
International Journal of Computer Science Trends and Technology (IJCST) – Volume 13 Issue 3, May-Jun 2025

ISSN: 2347-8578 www.ijcstjournal.org Page 83

Incremental Core Transformation: A Modular First Approach to

Legacy Modernization in Banking
Ashish G. Vishwakarma

Senior Software Engineer, JPMorgan Chase Co.

ABSTRACT
Legacy banking systems built on COBOL mainframes face pressure to modernize for agility, cost-efficiency, and compliance.

However, their transformation is high-risk due to scale and the need for continuous availability. This paper presents the

Modular-First Legacy Modernization (MFLM) framework, integrating SEI’s System Analysis and Migration (SAM), OMG’s

Architecture-Driven Modernization (ADM), domain-driven design, and continuous integration—tailored for financial-critical

systems. MFLM minimizes temporary adapters, ensures regulatory alignment (e.g., Basel standards), and supports incremental

modernization with live integration. A core banking case simulation demonstrates reduced risk, minimal throwaway code, and

maintained compliance. Results suggest MFLM enables faster, safer legacy renewal. Future work targets automation of

architecture extraction and enhanced data migration strategies.

Keywords — Legacy modernization, Modular first legacy modernization, MFLM

I. INTRODUCTION

Banks worldwide continue to rely on aging mainframe

systems—often over 30 years old and written in COBOL—for

critical operations like transaction processing and regulatory

reporting [9]. These systems are costly to maintain, difficult to

evolve, and account for over 100 billion lines of legacy code

still in active use [5]. Their limitations hinder business agility,

elevate costs, and complicate compliance with evolving

standards such as Basel III and BCBS 239 [6].

Regulatory pressure has intensified: as of 2023, only 2 of 31

major banks met BCBS 239 requirements, due in part to legacy-

induced data silos [6]. Modernization is now essential, but

large-scale “big bang” replacements are rarely feasible.

Comella-Dorda et al. note that such full cut-over deployments

are “too risky to be admissible,” and that modernization

projects must demonstrate early value [1]. At the same time,

incremental approaches must preserve continuous operations

and compliance in areas like payments and ledgers.

Interim modernization states often rely on interface

“wrappers” to connect new and legacy components, but

excessive adapters introduce technical debt and undermine

modernization goals [1]. Any transition phase must also uphold

stringent regulatory and security standards. Existing

methodologies offer partial solutions. SEI’s System Analysis

and Migration (SAM) guides phased transitions [1]; OMG’s

Architecture-Driven Modernization (ADM) offers

standardized legacy representations for transformation [3]; and

techniques like domain-driven design (DDD) and

microservices help modularize legacy architectures [4]. This

paper introduces the Modular-First Legacy Modernization

(MFLM) framework—tailored for banking systems. MFLM

prioritizes migration of self-contained, business-aligned

modules to minimize dependencies and reduce interface

overhead. Each increment ensures compliance and value

delivery through continuous integration and automated testing

[9]. The rest of this paper is organized as follows: Section II

surveys related modernization strategies. Section III details the

MFLM methodology. Section IV evaluates its application to a

simulated core banking system. Section V presents comparative

results, and Section VI concludes with directions for future

work.

II. RELATED WORK

Early research in legacy system modernization identified

two contrasting strategies: “Cold Turkey” (Big Bang)

replacement and the incremental “Chicken Little” approach [9].

The Big Bang strategy involves replacing the entire system in

a single deployment, avoiding interim adapters but

concentrating risk and delaying benefit realization. In contrast,

Brodie and Stonebraker’s “Chicken Little” method advocates

gradual migration via gateways, enabling new components to

coexist and interact with legacy systems through adapters [8],

[2]. Each legacy module is incrementally re-engineered, tested,

and integrated, reducing outage risk. While this method handles

deployment risk effectively, it provides limited guidance on the

prioritization or grouping of components for migration—

decisions that significantly impact adapter proliferation and

developer effort [8].

To address this, the Software Engineering Institute (SEI)

proposed the System Analysis and Migration (SAM) approach

[1], which applies structural analysis to optimize incremental

migration. SAM aims to minimize scaffolding code, group

functionally cohesive elements, and balance effort across

iterations. In a case study on a 2-million-line COBOL system,

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 13 Issue 3, May-Jun 2025

ISSN: 2347-8578 www.ijcstjournal.org Page 84

Comella-Dorda et al. [1] used call graphs to identify modular

clusters with low external dependencies, guiding a five-phase

migration over six years. The approach prioritized early, low-

risk increments while balancing cost, technical effort, and

functionality delivered per phase.

