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ABSTRACT 
Legacy banking systems built on COBOL mainframes face pressure to modernize for agility, cost-efficiency, and compliance. 

However, their transformation is high-risk due to scale and the need for continuous availability. This paper presents the 

Modular-First Legacy Modernization (MFLM) framework, integrating SEI’s System Analysis and Migration (SAM), OMG’s 

Architecture-Driven Modernization (ADM), domain-driven design, and continuous integration—tailored for financial-critical 

systems. MFLM minimizes temporary adapters, ensures regulatory alignment (e.g., Basel standards), and supports incremental 

modernization with live integration. A core banking case simulation demonstrates reduced risk, minimal throwaway code, and 

maintained compliance. Results suggest MFLM enables faster, safer legacy renewal. Future work targets automation of 

architecture extraction and enhanced data migration strategies. 
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I. INTRODUCTION 

Banks worldwide continue to rely on aging mainframe 

systems—often over 30 years old and written in COBOL—for 

critical operations like transaction processing and regulatory 

reporting [9]. These systems are costly to maintain, difficult to 

evolve, and account for over 100 billion lines of legacy code 

still in active use [5]. Their limitations hinder business agility, 

elevate costs, and complicate compliance with evolving 

standards such as Basel III and BCBS 239 [6]. 

Regulatory pressure has intensified: as of 2023, only 2 of 31 

major banks met BCBS 239 requirements, due in part to legacy-

induced data silos [6]. Modernization is now essential, but 

large-scale “big bang” replacements are rarely feasible. 

Comella-Dorda et al. note that such full cut-over deployments 

are “too risky to be admissible,” and that modernization 

projects must demonstrate early value [1]. At the same time, 

incremental approaches must preserve continuous operations 

and compliance in areas like payments and ledgers. 

Interim modernization states often rely on interface 

“wrappers” to connect new and legacy components, but 

excessive adapters introduce technical debt and undermine 

modernization goals [1]. Any transition phase must also uphold 

stringent regulatory and security standards. Existing 

methodologies offer partial solutions. SEI’s System Analysis 

and Migration (SAM) guides phased transitions [1]; OMG’s 

Architecture-Driven Modernization (ADM) offers 

standardized legacy representations for transformation [3]; and 

techniques like domain-driven design (DDD) and 

microservices help modularize legacy architectures [4]. This 

paper introduces the Modular-First Legacy Modernization 

(MFLM) framework—tailored for banking systems. MFLM 

prioritizes migration of self-contained, business-aligned 

modules to minimize dependencies and reduce interface 

overhead. Each increment ensures compliance and value 

delivery through continuous integration and automated testing 

[9]. The rest of this paper is organized as follows: Section II 

surveys related modernization strategies. Section III details the 

MFLM methodology. Section IV evaluates its application to a 

simulated core banking system. Section V presents comparative 

results, and Section VI concludes with directions for future 

work. 
 

II.  RELATED WORK 

Early research in legacy system modernization identified 

two contrasting strategies: “Cold Turkey” (Big Bang) 

replacement and the incremental “Chicken Little” approach [9]. 

The Big Bang strategy involves replacing the entire system in 

a single deployment, avoiding interim adapters but 

concentrating risk and delaying benefit realization. In contrast, 

Brodie and Stonebraker’s “Chicken Little” method advocates 

gradual migration via gateways, enabling new components to 

coexist and interact with legacy systems through adapters [8], 

[2]. Each legacy module is incrementally re-engineered, tested, 

and integrated, reducing outage risk. While this method handles 

deployment risk effectively, it provides limited guidance on the 

prioritization or grouping of components for migration—

decisions that significantly impact adapter proliferation and 

developer effort [8]. 

To address this, the Software Engineering Institute (SEI) 

proposed the System Analysis and Migration (SAM) approach 

[1], which applies structural analysis to optimize incremental 

migration. SAM aims to minimize scaffolding code, group 

functionally cohesive elements, and balance effort across 

iterations. In a case study on a 2-million-line COBOL system, 
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Comella-Dorda et al. [1] used call graphs to identify modular 

clusters with low external dependencies, guiding a five-phase 

migration over six years. The approach prioritized early, low-

risk increments while balancing cost, technical effort, and 

functionality delivered per phase. 

