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ABSTRACT  
Software bugs pose significant challenges to the reliability and quality of modern software systems, necessitating 

advanced prediction techniques. This research proposes a hybrid deep learning model integrating ‘Convolutional 

Neural Networks (CNNs)’ and ‘Long Short-Term Memory (LSTM)’ networks to enhance software bug prediction. 

Utilizing the JM1 dataset from the NASA Metrics Data Program, the model leverages CNNs for spatial feature 

extraction and LSTMs for temporal dependency modeling. Following preprocessing steps like SMOTE and feature 

scaling, the hybrid ensemble achieved an accuracy of 96%, precision of 94%, recall of 84%, and F1-score of 89%, 

outperforming prior work such as Random Forest (82% accuracy) by 14%. Comparative analysis highlights the 

model’s ability to reduce false positives while detecting most defects, though recall limitations suggest room for 

improvement. This study advances software quality assurance by demonstrating the efficacy of hybrid deep 

learning, with future work proposed to enhance recall and generalizability across diverse datasets. 

Keywords:- Software Bug Prediction, Machine Learning, Deep Learning,‘Convolutional Neural Network (CNN)’,’ 

Long Short-Term Memory (LSTM)’,Hybrid Ensemble Model 

 

I. INTRODUCTION 
The rapid expansion of software systems in scale, 

complexity, and criticality has made ensuring their 

reliability an increasingly daunting task. Software 

bugs—errors or defects in code that cause unintended 

behavior or system failures—pose significant risks, 

including financial losses, security breaches, and 

diminished user trust. For instance, the infamous 

Ariane 5 rocket failure in 1996, caused by a software 

overflow bug, resulted in a loss of over $370 million, 

underscoring the high stakes of software quality [1]. 

Traditional approaches to bug detection, such as 

manual code reviews and static analysis tools based 

on predefined rules, have proven insufficient for 

modern software projects characterized by millions 

of lines of code and frequent updates. These methods 

often suffer from limited scalability, high false-

positive rates, and an inability to adapt to evolving 

codebases. In response, machine learning (ML) has 

emerged as a transformative paradigm for software 

bug prediction, offering data-driven techniques to 

identify defect-prone code with greater precision and 

efficiency.Machine learning leverages historical 

data—such as code metrics, commit histories, and 

past defect reports—to train models capable of 

predicting where bugs are likely to occur. Early work 

by Nagappan and Ball demonstrated the potential of 

using code churn and complexity metrics to predict 

post-release defects in large-scale software systems, 

laying the groundwork for ML-based approaches [2]. 

Subsequent research has expanded this foundation, 

integrating advanced ML algorithms like decision 

trees, support vector machines, and deep learning to 

analyze not just structural code features but also 

semantic patterns and developer behavior. For 

example, Kim et al. showed that combining static 

code features with change history data significantly 

improves prediction accuracy, achieving up to 78% 

precision in identifying buggy modules [3]. More 

recently, the advent of deep learning has enabled the 

analysis of raw source code as sequences or graphs, 

bypassing the need for labor-intensive feature 

engineering [4]. These advancements suggest that 

ML can shift bug prediction from a reactive to a 

proactive process, allowing developers to prioritize 

testing and refactoring efforts on high-risk 

components before defects manifest in production. 

Despite its potential, there are obstacles to using 

machine learning (ML) for bug prediction, such as 

problems with data quality, model interpretability, 

and generalizability across various software projects.  
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Through a comparative examination of important 

approaches, this article will examine the development 

of machine learning techniques in software bug 

prediction, assess their efficacy, and analyses their 

implications for enhancing software quality 

assurance.  We want to give a thorough grasp of how 

ML might reshape the future of dependable software 

development by combining knowledge from the body 

of existing research and resolving present constraints. 

II. RELATED WORK 

[5] Software defect prediction may be accomplished 

with the help of a wide variety of available metrics, 

as the authors of this paper make clear.  When trying 

to foretell software problems, it's best to work with a 

smaller collection of key metrics and focus solely on 

those.  With the use of a Bayesian network, they 

investigated the correlation between software metrics 

and the likelihood of errors.  In addition to the 

metrics utilized in Promise Repository, two more 

metrics have been specified: a number of researchers 

and source code quality metrics.  From the Promises 

Repository, they have selected nine datasets to test.  