Complementing SAM is the Object Management Group’s

(OMG) Architecture-Driven Modernization (ADM) initiative.

ADM supports model-based modernization via standards like

the Knowledge Discovery Metamodel (KDM), which captures

a platform-independent view of legacy systems [3]. KDM

enables analysis of structural dependencies and supports

transformations into modern platforms using a model-driven

pipeline—from source to Platform-Independent Models (PIM)

and then Platform-Specific Models (PSM) [8], [3]. While ADM

excels in knowledge extraction and tool interoperability, it is

domain-agnostic and leaves architectural partitioning decisions

to system architects.

Modern techniques such as Domain-Driven Design (DDD)

and microservice architectures extend these foundations. DDD

advocates modeling software around bounded business

contexts (e.g., Payments, Risk, Customer Data), promoting

modularity and business alignment [4]. Applying DDD to

modernization enables incrementing along meaningful

business domains, with tight stakeholder collaboration and

clear boundaries. Industry standards like the Banking Industry

Architecture Network (BIAN) offer reference models to guide

domain decomposition [10], [13]. Recent applications of DDD

and BIAN templates, including AI-assisted service design,

show promise for large-scale banking modernization [10].

Together, these approaches contribute essential capabilities:

SAM and Chicken Little for risk-managed incremental delivery

[1], [8], ADM for structural comprehension [3], and DDD for

aligning technology with business goals [4], [10]. However,

adapter minimization and regulatory compliance—critical in

banking—remain under-emphasized. This paper presents the

Modular-First Legacy Modernization (MFLM) framework,

which synthesizes these strategies. MFLM delivers domain-

aligned modernization increments, explicitly optimized for

minimizing integration overhead and ensuring compliance at

every phase. The next section details MFLM's step-by-step

methodology.

III. METHODOLOGY

Overview: The Modular-First Legacy Modernization

(MFLM) framework is a structured methodology for

incrementally modernizing a legacy banking system. It consists

of six major phases: (1) Legacy Element Analysis, (2) Business

Domain Modeling, (3) Microservice Interface Design, (4)

Increment Mapping via Migration Matrix, (5) Adapter

Minimization & Validation Testing, and (6) Deployment &

Monitoring. These phases are applied iteratively for each

modernization increment. Figure 1 illustrates the overall

process flow of MFLM.

Figure 1: Modular-First Legacy Modernization Framework –

in each cycle, legacy components are analyzed and mapped to

business-aligned modules, which are then designed,

implemented, and integrated with minimal adapters before

deployment.

A. Legacy Element Analysis

Modernization begins with a comprehensive analysis of the

legacy system’s structure, dependencies, and execution

characteristics. In banking environments, this involves parsing

COBOL source code, job control flows, and database schemas;

consulting system documentation; and interviewing

experienced developers. To formalize this analysis, tools

based on OMG’s Architecture-Driven Modernization (ADM)

standards—particularly the Knowledge Discovery Metamodel

(KDM)—are employed to extract a machine-readable model of

system elements and their relationships [3]. This yields an

inventory of programs, data files, interfaces, and their

interconnections (e.g., call graphs, data flows), enabling

visualization through dependency matrices. This phase

identifies tightly coupled vs. isolated components, maps legacy

routines to business functions, and detects domain-aligned

clusters (e.g., modules exclusive to “Payments” or “Customer

Info”). In the SEI case study, constructing a call graph of a large

COBOL system revealed low-dependency clusters that could

be incrementally migrated with minimal disruption [1].

Additionally, the analysis documents external interfaces and

regulatory integration points—such as payment gateways,

reporting systems, Basel risk report generators, and audit

logs—ensuring compliance is preserved throughout migration.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 13 Issue 3, May-Jun 2025

ISSN: 2347-8578 www.ijcstjournal.org Page 85

B. Business Domain Modeling

In parallel with technical analysis, MFLM incorporates

business domain modeling to align system transformation with

organizational capabilities. Using Domain-Driven Design

(DDD) principles, legacy functionality is mapped to major

business domains such as Customer Management, Accounts &

Ledgers, Payments Processing, and Risk & Compliance

Reporting. Each legacy component identified in Phase 1 is

assigned to one or more of these domains. Though monolithic,

legacy systems often reveal implicit separations—by

subsystem or data structure—that correspond to distinct

business functions. These are formalized into bounded contexts,

each becoming a modular unit in the target architecture.