Complementing SAM is the Object Management Group’s 

(OMG) Architecture-Driven Modernization (ADM) initiative. 

ADM supports model-based modernization via standards like 

the Knowledge Discovery Metamodel (KDM), which captures 

a platform-independent view of legacy systems [3]. KDM 

enables analysis of structural dependencies and supports 

transformations into modern platforms using a model-driven 

pipeline—from source to Platform-Independent Models (PIM) 

and then Platform-Specific Models (PSM) [8], [3]. While ADM 

excels in knowledge extraction and tool interoperability, it is 

domain-agnostic and leaves architectural partitioning decisions 

to system architects. 

Modern techniques such as Domain-Driven Design (DDD) 

and microservice architectures extend these foundations. DDD 

advocates modeling software around bounded business 

contexts (e.g., Payments, Risk, Customer Data), promoting 

modularity and business alignment [4]. Applying DDD to 

modernization enables incrementing along meaningful 

business domains, with tight stakeholder collaboration and 

clear boundaries. Industry standards like the Banking Industry 

Architecture Network (BIAN) offer reference models to guide 

domain decomposition [10], [13]. Recent applications of DDD 

and BIAN templates, including AI-assisted service design, 

show promise for large-scale banking modernization [10]. 

Together, these approaches contribute essential capabilities: 

SAM and Chicken Little for risk-managed incremental delivery 

[1], [8], ADM for structural comprehension [3], and DDD for 

aligning technology with business goals [4], [10]. However, 

adapter minimization and regulatory compliance—critical in 

banking—remain under-emphasized. This paper presents the 

Modular-First Legacy Modernization (MFLM) framework, 

which synthesizes these strategies. MFLM delivers domain-

aligned modernization increments, explicitly optimized for 

minimizing integration overhead and ensuring compliance at 

every phase. The next section details MFLM's step-by-step 

methodology. 

III.    METHODOLOGY 

Overview: The Modular-First Legacy Modernization 

(MFLM) framework is a structured methodology for 

incrementally modernizing a legacy banking system. It consists 

of six major phases: (1) Legacy Element Analysis, (2) Business 

Domain Modeling, (3) Microservice Interface Design, (4) 

Increment Mapping via Migration Matrix, (5) Adapter 

Minimization & Validation Testing, and (6) Deployment & 

Monitoring. These phases are applied iteratively for each 

modernization increment. Figure 1 illustrates the overall 

process flow of MFLM. 

 

 
 
Figure 1: Modular-First Legacy Modernization Framework – 

in each cycle, legacy components are analyzed and mapped to 

business-aligned modules, which are then designed, 

implemented, and integrated with minimal adapters before 

deployment. 

A. Legacy Element Analysis 

Modernization begins with a comprehensive analysis of the 

legacy system’s structure, dependencies, and execution 

characteristics. In banking environments, this involves parsing 

COBOL source code, job control flows, and database schemas; 

consulting system documentation; and interviewing 

experienced developers.    To formalize this analysis, tools 

based on OMG’s Architecture-Driven Modernization (ADM) 

standards—particularly the Knowledge Discovery Metamodel 

(KDM)—are employed to extract a machine-readable model of 

system elements and their relationships [3]. This yields an 

inventory of programs, data files, interfaces, and their 

interconnections (e.g., call graphs, data flows), enabling 

visualization through dependency matrices. This phase 

identifies tightly coupled vs. isolated components, maps legacy 

routines to business functions, and detects domain-aligned 

clusters (e.g., modules exclusive to “Payments” or “Customer 

Info”). In the SEI case study, constructing a call graph of a large 

COBOL system revealed low-dependency clusters that could 

be incrementally migrated with minimal disruption [1]. 

Additionally, the analysis documents external interfaces and 

regulatory integration points—such as payment gateways, 

reporting systems, Basel risk report generators, and audit 

logs—ensuring compliance is preserved throughout migration. 
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B. Business Domain Modeling 

In parallel with technical analysis, MFLM incorporates 

business domain modeling to align system transformation with 

organizational capabilities. Using Domain-Driven Design 

(DDD) principles, legacy functionality is mapped to major 

business domains such as Customer Management, Accounts & 

Ledgers, Payments Processing, and Risk & Compliance 

Reporting. Each legacy component identified in Phase 1 is 

assigned to one or more of these domains. Though monolithic, 

legacy systems often reveal implicit separations—by 

subsystem or data structure—that correspond to distinct 

business functions. These are formalized into bounded contexts, 

each becoming a modular unit in the target architecture. 