Although they found NOC and DIT to be less 

efficient and dependable, they found that RFC, LOC, 

and LOCQ were better at minimizing error 

proneness.  They have focused on a narrower 

collection of software measures so far, but in their 

future work, they will include more metrics and try to 

figure out which ones are best for defect prediction.  

[6] This study emphasizes software risk component 

categorization for developers. This category 

improves software availability, security, and project 

management. A unique risk estimating technique was 

developed to help internal stakeholders analyze 

software risk by forecasting a quantifiable risk value. 

Bug-fix time assessments, duplicate bug records, and 

software component priority levels are used to derive 

this figure from historical software bug reports. The 

suggested method uses Tensorflow and machine 

learning to forecast the likelihood of software bugs 

using the Mozilla Core datasets (Connections: HTTP 

software component). While risk levels ranged from 

27.4% to 84%, the highest predicted accuracy for 

bug-fix time was 35%. Bug-fix time estimations 

correlated strongly with risk ratings, but duplicate 

bug records correlated less. 

[7] An explanation is provided by the author of this 

research paper on how machine learning classifiers 

have evolved into helpful tools for recognizing 

possible issues in source code file updates. Following 

initial training on historical software data, the 

classifiers are then used to make predictions about 

potential software flaws. On the other hand, the 

current classifier-based bug predictions systems have 

a number of significant shortcomings, two of the 

most significant of which are their dependence on a 

huge number of features and their potential lack of 

accuracy for practical implementations. It is possible 

that the methodology's accuracy and scalability will 

suffer as a result of the depth of its features. 

According to the findings of the study, a feature 

selection approach that was developed specifically 

with classification-based bug predictions might be 

used to solve these issues. With the help of this 

technique, software changes faults may be 

anticipated, and a comprehensive investigation of the 

efficiency of Bayes naive and Support Vector 

Machine, or SVM, classifiers is carried out. 

[8] The author of this research paper addresses the 

rising significance of quality of software as a crucial 

component of system dependability. In many R&D 

departments, software engineering concepts are 

becoming more and more important. A large quantity 

of previous fault data is created and gathered over the 

software's development and operation stages, but it is 

seldom studied and exploited. Software developers 

may discover error-prone modules and probable 

failure types early on and facilitate quick fixes by 

using software failure prediction technology, which 

has the ability to foresee software faults before 

testing. Building a high-performing applications 

prediction of defects method for system software still 

faces a number of difficulties. First of all, failure 

situations in current system software are varied and 

challenging to identify. Second, a lot of the problem 

data is repetitious, jumbled, and lacking. Finally, 

there aren't many predictive models that provide good 

interpretability together with great performance. This 

research article investigates the building strategies for 

creating efficient software models for defect 

prediction that are suited to system software 

requirements to respond to these difficulties. 
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In a series of research papers, various innovative 

approaches to software fault prediction and 

management are explored. Reference [9] highlights a 

two-step model using data mining on bug repositories 

to estimate software faults with a weighted similarity 

model, while [10] discusses enhancing classifier-

based bug prediction through feature selection with 

Bayes Naive and SVM classifiers. Reference [11] 

introduces a method leveraging complex network 

theory and Call Graphs & Control Flow Graphs to 

predict fault numbers, showing significant 

performance improvements. Meanwhile, [12] 

examines machine learning tuning parameters' impact 

on maintenance effort estimation for open-source 

software, and [13] proposes object-oriented design 

metrics to improve development processes. 

Reference [14] emphasizes mining bug repositories 

to identify error-prone modules, and [15] underscores 

feature selection’s role in enhancing classification 

models for defect prediction. Neural network tools 

for early fault prediction are explored in [16], while 

[17] advocates for a reduced set of critical metrics 

using Bayesian networks. Reference [18] presents a 

failure prediction approach to optimize testing 

resources, and [19] compares classifiers like LR and 

KNN with metrics like Halstead for quality 

prediction. Finally, [20] evaluates 22 classifiers 

across NASA datasets, finding no significant 

performance differences using AUC-ROC and 

statistical validation. 