Collaboration with business stakeholders ensures domain

boundaries are meaningful and accurate. The output is a

Business Architecture Blueprint, represented via context

maps or component diagrams. Leveraging the Banking Industry

Architecture Network (BIAN) reference models [10], [13], this

blueprint ensures coverage of critical banking domains (e.g.,

Payments Execution, Customer Offerings, Risk Analysis) and

traces them to compliance responsibilities—such as Basel III

reporting under the Risk domain.

C. Microservice Interface Design

With domain-bounded modules defined, the phase focuses

on designing their interfaces and interactions—effectively

shaping the target system architecture. MFLM adopts a

microservices or service-oriented design, where each domain is

implemented as one or more services with well-defined APIs

(e.g., REST/JSON or gRPC). For each domain module, we

define:

 The external interface (e.g., APIs for the Payments

Service)

 A refactored data model (inspired by, but not identical to

legacy schemas)

 Communication patterns with other services.

Crucially, the design accounts for both the final state (fully

modernized modules) and transitional states where legacy and

modern components coexist. Adapter interfaces are planned for

these hybrid scenarios. For instance, if Payments is modernized

before Accounts, an adapter allows Payments to update

balances in the legacy Accounts system (e.g., via a temporary

database connector or COBOL call). Conversely, if Accounts

is modernized first, legacy payments modules call the new

service via an adapter. These adapters are kept minimal and

one-directional (e.g., proxy or facade patterns), similar to the

“wrapper” approach seen in legacy modernization [1]. To

further reduce adapter overhead, modules with heavy

interdependencies are scheduled for modernization in the same

increment. This phase ensures all integration points—between

legacy and modern services—are explicitly defined.

Compliance, security, and data integrity are also addressed here.

For example, if a new service adds validation, not present in

legacy systems, the adapter layer ensures regulatory

requirements remain satisfied throughout the transition.

D. Increment Mapping via Migration Matrix

With domain modules and their interactions defined, the next

step involves assigning modules to modernization increments.

This is documented using a migration matrix, where rows

represent legacy components and columns represent planned

increments.

Table 1: Example Modernization Plan – Mapping Legacy

Modules to Increments

Legacy Module Business Domain Planned

Increment

Customer

Information

Management

Customer & KYC

Domain

1 (Phase 1)

Account Ledger &

Balances

Accounts Domain 3 (Phase 3)

Payments Processing

Engine

Payments Domain 2 (Phase 2)

Payment Network

Interface

Payments Domain 2 (Phase 2)

Risk Analytics &

Reporting

Risk/Compliance

Domain

3 (Phase 3)

Audit & Logging

subsystem

Compliance Domain 1 (Phase 1)

In this example, Increment 1 modernizes Customer Info and

Audit subsystems (which are relatively isolated), Increment 2

tackles the Payments engine and its external interface together

(a cohesive pair), and Increment 3 upgrades the Account ledger

and Risk reporting last.

With domain modules and their interactions defined, the next

step involves assigning modules to modernization increments.

This is documented using a migration matrix, where rows

represent legacy components and columns represent planned

increments. Following a modular-first strategy, entire modules

or tightly coupled groups are migrated together to minimize

interim adapter requirements. For example, if the Payments

Processing Engine and Network Interface are tightly integrated,

both are modernized in the same increment, avoiding the need

for mutual adapters. Meanwhile, modules like Account Ledger

may be deferred (e.g., to Increment 3), accepting temporary

adapters from Payments to legacy systems as a trade-off. As

SAM methodology suggests, accepting a few well-placed

adapters often yields clearer, domain-focused increments [1].

Trade-offs are evaluated systematically automated tools like

SEI’s SAM can generate and compare alternative groupings

based on metrics such as adapter count and functional cohesion

[1].

The selected migration matrix reflects:

 The scope of each increment.

 Adapter connections required per phase.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 13 Issue 3, May-Jun 2025

ISSN: 2347-8578 www.ijcstjournal.org Page 86

Increment sizing is aligned with organizational constraints

such as budget cycles and staffing. Standalone or low-effort

modules may be marked for flexible allocation, allowing them

to be inserted opportunistically—an approach successfully

used in the SEI case study [1]. The output of this phase is a

sequenced, resource-aligned migration roadmap, balancing

functional grouping, adapter minimization, and practical

delivery constraints.