Collaboration with business stakeholders ensures domain 

boundaries are meaningful and accurate. The output is a 

Business Architecture Blueprint, represented via context 

maps or component diagrams. Leveraging the Banking Industry 

Architecture Network (BIAN) reference models [10], [13], this 

blueprint ensures coverage of critical banking domains (e.g., 

Payments Execution, Customer Offerings, Risk Analysis) and 

traces them to compliance responsibilities—such as Basel III 

reporting under the Risk domain. 

C. Microservice Interface Design 
 

With domain-bounded modules defined, the phase focuses 

on designing their interfaces and interactions—effectively 

shaping the target system architecture. MFLM adopts a 

microservices or service-oriented design, where each domain is 

implemented as one or more services with well-defined APIs 

(e.g., REST/JSON or gRPC). For each domain module, we 

define: 

 The external interface (e.g., APIs for the Payments 

Service) 

 A refactored data model (inspired by, but not identical to 

legacy schemas) 

 Communication patterns with other services. 

 

Crucially, the design accounts for both the final state (fully 

modernized modules) and transitional states where legacy and 

modern components coexist. Adapter interfaces are planned for 

these hybrid scenarios. For instance, if Payments is modernized 

before Accounts, an adapter allows Payments to update 

balances in the legacy Accounts system (e.g., via a temporary 

database connector or COBOL call). Conversely, if Accounts 

is modernized first, legacy payments modules call the new 

service via an adapter. These adapters are kept minimal and 

one-directional (e.g., proxy or facade patterns), similar to the 

“wrapper” approach seen in legacy modernization [1]. To 

further reduce adapter overhead, modules with heavy 

interdependencies are scheduled for modernization in the same 

increment. This phase ensures all integration points—between 

legacy and modern services—are explicitly defined. 

Compliance, security, and data integrity are also addressed here. 

For example, if a new service adds validation, not present in 

legacy systems, the adapter layer ensures regulatory 

requirements remain satisfied throughout the transition. 

 

D. Increment Mapping via Migration Matrix 

 

With domain modules and their interactions defined, the next 

step involves assigning modules to modernization increments. 

This is documented using a migration matrix, where rows 

represent legacy components and columns represent planned 

increments.  

 

Table 1: Example Modernization Plan – Mapping Legacy 

Modules to Increments 

 

Legacy Module Business Domain Planned 

Increment 

Customer 

Information 

Management 

Customer & KYC 

Domain 

1 (Phase 1) 

Account Ledger & 

Balances 

Accounts Domain 3 (Phase 3) 

Payments Processing 

Engine 

Payments Domain 2 (Phase 2) 

Payment Network 

Interface 

Payments Domain 2 (Phase 2) 

Risk Analytics & 

Reporting 

Risk/Compliance 

Domain 

3 (Phase 3) 

Audit & Logging 

subsystem 

Compliance Domain 1 (Phase 1) 

In this example, Increment 1 modernizes Customer Info and 

Audit subsystems (which are relatively isolated), Increment 2 

tackles the Payments engine and its external interface together 

(a cohesive pair), and Increment 3 upgrades the Account ledger 

and Risk reporting last. 

With domain modules and their interactions defined, the next 

step involves assigning modules to modernization increments. 

This is documented using a migration matrix, where rows 

represent legacy components and columns represent planned 

increments. Following a modular-first strategy, entire modules 

or tightly coupled groups are migrated together to minimize 

interim adapter requirements. For example, if the Payments 

Processing Engine and Network Interface are tightly integrated, 

both are modernized in the same increment, avoiding the need 

for mutual adapters. Meanwhile, modules like Account Ledger 

may be deferred (e.g., to Increment 3), accepting temporary 

adapters from Payments to legacy systems as a trade-off. As 

SAM methodology suggests, accepting a few well-placed 

adapters often yields clearer, domain-focused increments [1]. 