[21] The researchers have suggested topic models to 

enhance the triaging of software bugs. The software 

bugs' varied phrases and count are represented by the 

vector space model. Sometimes different terminology 

used by developers signify different things, and 

depending on the situation, the same terms might 

indicate different things. For this reason, synonymous 

terms are not handled by the vector space model. [6] 

The area of bug triaging has become increasingly 

aware of this issue. Modeling of topics has been 

frequently used to solve this issue. Based on the 

words found in the file, topics are generated in the 

topic model, which helps with issues related to term 

synonyms and polysemy.  

III.TECHNIQUES IN MACHINE 

LEARNING FOR ERROR 

PREDICTION 

The application of machine learning (ML) to 

software bug prediction has evolved significantly, 

leveraging a variety of algorithms to model the 

complex relationships between code characteristics 

and defect likelihood. These techniques range from 

traditional supervised learning methods to advanced 

deep learning approaches, each offering unique 

strengths in analyzing software artifacts such as 

source code, commit histories, and metrics. This 

section explores key ML techniques employed in bug 

prediction, with a particular emphasis on a hybrid 

‘Long Short-Term Memory (LSTM)’ and 

‘Convolutional Neural Network (CNN)’ model, 

alongside other established methods. 

Supervised Learning Approaches 

Traditional supervised learning techniques have been 

widely adopted for bug prediction due to their 

interpretability and effectiveness with structured data. 

Decision Trees and Random Forests, for instance, 

excel at handling code metrics like lines of code, 

cyclomatic complexity, and coupling measures. Hall 

et al. demonstrated that Random Forests outperform 

simpler classifiers like Naive Bayes when predicting 

defects across multiple software projects, achieving 

an average F1-score of 0.73 [22]. Support Vector 

Machines (SVMs) have also been effective, 

particularly when combined with feature selection to 

reduce noise from high-dimensional datasets. 

However, these methods often rely heavily on 

manually engineered features, limiting their 

adaptability to raw code or unstructured data. 

Deep Learning Techniques 

A new approach to bug prediction has emerged with 

the rise of deep learning: models that can 

automatically extract characteristics from 

complicated inputs like source code language or 

abstract syntax trees (ASTs).  Sequential data, such 

as history of code changes or word sequences, is 

well-suited to ‘Recurrent Neural Networks (RNNs)’, 

and ‘LSTMs’ in particular.  ‘Long short-term 

memories (LSTMs)’ solve the vanishing gradient 

issue with vanilla RNNs, allowing them to record 

dependencies in code development over the long 

term.  Local patterns in code, such as repeating 

syntactic structures suggestive of defects, may now 

be identified using CNNs, which were initially 
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developed for image processing.  By representing 

source code as a matrix of word embedding’s, Li et 

al. were the first to apply CNNs for defect prediction; 

using open-source datasets, they achieved a precision 

of 0.81.[26]. 

Hybrid LSTM + CNN Model 

In this study, we leverage a hybrid LSTM + CNN 

model to combine the strengths of both architectures 

for bug prediction. The CNN component processes 

raw source code or ASTs to extract spatial features—

such as code snippets prone to errors—while the 

LSTM layer models temporal dependencies across 

code changes or commit sequences. This hybrid 

approach is particularly effective for capturing both 

the structural and evolutionary aspects of software 

defects. For example, the CNN can identify a poorly 

structured loop as a potential bug hotspot, while the 

LSTM tracks how frequent modifications to that loop 

correlate with past defects. Preliminary work by 

Wang et al. supports this hybrid strategy, showing 

that combining CNNs with LSTMs for code clone 

detection—a related task—outperforms standalone 

models by 12% in accuracy [27]. Our implementation 

adapts this concept to bug prediction, hypothesizing 

that the synergy of local pattern recognition and 

sequential modeling enhances predictive power, 

especially in dynamic, large-scale projects. 

Other Emerging Techniques 

Beyond our hybrid model, other advanced techniques 

are gaining traction. Graph Neural Networks (GNNs) 

model code as graphs, with nodes representing 

functions or variables and edges capturing 

dependencies. Zhou et al. applied GNNs to bug 

prediction, leveraging call graphs to achieve a recall 

of 0.85, surpassing traditional metrics-based models 

[33]. Additionally, transformer-based models, 

inspired by natural language processing, treat code as 

a language and use attention mechanisms to weigh 

the importance of different code segments. While 

computationally intensive, these models show 

promise for cross-project bug prediction, as noted in 

recent exploratory studies. 

