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ABSTRACT 

The increasing intricacy of network traffic and the rising frequency of cyberattacks, ensuring effective network security has 

become a formidable task. Intrusion Detection Systems (IDS) are essential tools for spotting and responding to suspicious 

activity, yet many traditional IDS approaches fall short when it comes to identifying novel or advanced threats. This study aims 

to overcome those limitations—specifically, the tendency for high false alarm rates and poor adaptability in dynamic 

environments. The research proposes a hybrid IDS approach that harnesses the strengths of machine learning algorithms to 

boost both detection accuracy and real-time responsiveness. By combining Random Forest, Support Vector Machine (SVM), 

and Neural Network models, and deploying them within a Flask-based web interface, the system offers both analytical power 

and practical usability. Trained and evaluated using the NSL-KDD dataset, the model undergoes thorough preprocessing and 

feature selection to enhance performance. The final system not only achieves high accuracy across multiple attack categories 

but also delivers an intuitive, real-time dashboard for actionable network monitoring. 

Keywords:- Intrusion Detection System, Machine Learning, Random Forest, Support Vector Machine, Flask Application, 

Cybersecurity, Real-Time Threat Detection. 

I. INTRODUCTION 
 
 The rapid growth of digital technologies has made 

network security a critical concern. Traditional Intrusion 

Detection Systems (IDS) are struggling to cope with the 

complexity of modern cyberattacks. Hybrid Intrusion Detection 

Systems (HIDS) that integrate multiple machine learning 

techniques have shown potential to improve detection accuracy 

[1]. These systems learn from data patterns and can adapt to 

new attack types, offering a promising solution for modern 

network security [2]. 

 Hybrid IDS are important because they combine 

various machine learning models to enhance security by 

reducing false positives and improving detection rates. As 

cyber threats evolve, a hybrid approach can adjust to new attack 

patterns, ensuring more accurate and reliable detection. 

Integrating such systems with frameworks like Flask makes 

them scalable and efficient for real-time applications [3]. 

 This research focuses on developing a hybrid IDS 

using Flask combined with machine learning techniques. It 

involves analyzing existing hybrid models, selecting the best 

machine learning algorithms, and building a Flask-based 

application. The performance of the proposed system will be 

evaluated using standard datasets to assess its accuracy and 

efficiency [4]. 

 Various hybrid intrusion detection systems have been 

developed, such as those by Meryem and El Ouahidi (2021), 

which combine different learning methods to improve accuracy 

[5]. Bhagya (2020) also developed a system using Flask and 

Random Forest for real-time intrusion detection [3]. However, 

challenges like scalability, false positives, and adaptation to 

new attacks remain, and this paper aims to address these 

limitations. 

II. LITERATURE REVIEW 
Rasmitha et al. [5] introduce a Hybrid Intrusion 

Detection System (HIDS) developed using the Flask 

framework, which integrates various machine learning 

techniques to strengthen the detection capabilities for network 

intrusions. The model utilizes a combination of classifiers to 

provide real-time protection. It demonstrates high accuracy and 

low latency when detecting malicious activities, showcasing its 

suitability for real-world deployment in dynamic environments. 

This hybrid approach aims to overcome the limitations of 

single-classifier models, especially in evolving network 

conditions. 

Karthik [6] presents a Flask-based Network Intrusion 

Detection System (NIDS) that uses the KDDCUP'99 dataset for 

both training and evaluation. Built on the Flask framework, the 

system ensures a lightweight deployment for real-time 

applications. Karthik’s method focuses on machine learning 

algorithms like Random Forest and Support Vector Machines 

(SVM) to detect both known and novel intrusions in network 

traffic. The outcomes emphasize the system's ability to achieve 

high detection accuracy, particularly in identifying Distributed 

Denial-of-Service (DDoS) attacks. 

Abhiram et al. [7] examine the integration of Machine 

Learning (ML) techniques with Flask for creating a highly 

effective Intrusion Detection System. Their approach employs 

classification algorithms such as Decision Trees and Naive 

Bayes to identify network intrusions. The combination of Flask 

and machine learning techniques enables the system to provide 
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real-time predictions and alerts, making it well-suited for 

practical applications. The approach is evaluated on standard 

datasets, demonstrating impressive results in both detection 

accuracy and system efficiency. 

Wang [8] investigates an Edge-Based Hybrid 

Intrusion Detection Framework for Mobile Edge Computing, 

which merges edge computing with machine learning 

algorithms to enhance intrusion detection at the network edge. 

This approach addresses the increasing demand for scalable 

intrusion detection systems in Mobile Edge Networks (MENs). 