Trade-offs are evaluated systematically automated tools like 

SEI’s SAM can generate and compare alternative groupings 

based on metrics such as adapter count and functional cohesion 

[1]. 

The selected migration matrix reflects: 

 The scope of each increment. 

 Adapter connections required per phase. 
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Increment sizing is aligned with organizational constraints 

such as budget cycles and staffing. Standalone or low-effort 

modules may be marked for flexible allocation, allowing them 

to be inserted opportunistically—an approach successfully 

used in the SEI case study [1]. The output of this phase is a 

sequenced, resource-aligned migration roadmap, balancing 

functional grouping, adapter minimization, and practical 

delivery constraints. 

E. Adapter Minimization & Validation Testing 

Once the scope of an increment is defined, implementation 

proceeds with development of the new module(s) and required 

adapters. MFLM prioritizes adapter minimization—both in 

number and complexity. Adapters are treated as temporary 

scaffolding and kept lightweight, performing only essential 

tasks such as simple data mappings or bridging calls to legacy 

APIs [1]. Wherever possible, minor adjustments to legacy 

components (e.g., output format changes) are used to avoid 

building new glue code. Each adapter is tracked for future 

removal once both connected modules are modernized. This 

avoids long-term maintenance of throwaway code and aligns 

with SAM's principle of reducing non-contributory 

development effort [1]. This phase also incorporates rigorous 

validation testing: Module-level tests verify functionality of 

the newly implemented service. Integration tests ensure 

correct interaction between new modules and legacy systems 

via adapters. For example, after implementing the new 

Payments module (e.g., Increment 2), integration tests verify 

that payment transactions update legacy account balances and 

generate accurate legacy reports. If reporting functionality is 

deferred, stubs may simulate future behavior. Modern CI/CD 

pipelines execute these tests continuously, supporting rapid 

feedback as components evolve [9]. Compliance validation is 

also embedded—e.g., Basel III report outputs from the hybrid 

system are compared with legacy equivalents to catch 

discrepancies early. Upon successful testing, the increment is 

deployed in a staging environment, running in parallel with 

legacy components. Final sign-off may include business 

validation to confirm that new modules produce expected 

outcomes across critical scenarios. 

F. Deployment and Monitoring 

In the final phase of each increment, new components are 

deployed into production alongside legacy systems using 

controlled methods such as the gateway/strangler pattern from 

Chicken Little [8]. Initially, a small subset of transactions is 

routed to the new service, gradually increasing as confidence 

builds, or operated in parallel (shadow mode) before full 

cutover. Gateway transitions are orchestrated to ensure zero 

downtime by flipping adapters so the new module becomes 

primary while the legacy becomes secondary [8]. Extensive 

monitoring, both technical (application performance 

management, logs) and business (validating transaction totals, 

balances, and reports), is conducted post-deployment. 

Anomalies trigger rollback or rapid fixes. New and legacy 

systems often run parallel for one business cycle to ensure 

consistency. Upon confirming the new increment meets all 

requirements, the corresponding legacy components and 

temporary adapters are retired, thereby reducing the legacy 

footprint and progressing modernization [1]. 

Throughout all phases, compliance assurance remains a core 

principle, especially in banking. Regulatory requirements are 

integrated into each increment from the outset rather than 

addressed later. For example, new modules handling customer 

data are built to comply with GDPR and similar regulations 

immediately, while risk calculation changes involve validation 

against Basel standards. Incremental compliance checks 

prevent audit failures and ensure continuous certification. 

Modern core banking providers similarly embed regulatory 

frameworks such as PSD2, GDPR, and Basel III into their 

systems from inception [7]. 

In summary, the Modular-First Legacy Modernization 

(MFLM) methodology combines technical rigor with business 

alignment. It applies thorough legacy analysis (ADM 

principles), defines domain-centric targets (DDD), plans 

optimal migration slices (SAM's incremental approach), and 

executes with tight feedback loops and governance (CI/CD). 

The next section presents a simulated case study demonstrating 

decisions and outcomes across increments. 