E. Adapter Minimization & Validation Testing

Once the scope of an increment is defined, implementation

proceeds with development of the new module(s) and required

adapters. MFLM prioritizes adapter minimization—both in

number and complexity. Adapters are treated as temporary

scaffolding and kept lightweight, performing only essential

tasks such as simple data mappings or bridging calls to legacy

APIs [1]. Wherever possible, minor adjustments to legacy

components (e.g., output format changes) are used to avoid

building new glue code. Each adapter is tracked for future

removal once both connected modules are modernized. This

avoids long-term maintenance of throwaway code and aligns

with SAM's principle of reducing non-contributory

development effort [1]. This phase also incorporates rigorous

validation testing: Module-level tests verify functionality of

the newly implemented service. Integration tests ensure

correct interaction between new modules and legacy systems

via adapters. For example, after implementing the new

Payments module (e.g., Increment 2), integration tests verify

that payment transactions update legacy account balances and

generate accurate legacy reports. If reporting functionality is

deferred, stubs may simulate future behavior. Modern CI/CD

pipelines execute these tests continuously, supporting rapid

feedback as components evolve [9]. Compliance validation is

also embedded—e.g., Basel III report outputs from the hybrid

system are compared with legacy equivalents to catch

discrepancies early. Upon successful testing, the increment is

deployed in a staging environment, running in parallel with

legacy components. Final sign-off may include business

validation to confirm that new modules produce expected

outcomes across critical scenarios.

F. Deployment and Monitoring

In the final phase of each increment, new components are

deployed into production alongside legacy systems using

controlled methods such as the gateway/strangler pattern from

Chicken Little [8]. Initially, a small subset of transactions is

routed to the new service, gradually increasing as confidence

builds, or operated in parallel (shadow mode) before full

cutover. Gateway transitions are orchestrated to ensure zero

downtime by flipping adapters so the new module becomes

primary while the legacy becomes secondary [8]. Extensive

monitoring, both technical (application performance

management, logs) and business (validating transaction totals,

balances, and reports), is conducted post-deployment.

Anomalies trigger rollback or rapid fixes. New and legacy

systems often run parallel for one business cycle to ensure

consistency. Upon confirming the new increment meets all

requirements, the corresponding legacy components and

temporary adapters are retired, thereby reducing the legacy

footprint and progressing modernization [1].

Throughout all phases, compliance assurance remains a core

principle, especially in banking. Regulatory requirements are

integrated into each increment from the outset rather than

addressed later. For example, new modules handling customer

data are built to comply with GDPR and similar regulations

immediately, while risk calculation changes involve validation

against Basel standards. Incremental compliance checks

prevent audit failures and ensure continuous certification.

Modern core banking providers similarly embed regulatory

frameworks such as PSD2, GDPR, and Basel III into their

systems from inception [7].

In summary, the Modular-First Legacy Modernization

(MFLM) methodology combines technical rigor with business

alignment. It applies thorough legacy analysis (ADM

principles), defines domain-centric targets (DDD), plans

optimal migration slices (SAM's incremental approach), and

executes with tight feedback loops and governance (CI/CD).

The next section presents a simulated case study demonstrating

decisions and outcomes across increments.

IV. CASE SIMULATION: INCREMENTAL

MODERNIZATION

To demonstrate the MFLM approach, we simulate

modernizing a hypothetical Core Payment System for a mid-

sized bank. The legacy system processes customer payments

(wires, ACH), updates account balances and generates daily

risk reports. It is a typical monolithic COBOL application (~1

million LOC) on an IBM mainframe, supporting batch and

online transactions with a relational database. The bank aims to

migrate to a cloud-native microservices architecture to improve

scalability and comply with real-time payment regulations

without disrupting operations. Modernization is executed

across three increments using the MFLM framework.

A. Legacy System Overview

Major components identified during Legacy Analysis

include:

 Payments Engine: Batch and online payment execution,

interfacing with networks (SWIFT, ACH) and ledgers.

 Account Ledger: Modules maintaining balances and

transaction histories (VSAM/DB2).

 Customer Info & KYC: Customer profiles and KYC

checks, accessed mainly during payment validation.

 Risk & Compliance Reporting: Daily transaction

aggregation for risk metrics and regulatory compliance

(e.g., BCBS 239 reports).

