonstrating impressive results in both detection

accuracy and system efficiency.

Wang [8] investigates an Edge-Based Hybrid

Intrusion Detection Framework for Mobile Edge Computing,

which merges edge computing with machine learning

algorithms to enhance intrusion detection at the network edge.

This approach addresses the increasing demand for scalable

intrusion detection systems in Mobile Edge Networks (MENs).

Wang’s framework combines both supervised and

unsupervised machine learning models, ensuring efficient

detection of various cyberattacks in mobile environments while

maintaining accuracy and low latency in detection.

Abdallah et al. [9] propose a Hybrid Intrusion

Detection System (HIDS) that blends both supervised and

unsupervised learning techniques for identifying network

intrusions. Their system integrates k-means clustering and

Support Vector Machines (SVM) to enhance detection

accuracy and minimize false positives. When tested on standard

benchmark datasets, the system outperforms traditional models,

particularly in detecting complex and novel attacks.

III. PROPOSED METHODOLOGY:

 This research proposes a hybrid Intrusion Detection

System (IDS) that uses Random Forest and Linear Regression

to classify various network attacks, including DoS, Probe, R2L,

and U2R [2], [11]. To address data imbalance issues, the system

will utilize techniques like oversampling and synthetic data

generation for fair class representation [10].

 The models will be trained on labeled datasets such as

KDDCup’99 and integrated into a Flask-based web application

for real-time monitoring and visualization [7], [4].

Administrators will access detection results through a user-

friendly dashboard to ensure timely responses [5].

 Based on recent studies, hybrid systems are more

effective in adapting to evolving threats [1], [3]. This design

ensures scalability, accuracy, and adaptability, offering a robust

security solution.
By leveraging the advantages of different detection

methods, hybrid models are able to more accurately identify

complex and sophisticated attack patterns. They also help in

minimizing false positive rates, which enhances the overall

dependability of the system.

Fig 3.3: Hybrid Intrusion Detection System Architecture with Flask

MODULE DESCRIPTION:

The proposed Hybrid IDS consists of several

interconnected modules, each carefully designed to ensure

accurate detection, efficient monitoring, and effective threat

management. Every module plays a vital role in the data

processing pipeline, contributing to the system's overall

effectiveness and reliability.

 Data Collection Module

 Data Preprocessing Module

 Feature Engineering Module

 Data Balancing Module

 Model Building Module

 Model Training Module

 Evaluation Module

 Flask Web Application Module

 Visualization Module

 Real-Time Monitoring Module

Data Collection: This module is responsible for

systematically collecting raw data from various sources, such

as network logs, sensors, databases, APIs, and external

monitoring tools. The gathered data forms the foundation for

comprehensive analysis, feature extraction, and model training.

Sources can include packet captures, server logs, firewall logs,

and external threat intelligence feeds.

Data Preprocessing: This module focuses on cleaning and

preparing the collected data by handling missing values,

correcting errors, normalizing feature scales, and removing

outliers. Proper preprocessing improves data quality and

ensures that subsequent analytical processes work with reliable

and consistent datasets. Noise reduction, duplicate removal,

and format conversion are also carried out to standardize the

inputs.

Feature Engineering Module: In this module, relevant

features are extracted, selected, and transformed from the

preprocessed data. The goal is to identify significant attributes,

create new features from existing ones, handle categorical

variables, and scale numeric features to optimize the model's

ability to learn patterns and detect anomalies accurately.

Techniques like PCA and feature selection algorithms may be

used to refine the dataset.

Data Balancing: This module addresses the issue of

imbalanced class distribution in the dataset by using techniques

like oversampling of minority classes, under sampling of

majority classes, and synthetic data generation methods such as

SMOTE. This ensures a fair representation of all attack types,

preventing model bias and enhancing detection accuracy.

Balanced datasets help ensure that rare but critical attack

instances are not overlooked.

Model Building Module: This module involves selecting

and implementing machine learning algorithms, specifically

Random Forest and Linear Regression, to build predictive

models capable of accurately classifying network traffic as

either normal or malicious. Hyperparameters are fine-tuned to

optimize model performance, and ensemble techniques may be

used to combine predictions for better accuracy.