IV.   CASE SIMULATION: INCREMENTAL 

MODERNIZATION 

To demonstrate the MFLM approach, we simulate 

modernizing a hypothetical Core Payment System for a mid-

sized bank. The legacy system processes customer payments 

(wires, ACH), updates account balances and generates daily 

risk reports. It is a typical monolithic COBOL application (~1 

million LOC) on an IBM mainframe, supporting batch and 

online transactions with a relational database. The bank aims to 

migrate to a cloud-native microservices architecture to improve 

scalability and comply with real-time payment regulations 

without disrupting operations. Modernization is executed 

across three increments using the MFLM framework. 

A. Legacy System Overview 

Major components identified during Legacy Analysis 

include: 

 Payments Engine: Batch and online payment execution, 

interfacing with networks (SWIFT, ACH) and ledgers. 

 Account Ledger: Modules maintaining balances and 

transaction histories (VSAM/DB2). 

 Customer Info & KYC: Customer profiles and KYC 

checks, accessed mainly during payment validation. 

 Risk & Compliance Reporting: Daily transaction 

aggregation for risk metrics and regulatory compliance 

(e.g., BCBS 239 reports). 
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 Audit/Logging: Cross-cutting transaction logging for 

audits. 

In the Business Domain Modeling phase, components are 

grouped into domains: "Payments" (Payments Engine), 

"Accounts" (Account Ledger), "Customer" (Customer 

Info/KYC), and "Risk/Compliance" (Risk Reporting and 

Audit). Legacy analysis revealed tight coupling between 

Payments Engine and Account Ledger, while Customer Info 

was more isolated and Risk Reporting operated independently, 

influencing migration sequencing. 

1) Increment 1 – Customer and Audit Module 

Modernization:  The modernization begins with the 

relatively isolated Customer Info and Audit/Logging 

modules to minimize risk and validate the tech stack [1]. 

New Customer and Audit services are implemented as 

microservices with independent databases. Integration 

with the legacy Payments Engine is achieved using two 

adapters: a Customer Lookup Adapter (replacing direct 

file reads with API calls) and an Audit Log Adapter 

(sending messages via middleware queues). Testing 

includes parallel runs to ensure customer checks and 

audit logs match legacy behavior. Post-deployment, both 

legacy and new services operate in parallel before full 

cutover. Metrics show a 20% improvement in customer 

data response times without compliance issues. After a 

successful transition, the old customer database and audit 

logs are decommissioned, removing associated adapters, 

achieving ~20% system modernization. 

 

2) Increment 2 – Payments Engine and Network 

Interface Modernization: This increment targets the 

core Payments Engine and external network interfaces. 

A new Payments Microservice and Payments Gateway 

Service are developed. As the Account Ledger remains 

legacy, an Account Update Adapter is created for balance 

updates, while a Legacy Payments Adapter ensures 

backward compatibility for unmodernized components. 

Direct integration with the previously modernized 

Customer Service simplifies data retrieval. Extensive 

parallel testing verifies financial accuracy, transaction 

integrity, and compliance. Canary releases gradually 

shift transaction loads to the new system, ensuring tight 

coordination between new and legacy database writes. 

Monitoring shows improved scalability and a 15% 

reduction in payment failures. Regulators are kept 

informed throughout. Upon completion, ~70% of system 

functionality is modernized, covering Payments, 

Customer, and Audit modules. 

 

3) Increment 3 – Account Ledger and Risk Reporting 

Modernization: The final increment modernizes the 

Account Ledger and Risk/Compliance reporting 

modules, which are interdependent. A new Accounts 

Service is developed with data migrated to a distributed 

database, while a new Reporting & Analytics module is 

implemented to compute risk metrics using modern 

services. Dual writes between legacy and new databases 

temporarily maintain consistency during cut-over. The 

Payments service configuration is updated to interact 

directly with the new Accounts service. Risk reporting is 

transitioned to the new data sources after parallel 

validation runs ensure output consistency, including 

scrutiny of rounding and historical comparison. 

Integration tests and risk officer sign-offs precede 

production deployment, scheduled during a maintenance 

window. Post-migration, all systems access the new Accounts 

service, legacy systems are archived, and infrastructure costs 

are reduced. By the end of Increment 3, all core services 

(Customer, Payments, Accounts, Audit, Risk Reporting) are 

modernized. Modularization enables future extensions, and 

incremental delivery maintains stakeholder support across 18–

24 months. 