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 13 Issue 3, May-Jun 2025

ISSN: 2347-8578 www.ijcstjournal.org Page 87

 Audit/Logging: Cross-cutting transaction logging for

audits.

In the Business Domain Modeling phase, components are

grouped into domains: "Payments" (Payments Engine),

"Accounts" (Account Ledger), "Customer" (Customer

Info/KYC), and "Risk/Compliance" (Risk Reporting and

Audit). Legacy analysis revealed tight coupling between

Payments Engine and Account Ledger, while Customer Info

was more isolated and Risk Reporting operated independently,

influencing migration sequencing.

1) Increment 1 – Customer and Audit Module

Modernization: The modernization begins with the

relatively isolated Customer Info and Audit/Logging

modules to minimize risk and validate the tech stack [1].

New Customer and Audit services are implemented as

microservices with independent databases. Integration

with the legacy Payments Engine is achieved using two

adapters: a Customer Lookup Adapter (replacing direct

file reads with API calls) and an Audit Log Adapter

(sending messages via middleware queues). Testing

includes parallel runs to ensure customer checks and

audit logs match legacy behavior. Post-deployment, both

legacy and new services operate in parallel before full

cutover. Metrics show a 20% improvement in customer

data response times without compliance issues. After a

successful transition, the old customer database and audit

logs are decommissioned, removing associated adapters,

achieving ~20% system modernization.

2) Increment 2 – Payments Engine and Network

Interface Modernization: This increment targets the

core Payments Engine and external network interfaces.

A new Payments Microservice and Payments Gateway

Service are developed. As the Account Ledger remains

legacy, an Account Update Adapter is created for balance

updates, while a Legacy Payments Adapter ensures

backward compatibility for unmodernized components.

Direct integration with the previously modernized

Customer Service simplifies data retrieval. Extensive

parallel testing verifies financial accuracy, transaction

integrity, and compliance. Canary releases gradually

shift transaction loads to the new system, ensuring tight

coordination between new and legacy database writes.

Monitoring shows improved scalability and a 15%

reduction in payment failures. Regulators are kept

informed throughout. Upon completion, ~70% of system

functionality is modernized, covering Payments,

Customer, and Audit modules.

3) Increment 3 – Account Ledger and Risk Reporting

Modernization: The final increment modernizes the

Account Ledger and Risk/Compliance reporting

modules, which are interdependent. A new Accounts

Service is developed with data migrated to a distributed

database, while a new Reporting & Analytics module is

implemented to compute risk metrics using modern

services. Dual writes between legacy and new databases

temporarily maintain consistency during cut-over. The

Payments service configuration is updated to interact

directly with the new Accounts service. Risk reporting is

transitioned to the new data sources after parallel

validation runs ensure output consistency, including

scrutiny of rounding and historical comparison.

Integration tests and risk officer sign-offs precede

production deployment, scheduled during a maintenance

window. Post-migration, all systems access the new Accounts

service, legacy systems are archived, and infrastructure costs

are reduced. By the end of Increment 3, all core services

(Customer, Payments, Accounts, Audit, Risk Reporting) are

modernized. Modularization enables future extensions, and

incremental delivery maintains stakeholder support across 18–

24 months.

B. Key Outcomes:

Five adapters were implemented (Customer lookup, Audit

log, Account update, Legacy-to-new payments call, Dual-

write), most decommissioned quickly, validating the modular

migration strategy [1]. No unplanned downtime occurred;

gradual switchovers maintained continuous operation.

Regulatory compliance was ensured through parallel reporting

and early risk officer involvement, aligning with industry

modernization practices [7]. The overall project spanned 2.5

years with incremental releases every ~9 months, allowing

phased funding and scope adjustment [1]. Developer

productivity improved over time as pipelines and infrastructure

matured. The new system achieved ~25% higher transaction

throughput, enabled modular scaling, and supported dynamic

expansion of services.

This simulation illustrates the effective application of

MFLM to a core banking system, highlighting how modular

incremental modernization reduces risk, improves performance,

and strengthens compliance.

Table 1: Summary of modernization Increments in core

banking system.

Criteria Big Bang

Rewrite

Traditional

Incremental

(ad-hoc)

Architecture-

Driven

(ADM-based)

MFLM

(Proposed)

Operati

onal

Risk

Very high –
long outage

or cut-over

risk; full
fallback

needed if

fails [1].

Moderate –
staged, but

risk depends

on planning
quality;

potential mid-

project
failures.