Model Training Module: Using labeled datasets, this

module trains the predictive models, adjusting model

parameters to maximize detection accuracy. Extensive training

ensures that the models can generalize well to unseen data and

detect complex attack patterns. Techniques such as cross-

validation and early stopping are applied to avoid overfitting.

Evaluation Module: This module evaluates the trained

models by assessing their performance against labeled datasets.

Metrics like accuracy, precision, recall, and F1-score are used

to evaluate how well the models can detect various attack types.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 13 Issue 2, Mar-Apr 2025

ISSN: 2347-8578 www.ijcstjournal.org Page 206

This module ensures that the models are reliable and robust for

real-world deployment.

Flask Web Application Module: This module focuses on

developing an interface and user-friendly web interface using

the Flask framework. It enables administrators to access real-

time IDS insights, manage alerts, and control system

configurations conveniently.

Visualization Module: This module is responsible for

generating dynamic and informative visual representations of

the IDS results, including charts, graphs, and dashboards. It

presents detected attack types, model performance metrics, and

network traffic patterns in an easy-to-understand format.

Visualization improves situational awareness and aids in

informed decision-making.

Real-Time Monitoring Module: This module enables

continuous, live monitoring of network traffic, feeding data

directly to the IDS models for immediate analysis and

detection. It allows the system to respond quickly to emerging

threats, ensuring proactive network security management.

Automated alerting and logging mechanisms are integrated to

assist administrators in making timely interventions.

Machine Learning Models Overview:

Random Forest: Random Forest is a powerful

ensemble technique that builds several decision trees and uses

them collectively to categorize network behavior. It combines

the results from individual trees to improve classification

accuracy, increase robustness against overfitting, and handle

large datasets with high-dimensional feature spaces. The

feature importance scores provided by Random Forest help

identify which attributes are most influential in predictions.

Linear Regression: While Linear Regression is

primarily used for regression tasks, it is applied in this IDS to

identify patterns and relationships within network traffic data.

Although Logistic Regression or other specialized classifiers

are generally more effective for classification tasks in intrusion

detection, Linear Regression serves as a baseline for

comparative analysis and highlights linear patterns within the

data.

IV. FINDINGS:

In this project, a web-based Intrusion Detection

System (IDS) was created using the Flask web framework.

The system was built and evaluated using the NSL-KDD

dataset, with the goal of detecting a variety of cyberattack

types, including Denial of Service (DoS), Probe, Remote to

Local (R2L), and User to Root (U2R) attacks.

To ensure smooth execution, the application

follows a clearly defined setup process through the

Command Prompt. The user begins by navigating to the

project folder, switching to the correct drive, activating a

designated Conda environment, defining the Flask

application environment variable, and finally launching the

Flask server. This organized approach helps maintain a

consistent and reliable method for running the real-time web

interface.

Fig 4.1: Running intrusion detection system with flask

 As part of the evaluation, a U2R attack was simulated using

specific input features such as duration, protocol_type,

service, flag, src_bytes, dst_bytes, logged_in,

wrong_fragment, same_dst_host_count, and

same_srv_count.

Fig 4.2: Intrusion detection system input page

 When this data was submitted for prediction, the

Random Forest model correctly labeled the traffic as

"Normal", while the Linear SVM misclassified it, indicating a

"DoS Attack".
Fig 4.3: Intrusion detection system output page

 Figure 4.4 illustrates a table presenting key network

features like Protocol Type, Service, and Duration. Beneath

the table, a descriptive section explains each feature in

detail—including its name, data type, value type, and typical

range—providing clarity on the dataset attributes.
Fig 4.4: NSL – KDD IDS sample dataset and features description

 The results from these experiments confirm the

efficiency of hybrid machine learning models in identifying

both common and previously unseen attacks. The integration of

the NSL-KDD and CIC-IDS2017 datasets has contributed

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 13 Issue 2, Mar-Apr 2025

ISSN: 2347-8578 www.ijcstjournal.org Page 207

significantly to the system’s reliability across various threat

types. Additionally, the Flask-powered interface enables users

to monitor and analyze network traffic in real time with ease.