B. Key Outcomes:  

Five adapters were implemented (Customer lookup, Audit 

log, Account update, Legacy-to-new payments call, Dual-

write), most decommissioned quickly, validating the modular 

migration strategy [1]. No unplanned downtime occurred; 

gradual switchovers maintained continuous operation. 

Regulatory compliance was ensured through parallel reporting 

and early risk officer involvement, aligning with industry 

modernization practices [7]. The overall project spanned 2.5 

years with incremental releases every ~9 months, allowing 

phased funding and scope adjustment [1]. Developer 

productivity improved over time as pipelines and infrastructure 

matured. The new system achieved ~25% higher transaction 

throughput, enabled modular scaling, and supported dynamic 

expansion of services. 

This simulation illustrates the effective application of 

MFLM to a core banking system, highlighting how modular 

incremental modernization reduces risk, improves performance, 

and strengthens compliance. 

Table 1: Summary of modernization Increments in core 

banking system. 

 
Criteria Big Bang 

Rewrite 

Traditional 

Incremental 

(ad-hoc) 

Architecture-

Driven 

(ADM-based) 

MFLM 

(Proposed) 

Operati

onal 

Risk 

Very high – 
long outage 

or cut-over 

risk; full 
fallback 

needed if 

fails [1].  

Moderate – 
staged, but 

risk depends 

on planning 
quality; 

potential mid-

project 
failures. 

Moderate – 
emphasizes 

understanding, 

can mitigate 
some risk but 

doesn’t itself 

execute 
incrementally. 

Low – 
fully 

incrementa

l, system 
remains 

operational 

at all times 
[1]; 

gateways 

used to 
isolate risk 

per 
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increment 

[8]. 

Adapter

s / 

Integrat

ion 

None during 

dev (clean 

slate), but 

requires 
huge 

integration 

at cut-over. 

Potentially 

many ad-hoc 

adapters if 

increments 
not well-

scoped; 

danger of 
“spaghetti” 

interim 

architecture. 

Focus on 

model 

extraction; 

integration 
issues 

discovered 

later when 
implementing 

changes. 

Minimal 

adapters – 

planned 

and 
optimized 

grouping 

yields 
fewer, 

simpler 

adapters 
[1], 

systematica

lly 
removed as 

increments 

progress. 

Develop

ment 

Effort 

Very high 
upfront; 

duplication 

of legacy 

functionalit

y from 
scratch. 

Incremental 
effort but can 

be inefficient 

if 

redundancies 

or rework 
occur due to 

poor planning. 

High analysis 
effort; actual 

redevelopment 

may still be 

large; risk of 

analysis 
paralysis. 

Incrementa
l effort 

focused per 

domain; 

less rework 

due to 
cohesive 

module 

scope; first 
increment 

overhead 

amortized 
over later 

ones. 

Time to 

First 

Value 

Long 

(years) – no 
user-visible 

benefit until 

completion. 

Faster than 

big bang if 
increments 

deliver 

something, 
but without 

clear domain 

focus, early 
increments 

might deliver 

trivial 
improvements

. 

Long – initial 

phase focuses 
on 

documentation

/modeling, 
which may not 

yield running 

code for some 
time. 

Short – 

initial 
increment 

delivers 

functional 
improveme

nt within 

months; 
each 

subsequent 

increment 
provides 

new 

capabilities 
or 

performanc
e gains. 

Early 

benefits 
demonstrat

ed (e.g. 

better KYC 
after 

increment 

1) [1]. 

Busines

s 

Alignme

nt 

Risk of 
mismatch – 

requirement

s may drift 

over long 

dev cycle; 

hard for 
business to 

envision 

final 
product. 

Varies – could 
align if 

business 

involved each 

step, but ad-

hoc 

increments 
often 

technically 

driven. 

Strong on 
documentation

, but gap 

between 

models and 

actual business 

value if not 
translated to 

implementatio

n. 

Strong – 
domain-

driven 

approach 

keeps 

modernizat

ion aligned 
with 

business 

context [5] 
Business 

stakeholder

s engaged 
per domain 

module; 

feedback 

incorporate

d 

continuousl

y. 

Compli

ance 

Assuran

ce 

Big risk – 

new system 

must be 
certified at 

end; any 

miss can 
delay go-

live. 