Wang’s framework combines both supervised and 

unsupervised machine learning models, ensuring efficient 

detection of various cyberattacks in mobile environments while 

maintaining accuracy and low latency in detection. 

Abdallah et al. [9] propose a Hybrid Intrusion 

Detection System (HIDS) that blends both supervised and 

unsupervised learning techniques for identifying network 

intrusions. Their system integrates k-means clustering and 

Support Vector Machines (SVM) to enhance detection 

accuracy and minimize false positives. When tested on standard 

benchmark datasets, the system outperforms traditional models, 

particularly in detecting complex and novel attacks. 

III. PROPOSED METHODOLOGY: 

 This research proposes a hybrid Intrusion Detection 

System (IDS) that uses Random Forest and Linear Regression 

to classify various network attacks, including DoS, Probe, R2L, 

and U2R [2], [11]. To address data imbalance issues, the system 

will utilize techniques like oversampling and synthetic data 

generation for fair class representation [10]. 

 The models will be trained on labeled datasets such as 

KDDCup’99 and integrated into a Flask-based web application 

for real-time monitoring and visualization [7], [4]. 

Administrators will access detection results through a user-

friendly dashboard to ensure timely responses [5]. 

 Based on recent studies, hybrid systems are more 

effective in adapting to evolving threats [1], [3]. This design 

ensures scalability, accuracy, and adaptability, offering a robust 

security solution. 
By leveraging the advantages of different detection 

methods, hybrid models are able to more accurately identify 

complex and sophisticated attack patterns. They also help in 

minimizing false positive rates, which enhances the overall 

dependability of the system.  
 

Fig 3.3: Hybrid Intrusion Detection System Architecture with Flask 
 

MODULE DESCRIPTION: 

The proposed Hybrid IDS consists of several 

interconnected modules, each carefully designed to ensure 

accurate detection, efficient monitoring, and effective threat 

management. Every module plays a vital role in the data 

processing pipeline, contributing to the system's overall 

effectiveness and reliability. 

 Data Collection Module 

 Data Preprocessing Module 

 Feature Engineering Module 

 Data Balancing Module 

 Model Building Module 

 Model Training Module 

 Evaluation Module 

 Flask Web Application Module 

 Visualization Module 

 Real-Time Monitoring Module 

Data Collection: This module is responsible for 

systematically collecting raw data from various sources, such 

as network logs, sensors, databases, APIs, and external 

monitoring tools. The gathered data forms the foundation for 

comprehensive analysis, feature extraction, and model training. 

Sources can include packet captures, server logs, firewall logs, 

and external threat intelligence feeds. 

Data Preprocessing: This module focuses on cleaning and 

preparing the collected data by handling missing values, 

correcting errors, normalizing feature scales, and removing 

outliers. Proper preprocessing improves data quality and 

ensures that subsequent analytical processes work with reliable 

and consistent datasets. Noise reduction, duplicate removal, 

and format conversion are also carried out to standardize the 

inputs. 

Feature Engineering Module: In this module, relevant 

features are extracted, selected, and transformed from the 

preprocessed data. The goal is to identify significant attributes, 

create new features from existing ones, handle categorical 

variables, and scale numeric features to optimize the model's 

ability to learn patterns and detect anomalies accurately. 

Techniques like PCA and feature selection algorithms may be 

used to refine the dataset. 

Data Balancing: This module addresses the issue of 

imbalanced class distribution in the dataset by using techniques 

like oversampling of minority classes, under sampling of 

majority classes, and synthetic data generation methods such as 

SMOTE. This ensures a fair representation of all attack types, 

preventing model bias and enhancing detection accuracy. 

Balanced datasets help ensure that rare but critical attack 

instances are not overlooked. 

Model Building Module: This module involves selecting 

and implementing machine learning algorithms, specifically 

Random Forest and Linear Regression, to build predictive 

models capable of accurately classifying network traffic as 

either normal or malicious. Hyperparameters are fine-tuned to 

optimize model performance, and ensemble techniques may be 

used to combine predictions for better accuracy. 

Model Training Module: Using labeled datasets, this 

module trains the predictive models, adjusting model 

parameters to maximize detection accuracy. Extensive training 

ensures that the models can generalize well to unseen data and 

detect complex attack patterns. Techniques such as cross-

validation and early stopping are applied to avoid overfitting. 

Evaluation Module: This module evaluates the trained 

models by assessing their performance against labeled datasets. 

Metrics like accuracy, precision, recall, and F1-score are used 

to evaluate how well the models can detect various attack types. 
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This module ensures that the models are reliable and robust for 

real-world deployment. 