Moderate –
emphasizes

understanding,

can mitigate
some risk but

doesn’t itself

execute
incrementally.

Low –
fully

incrementa

l, system
remains

operational

at all times
[1];

gateways

used to
isolate risk

per

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 13 Issue 3, May-Jun 2025

ISSN: 2347-8578 www.ijcstjournal.org Page 88

increment

[8].

Adapter

s /

Integrat

ion

None during

dev (clean

slate), but

requires
huge

integration

at cut-over.

Potentially

many ad-hoc

adapters if

increments
not well-

scoped;

danger of
“spaghetti”

interim

architecture.

Focus on

model

extraction;

integration
issues

discovered

later when
implementing

changes.

Minimal

adapters –

planned

and
optimized

grouping

yields
fewer,

simpler

adapters
[1],

systematica

lly
removed as

increments

progress.

Develop

ment

Effort

Very high
upfront;

duplication

of legacy

functionalit

y from
scratch.

Incremental
effort but can

be inefficient

if

redundancies

or rework
occur due to

poor planning.

High analysis
effort; actual

redevelopment

may still be

large; risk of

analysis
paralysis.

Incrementa
l effort

focused per

domain;

less rework

due to
cohesive

module

scope; first
increment

overhead

amortized
over later

ones.

Time to

First

Value

Long

(years) – no
user-visible

benefit until

completion.

Faster than

big bang if
increments

deliver

something,
but without

clear domain

focus, early
increments

might deliver

trivial
improvements

.

Long – initial

phase focuses
on

documentation

/modeling,
which may not

yield running

code for some
time.

Short –

initial
increment

delivers

functional
improveme

nt within

months;
each

subsequent

increment
provides

new

capabilities
or

performanc
e gains.

Early

benefits
demonstrat

ed (e.g.

better KYC
after

increment

1) [1].

Busines

s

Alignme

nt

Risk of
mismatch –

requirement

s may drift

over long

dev cycle;

hard for
business to

envision

final
product.

Varies – could
align if

business

involved each

step, but ad-

hoc

increments
often

technically

driven.

Strong on
documentation

, but gap

between

models and

actual business

value if not
translated to

implementatio

n.

Strong –
domain-

driven

approach

keeps

modernizat

ion aligned
with

business

context [5]
Business

stakeholder

s engaged
per domain

module;

feedback

incorporate

d

continuousl

y.

Compli

ance

Assuran

ce

Big risk –

new system

must be
certified at

end; any

miss can
delay go-

live.

Medium –

increments

might
overlook

compliance in

rush to deliver
slices, unless

explicitly

checked.

High

understanding

of existing
compliance

mechanisms,

but not
inherently

ensuring new

implementatio
n complies

until tested.

High –

continuous

compliance
verification

each

increment.
Regulatory

reports run

in parallel
to ensure

consistency

[6]. No
final

surprises as

each piece
is

compliant

by design.

Flexibili

ty &

Adapta

bility

N/A until

complete;

architecture
decided at

start, hard to

change mid-
flight.

Medium – can

adjust next

increments
based on

feedback,

though earlier
mistakes

costly to fix.

High

flexibility in

analysis
models but

translating that

to code
changes is

indirect.

High –

plan can be

adjusted
between

increments

(e.g., if one
domain

needs

faster
rollout due

to

regulatory
deadline,

we can

reorder).
The

modular

nature
means

changes in

one
increment

have

limited
impact on

others.

Final

Archite

cture

Quality

Potentially
high if done

perfectly

(clean-sheet
design). But

risk of

under/over-
engineering

since no

intermediate
validation.

Could be
suboptimal if

increments

were not
planned with

whole

architecture in
mind

(architecture

may just
evolve, not

designed).

High
theoretical

quality (due to

thorough
architecture

extraction) but

depends on
execution of

refactoring.

High –
intentionall

y designed

target
architectur

e (domain

microservi
ces)

implement

ed
stepwise.

Each step

is
validated,

so

architectur
e is proven

to work.

Domain
boundaries

in final

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 13 Issue 3, May-Jun 2025

ISSN: 2347-8578 www.ijcstjournal.org Page 89

system

reflect real

business

needs

(thanks to

DDD).