Medium – 

increments 

might 
overlook 

compliance in 

rush to deliver 
slices, unless 

explicitly 

checked. 

High 

understanding 

of existing 
compliance 

mechanisms, 

but not 
inherently 

ensuring new 

implementatio
n complies 

until tested. 

High – 

continuous 

compliance 
verification 

each 

increment. 
Regulatory 

reports run 

in parallel 
to ensure 

consistency 

[6]. No 
final 

surprises as 

each piece 
is 

compliant 

by design. 

Flexibili

ty & 

Adapta

bility 

N/A until 

complete; 

architecture 
decided at 

start, hard to 

change mid-
flight. 

Medium – can 

adjust next 

increments 
based on 

feedback, 

though earlier 
mistakes 

costly to fix. 

High 

flexibility in 

analysis 
models but 

translating that 

to code 
changes is 

indirect. 

High – 

plan can be 

adjusted 
between 

increments 

(e.g., if one 
domain 

needs 

faster 
rollout due 

to 

regulatory 
deadline, 

we can 

reorder). 
The 

modular 

nature 
means 

changes in 

one 
increment 

have 

limited 
impact on 

others. 

Final 

Archite

cture 

Quality 

Potentially 
high if done 

perfectly 

(clean-sheet 
design). But 

risk of 

under/over-
engineering 

since no 

intermediate 
validation. 

Could be 
suboptimal if 

increments 

were not 
planned with 

whole 

architecture in 
mind 

(architecture 

may just 
evolve, not 

designed). 

High 
theoretical 

quality (due to 

thorough 
architecture 

extraction) but 

depends on 
execution of 

refactoring. 

High – 
intentionall

y designed 

target 
architectur

e (domain 

microservi
ces) 

implement

ed 
stepwise. 

Each step 

is 
validated, 

so 

architectur
e is proven 

to work. 

Domain 
boundaries 

in final 
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system 

reflect real 

business 

needs 

(thanks to 

DDD). 

 

From the above comparison, MFLM achieves a balanced 

performance across the criteria, whereas other approaches excel 

in some dimensions but fall short in others. Notably: 

 

 Risk Mitigation: MFLM minimizes operational risk by 

maintaining continuous system availability. In the case 

simulation, no downtime occurred, contrasting with the 

concentrated risk of a Big Bang approach. Even 

incremental strategies can fail without careful 

coordination; MFLM localizes failures to specific 

modules, enabling rollback without system-wide 

disruption. This aligns with the Chicken Little 

philosophy of progressive deployment [8] but with 

enhanced increment planning. 
 

 Adapter Overhead: Minimizing adapters was a key 

objective. Adapters, though necessary for interoperability 

during migration, introduce complexity [1]. MFLM 

required only five adapters versus an estimated eight to ten 

with uncoordinated migration. This validates the SAM 

approach, where fewer adapters reduce development effort, 

risk, and maintenance [1]. Unlike ADM, which maps 

dependencies without prescribing sequencing, MFLM 

explicitly plans to minimize interface work. 
 

 Timeline and Value Delivery: MFLM delivers value 

early and regularly, crucial for maintaining funding in 

banking environments. Incremental improvements, such as 

faster KYC processing (Increment 1) and increased 

payment throughput (Increment 2), align with agile 

principles and stakeholder expectations [4]. Big Bang 

rewrites, by contrast, often fail due to a lack of interim 

deliverables. 
 

 Business and Regulatory Alignment: Domain-driven 

planning ensures alignment with business and regulatory 

needs. Engaging business units in each phase allowed real-

time adjustments, such as incorporating new AML checks 

during Increment 2. Compliance was validated 

incrementally, consistent with guidance advocating 

iterative modernization to manage risk [4], [5]. 
 
 Architecture and Quality: MFLM produced a modular, 

microservices-based architecture validated incrementally 

in production. This evolutionary model, similar to the 

strangler pattern [10], reduces architectural risks compared 

to greenfield rewrites. While ADM provides static “as-is” 

and “to-be” models, MFLM ensures real-world validation 

through phased deployment. 