V. CONCLUSION:

 In conclusion, this project developed an Intrusion

Detection System (IDS) using Random Forest and Linear

Regression algorithms to classify network attacks, including

DoS, Probe, R2L, and U2R. The system addressed dataset

imbalances and provided real-time monitoring via a Flask

web interface, effectively reducing false positives and

improving accuracy.

 The IDS successfully identified both known and

novel attack patterns, demonstrating the effectiveness of

hybrid machine learning models, as noted by Maseno et al.

[1] and Rababah [2]. Real-time monitoring, as explored by

Bhagya [4], Talha [5], and Rasmitha [6], enabled prompt

responses to emerging threats.

 The combination of machine learning and Flask

proves to be a reliable solution for network security. Future

improvements, incorporating feedback and data updates,

will ensure the IDS remains effective against evolving

threats, with potential enhancements in file integrity

monitoring, as suggested by Sulaiman & Hilmi [14] and Sal.

VI. REFERENCE

[1]. Maseno, E. M., Wang, Z., & Xing, H. (2022). A

Systematic Review on Hybrid Intrusion Detection

Systems.

https://www.hindawi.com/journals/scn/2022/9663

052

[2]. Rababah, B. (2020). Hybrid Model for Intrusion

Detection Systems Using Machine Learning

Techniques. http://arxiv.org/abs/2003.08585

[3]. Meryem, A., & El Ouahidi, B. (2021). Hybrid

Intrusion Detection System Using Machine

Learning.

https://www.magonlinelibrary.com/doi/abs/10.101

6/S1353-4858(20)30056-8

[4]. Bhagya, - (2023). Network Intrusion Detection

Using Flask and Random Forest.

https://github.com/Bhagya-06/Network-Intrusion-

Detection

[5]. Talha, N. (2023). Machine Learning Model for

Network Intrusion Detection System Using Flask.

https://github.com/Talha-Nazir13/Machine-

Learning-Model-for-Network-Intrusion-detection-

System-using-Flask

[6]. Rasmitha, - (2023). Hybrid Intrusion Detection

System Using Flask.

https://github.com/Rasmitha05/Project-HIDS

[7]. Karthik, - (2023). Flask-Based NIDS Web

Application Using KDDCUP’99 Dataset.

https://github.com/karthik003/nids-flask-webapp

[8]. Abhiram, D. (2023). Intrusion Detection System

Using ML and Flask.

https://github.com/abhiramdvs/Intrusion-

Detection-System-using-ML-Flask

[9]. Wang, H. (2021). An Edge-Based Hybrid Intrusion

Detection Framework for Mobile Edge Computing.

https://link.springer.com/article/10.1007/s40747-

021-00498-4

[10]. Abdallah, A. (2020). A Hybrid Intrusion

Detection System Using Supervised and

Unsupervised Learning.

https://www.sciencedirect.com/science/article/pii/

S1877050920304091

[11]. Zhang, Y. (2020). Hybrid Intrusion

Detection System Based on Machine Learning.

https://www.mdpi.com/2079-9292/9/1/173

[12]. Yousef, R. (2022). NetGuard: A Random

Forest Approach to Intrusion Detection Using

Flask. https://ijsart.com/netguard-a-random-forest-

approach-to-network-intrusion-detection-using-

flask-89686

[13]. Alotaibi, E. (2021). Hybrid Intrusion

Detection Framework for Cloud Networks.

https://link.springer.com/article/10.1007/s10723-

021-09552-9

[14]. Sulaiman, N. S., & Hilmi, M. A. (2024).

Avoiding Data Loss and Corruption Towards File

Integrity Monitoring.

https://tatiuc.edu.my/ijset/index.php/ijset/article/vi

ew/222

[15]. Salman, A. (2022). File Integrity

Checkers: Functionality, Attacks, and Protection.

https://www.researchgate.net/publication/3611799

28

http://www.ijcstjournal.org/