From the above comparison, MFLM achieves a balanced

performance across the criteria, whereas other approaches excel

in some dimensions but fall short in others. Notably:

 Risk Mitigation: MFLM minimizes operational risk by

maintaining continuous system availability. In the case

simulation, no downtime occurred, contrasting with the

concentrated risk of a Big Bang approach. Even

incremental strategies can fail without careful

coordination; MFLM localizes failures to specific

modules, enabling rollback without system-wide

disruption. This aligns with the Chicken Little

philosophy of progressive deployment [8] but with

enhanced increment planning.

 Adapter Overhead: Minimizing adapters was a key

objective. Adapters, though necessary for interoperability

during migration, introduce complexity [1]. MFLM

required only five adapters versus an estimated eight to ten

with uncoordinated migration. This validates the SAM

approach, where fewer adapters reduce development effort,

risk, and maintenance [1]. Unlike ADM, which maps

dependencies without prescribing sequencing, MFLM

explicitly plans to minimize interface work.

 Timeline and Value Delivery: MFLM delivers value

early and regularly, crucial for maintaining funding in

banking environments. Incremental improvements, such as

faster KYC processing (Increment 1) and increased

payment throughput (Increment 2), align with agile

principles and stakeholder expectations [4]. Big Bang

rewrites, by contrast, often fail due to a lack of interim

deliverables.

 Business and Regulatory Alignment: Domain-driven

planning ensures alignment with business and regulatory

needs. Engaging business units in each phase allowed real-

time adjustments, such as incorporating new AML checks

during Increment 2. Compliance was validated

incrementally, consistent with guidance advocating

iterative modernization to manage risk [4], [5].

 Architecture and Quality: MFLM produced a modular,

microservices-based architecture validated incrementally

in production. This evolutionary model, similar to the

strangler pattern [10], reduces architectural risks compared

to greenfield rewrites. While ADM provides static “as-is”

and “to-be” models, MFLM ensures real-world validation

through phased deployment.

 Cost and Effort: MFLM spreads modernization costs

across increments, enabling funding flexibility and risk-

managed progress. Although incremental execution

introduces overhead (e.g., adapters, parallel operations),

minimizing scaffolding aligns with SAM’s findings [1].

Compared to ADM-heavy approaches that emphasize

upfront modeling, MFLM maintains a balance between

planning and execution to ensure steady modernization

without excessive cost or delay.

V. CONCLUSION AND FUTURE WORK

MFLM offers a holistic modernization strategy balancing

technical progress with business continuity and compliance. It

mitigates the risks of Big Bang rewrites by segmenting

modernization safely, and improves upon naive incrementalism

through architecture-driven, domain-focused planning. Case

simulation results (e.g., adapter count, continuous uptime)

validate its effectiveness, operationalizing the best practices of

phased execution with structured planning [4]. However,

MFLM introduces trade-offs. Significant upfront analysis is

required, and poor legacy documentation can complicate

planning, though ADM techniques and reverse engineering

mitigate this risk. Operating old and new systems in parallel

introduces synchronization complexity, managed through

careful design. Although a flawless Big Bang could be faster,

such outcomes are rare in banking IT. Human factors also

impact success; incremental modernization demands consistent

vision, patient execution, and strong executive sponsorship to

prevent mid-course resource diversion.

In conclusion, MFLM provides a balanced, low-risk

modernization pathway, blending continuous improvement

with strategic alignment. It presents a viable alternative for

banks that have encountered failures with Big Bang strategies

or prolonged analysis efforts. The following section concludes

the paper and outlines areas for future work.

Future Work, while the MFLM approach proved effective in

our analysis, there are several areas of future work and potential

enhancements:

 Tool and Automation: Automating parts of MFLM can

further reduce effort and risk. Advanced program

analysis, AI-driven code comprehension, and machine

learning models for legacy languages (e.g., COBOL)

could enhance Legacy Element Analysis and architecture

extraction. Automation could also aid adapter generation

and CI pipeline setup. Extending ADM models (e.g.,

KDM) with AI for migration path recommendations

presents a promising research avenue, supporting

continuous modernization.

 Data Migration and the Butterfly Method: Data

migration remains a major challenge. The Butterfly

methodology, which progressively transforms legacy

databases without gateways [11], [12], could enhance

MFLM by enabling continuous replication and schema

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 13 Issue 3, May-Jun 2025

ISSN: 2347-8578 www.ijcstjournal.org Page 90

evolution, particularly in critical areas like Account

Ledger migration.

 Quantitative Optimization Models: Increment planning

was largely qualitative. Future work could formalize this

as an optimization problem, using integer programming

or heuristics to partition legacy components, minimizing

adapters and balancing risk. Extending SAM's early

heuristics [1] with modern solvers and richer ADM data

could yield near-optimal migration strategies.