Flask Web Application Module: This module focuses on 

developing an interface and user-friendly web interface using 

the Flask framework. It enables administrators to access real-

time IDS insights, manage alerts, and control system 

configurations conveniently. 

Visualization Module: This module is responsible for 

generating dynamic and informative visual representations of 

the IDS results, including charts, graphs, and dashboards. It 

presents detected attack types, model performance metrics, and 

network traffic patterns in an easy-to-understand format. 

Visualization improves situational awareness and aids in 

informed decision-making. 

Real-Time Monitoring Module: This module enables 

continuous, live monitoring of network traffic, feeding data 

directly to the IDS models for immediate analysis and 

detection. It allows the system to respond quickly to emerging 

threats, ensuring proactive network security management. 

Automated alerting and logging mechanisms are integrated to 

assist administrators in making timely interventions. 

Machine Learning Models Overview: 

Random Forest: Random Forest is a powerful 

ensemble technique that builds several decision trees and uses 

them collectively to categorize network behavior. It combines 

the results from individual trees to improve classification 

accuracy, increase robustness against overfitting, and handle 

large datasets with high-dimensional feature spaces. The 

feature importance scores provided by Random Forest help 

identify which attributes are most influential in predictions. 

Linear Regression: While Linear Regression is 

primarily used for regression tasks, it is applied in this IDS to 

identify patterns and relationships within network traffic data. 

Although Logistic Regression or other specialized classifiers 

are generally more effective for classification tasks in intrusion 

detection, Linear Regression serves as a baseline for 

comparative analysis and highlights linear patterns within the 

data. 

IV. FINDINGS: 

In this project, a web-based Intrusion Detection 

System (IDS) was created using the Flask web framework. 

The system was built and evaluated using the NSL-KDD 

dataset, with the goal of detecting a variety of cyberattack 

types, including Denial of Service (DoS), Probe, Remote to 

Local (R2L), and User to Root (U2R) attacks. 

To ensure smooth execution, the application 

follows a clearly defined setup process through the 

Command Prompt. The user begins by navigating to the 

project folder, switching to the correct drive, activating a 

designated Conda environment, defining the Flask 

application environment variable, and finally launching the 

Flask server. This organized approach helps maintain a 

consistent and reliable method for running the real-time web 

interface. 

Fig 4.1: Running intrusion detection system with flask 

 As part of the evaluation, a U2R attack was simulated using 

specific input features such as duration, protocol_type, 

service, flag, src_bytes, dst_bytes, logged_in, 

wrong_fragment, same_dst_host_count, and 

same_srv_count.  

Fig 4.2: Intrusion detection system input page 

 When this data was submitted for prediction, the 

Random Forest model correctly labeled the traffic as 

"Normal", while the Linear SVM misclassified it, indicating a 

"DoS Attack". 
Fig 4.3: Intrusion detection system output page 

 Figure 4.4 illustrates a table presenting key network 

features like Protocol Type, Service, and Duration. Beneath 

the table, a descriptive section explains each feature in 

detail—including its name, data type, value type, and typical 

range—providing clarity on the dataset attributes. 
Fig 4.4: NSL – KDD IDS sample dataset and features description 

 The results from these experiments confirm the 

efficiency of hybrid machine learning models in identifying 

both common and previously unseen attacks. The integration of 

the NSL-KDD and CIC-IDS2017 datasets has contributed 
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significantly to the system’s reliability across various threat 

types. Additionally, the Flask-powered interface enables users 

to monitor and analyze network traffic in real time with ease. 

V. CONCLUSION: 

 In conclusion, this project developed an Intrusion 

Detection System (IDS) using Random Forest and Linear 

Regression algorithms to classify network attacks, including 

DoS, Probe, R2L, and U2R. The system addressed dataset 

imbalances and provided real-time monitoring via a Flask 

web interface, effectively reducing false positives and 

improving accuracy. 

 The IDS successfully identified both known and 

novel attack patterns, demonstrating the effectiveness of 

hybrid machine learning models, as noted by Maseno et al. 

[1] and Rababah [2]. Real-time monitoring, as explored by 

Bhagya [4], Talha [5], and Rasmitha [6], enabled prompt 

responses to emerging threats. 

 The combination of machine learning and Flask 

proves to be a reliable solution for network security. Future 

improvements, incorporating feedback and data updates, 

will ensure the IDS remains effective against evolving 

threats, with potential enhancements in file integrity 

monitoring, as suggested by Sulaiman & Hilmi [14] and Sal. 
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