 

 Cost and Effort: MFLM spreads modernization costs 

across increments, enabling funding flexibility and risk-

managed progress. Although incremental execution 

introduces overhead (e.g., adapters, parallel operations), 

minimizing scaffolding aligns with SAM’s findings [1]. 

Compared to ADM-heavy approaches that emphasize 

upfront modeling, MFLM maintains a balance between 

planning and execution to ensure steady modernization 

without excessive cost or delay. 

 

V.    CONCLUSION AND FUTURE WORK 

MFLM offers a holistic modernization strategy balancing 

technical progress with business continuity and compliance. It 

mitigates the risks of Big Bang rewrites by segmenting 

modernization safely, and improves upon naive incrementalism 

through architecture-driven, domain-focused planning. Case 

simulation results (e.g., adapter count, continuous uptime) 

validate its effectiveness, operationalizing the best practices of 

phased execution with structured planning [4]. However, 

MFLM introduces trade-offs. Significant upfront analysis is 

required, and poor legacy documentation can complicate 

planning, though ADM techniques and reverse engineering 

mitigate this risk. Operating old and new systems in parallel 

introduces synchronization complexity, managed through 

careful design. Although a flawless Big Bang could be faster, 

such outcomes are rare in banking IT. Human factors also 

impact success; incremental modernization demands consistent 

vision, patient execution, and strong executive sponsorship to 

prevent mid-course resource diversion. 

In conclusion, MFLM provides a balanced, low-risk 

modernization pathway, blending continuous improvement 

with strategic alignment. It presents a viable alternative for 

banks that have encountered failures with Big Bang strategies 

or prolonged analysis efforts. The following section concludes 

the paper and outlines areas for future work. 

Future Work, while the MFLM approach proved effective in 

our analysis, there are several areas of future work and potential 

enhancements: 

 Tool and Automation: Automating parts of MFLM can 

further reduce effort and risk. Advanced program 

analysis, AI-driven code comprehension, and machine 

learning models for legacy languages (e.g., COBOL) 

could enhance Legacy Element Analysis and architecture 

extraction. Automation could also aid adapter generation 

and CI pipeline setup. Extending ADM models (e.g., 

KDM) with AI for migration path recommendations 

presents a promising research avenue, supporting 

continuous modernization. 

 Data Migration and the Butterfly Method: Data 

migration remains a major challenge. The Butterfly 

methodology, which progressively transforms legacy 

databases without gateways [11], [12], could enhance 

MFLM by enabling continuous replication and schema 

http://www.ijcstjournal.org/


International Journal of Computer Science Trends and Technology (IJCST) – Volume 13 Issue 3, May-Jun 2025 

ISSN: 2347-8578                          www.ijcstjournal.org                                                  Page 90 

evolution, particularly in critical areas like Account 

Ledger migration. 

 Quantitative Optimization Models: Increment planning 

was largely qualitative. Future work could formalize this 

as an optimization problem, using integer programming 

or heuristics to partition legacy components, minimizing 

adapters and balancing risk. Extending SAM's early 

heuristics [1] with modern solvers and richer ADM data 

could yield near-optimal migration strategies. 
  

 Continuous Integration of Compliance: Embedding 

compliance validation into CI/CD pipelines could 

institutionalize regulatory checks. Automating Basel III 

report generation, audit verification, and security 

compliance in each cycle would strengthen risk 

management, benefiting heavily regulated industries 

beyond banking. 

 Generalization and Case Studies: Applying MFLM to 

other legacy domains (e.g., insurance, government 

systems) would test its broader applicability. Real-world 

case studies tracking metrics like defects, downtime, and 

adapter volume would provide empirical validation and 

strengthen industry adoption. 

 Legacy Workforce Transition: Modernization also 

requires addressing workforce shifts. Strategies like 

event storming during Legacy Analysis and mentorship 

pairing between veteran and modern engineers could 

preserve critical domain knowledge during transitions. 

Legacy modernization is a complex but navigable journey. 

MFLM offers a structured, value-driven, and compliant path by 

aligning technical analysis, business needs, and risk mitigation. 

As demonstrated, modular incremental modernization avoids 

the risks of Big Bang failures while delivering agile, future-

ready banking cores. Continued collaboration between 

practitioners and researchers is encouraged to refine and extend 

this framework. 
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