 Continuous Integration of Compliance: Embedding

compliance validation into CI/CD pipelines could

institutionalize regulatory checks. Automating Basel III

report generation, audit verification, and security

compliance in each cycle would strengthen risk

management, benefiting heavily regulated industries

beyond banking.

 Generalization and Case Studies: Applying MFLM to

other legacy domains (e.g., insurance, government

systems) would test its broader applicability. Real-world

case studies tracking metrics like defects, downtime, and

adapter volume would provide empirical validation and

strengthen industry adoption.

 Legacy Workforce Transition: Modernization also

requires addressing workforce shifts. Strategies like

event storming during Legacy Analysis and mentorship

pairing between veteran and modern engineers could

preserve critical domain knowledge during transitions.

Legacy modernization is a complex but navigable journey.

MFLM offers a structured, value-driven, and compliant path by

aligning technical analysis, business needs, and risk mitigation.

As demonstrated, modular incremental modernization avoids

the risks of Big Bang failures while delivering agile, future-

ready banking cores. Continued collaboration between

practitioners and researchers is encouraged to refine and extend

this framework.

REFERENCES

[1] S. Comella-Dorda, G. Lewis, P. Place, D. Plakosh, & R.

Seacord. “Incremental Modernization for Legacy

Systems.” CMU/SEI-2001-TN-006, Software

Engineering Institute, 2001. Case study and methodology

for iterative COBOL system migration.

[2] M. L. Brodie & M. Stonebraker. Migrating Legacy

Systems: Gateways, Interfaces & the Incremental

Approach. Morgan Kaufmann Publishers, 1995. Classic

text introducing the “Chicken Little” incremental

migration strategy using gateways.

[3] Object Management Group (OMG). “Architecture-

Driven Modernization (ADM) Standards.” OMG ADM

Task Force, 2003–2017. Defines models like the

Knowledge Discovery Metamodel (KDM) for

representing existing software to enable modernization.

[4] Coherent Market Insights. “How to Expedite the

Modernization of Legacy Banking System.” CMI Blog,

2023. Highlights the use of Domain-Driven Design for

safe, incremental legacy bank system re-architecting

(bounded contexts to reduce entanglement).

[5] C. Chowdhury. “How Domain-Driven Design Can Boost

Legacy Systems Modernization.” Cognizant 20-20

Insights, Oct. 2020. Discusses aligning legacy

modernization with business domains and ubiquitous

language so that IT and business move in lockstep.

[6] Informatica. “Addressing the Challenges of BCBS 239

Compliance with a Modern Approach to Data

Management.” Informatica Blog, Mar. 18, 2025. Explains

how legacy IT silos impede risk data aggregation and why

modern data integration is essential for Basel compliance.

[7] Basel Committee on Banking Supervision. “Basel III

framework – regulatory standards for banks.” BIS, 2017.

(Referenced via Basikon article) Modern core banking

solutions incorporate strict regulatory requirements

(PSD2, GDPR, Basel III) by design.

[8] S. Goos. “Model-Driven Legacy System Modernization.”

MSc Thesis, University of Twente, 2014. (Used for

reference on Chicken Little and ADM approaches).

[9] Fraunhofer IESE. “Legacy Systems / System

Modernization.” Fraunhofer Institute webpage, 2021.

Describes legacy modernization challenges in banking

(mainframe costs, need for CI/CD, etc.) and mentions

strategies (Big Bang, Chicken Little, Butterfly).

[10] Alfredo Muñoz. “Industrialize the modernization of

banking systems using BIAN standard.” Medium Blog,

Oct. 25, 2024. Presents an approach combining BIAN,

DDD, and automation, reinforcing the benefit of

standardized service domains in bank system

modernization.

[11] B. Wu, D. Lawless, J. Bisbal, J. Grimson, V. Wade, R.

Richardson and D. 0’ Sullivan, ‘Migrating Legacy

Systems: From a Caterpillar to a Butterfly’, Trinity

College Technical Report, January 1997.

[12] A, Sivagnana Ganesan, T. Chithralekha. Comparative

Review of Migration of Legacy Systems. Pondicherry

University Puducherry.

[13] Hans Tesselaar, Klaas de Groot, Guy Rackham. A

framework for the financial services industry.

http://www.ijcstjournal.org/