In summary, ML techniques for bug prediction span a 

spectrum from interpretable, feature-driven models to 

sophisticated neural architectures. Our LSTM + CNN 

hybrid model exemplifies the potential of integrating 

spatial and temporal analysis, building on the 

foundation laid by prior research. The following 

sections will detail our methodology and evaluate this 

approach against established benchmarks. 

IV. PROPOSED METHODOLGY 
The methodology of this research is designed to 

systematically investigate the efficacy of a hybrid 

‘Long Short-Term Memory (LSTM)’ and 

‘Convolutional Neural Network (CNN)’ model for 

software bug prediction. This section delineates the 

comprehensive approach adopted, encompassing 

dataset selection and preprocessing, model 

architecture design, hyper parameter optimization, 

and performance evaluation. By adhering to a 

structured and reproducible workflow, we aim to 

ensure the reliability and validity of our findings, 

contributing to the broader discourse on machine 

learning applications in software engineering. 

The proposed methodology has been illustrated in Fig.1 
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Figure 1 Flow Chart of Proposed Model 

A. Dataset Description &Pre-processing 

The foundation of any machine learning study lies in 

the quality and suitability of the data employed. This 

subsection provides an in-depth description of the 

dataset utilized in this research, followed by the 

preprocessing steps undertaken to prepare it for 

model training and evaluation. 

1. Overview of the JM1 Dataset 

In this study, we utilize the JM1 dataset, a widely 

recognized benchmark from the NASA Metrics Data 

Program (MDP), to train and assess our bug 

prediction model. The JM1 dataset originates from a 

real-world software project developed by NASA, 

offering a robust representation of software module 

characteristics and their associated defect outcomes. 

It comprises approximately 10,885 software modules, 

each characterized by 21 numerical software metrics 

and a binary target variable indicating defect 

presence (Defective: Yes/No). These attributes make 

the JM1 dataset particularly suitable for binary 

classification tasks in software bug prediction, 

providing a balance of complexity and scale that 

mirrors practical software engineering challenges. Its 

extensive use in prior research further validates its 

relevance as a standard benchmark for evaluating 

machine learning techniques in this domain. 

2. Features in the JM1 Dataset 

The JM1 dataset encapsulates a diverse set of 

software metrics, categorized into Halstead metrics, 

Cyclomatic complexity metrics, and size-based 

attributes, all of which serve as predictors for the 

binary defect label. These features collectively 

capture both the structural and complexity aspects of 

the software modules, enabling the model to discern 

patterns associated with defect proneness.  

3. Data Preprocessing 

To ensure the JM1 dataset is amenable to machine 

learning analysis, several preprocessing steps are 

applied to enhance data quality and optimize model 
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performance. These steps address common 

challenges such as missing values, scale disparities, 

and class imbalance, which are critical for achieving 

robust and unbiased results. 

Handling Missing Values: The dataset is first 

inspected for missing or inconsistent entries, such as 

null values or outliers that deviate significantly from 

expected ranges (e.g., negative LOC). Where 

applicable, imputation techniques—such as replacing 

missing values with feature medians—or removal of 

severely corrupted instances are employed to 

maintain dataset integrity [34]. 

Feature Scaling: Given the numerical nature of the 

21 metrics and their varying ranges (e.g., LOC spans 

hundreds while Halstead difficulty is typically 

smaller), feature scaling is essential to ensure 

equitable contribution to the model. Two standard 

techniques are considered: Min-Max scaling, which 

normalizes features to a [0, 1] range, and Z-score 

normalization, which standardizes features to a mean 

of 0 and a standard deviation of 1. The choice 

between these methods is determined during 

experimentation to optimize convergence of the 

hybrid LSTM + CNN model [35]. 

Class Imbalance Handling:As is often the case with 

software defect datasets, a first examination of the 

JM1 dataset indicates a possible imbalance, with non-

faulty modules (label 0) probably outnumbering 

defective ones (label 1).  We use the Synthetic 

Minority Over-sampling Technique (SMOTE) to 

reduce the possibility of model bias towards the 

majority class. SMOTE creates synthetic examples of 

the minority class (defective modules) by 

interpolating between instances that already exist. 

This technique has proven effective in enhancing 

classification performance for imbalanced software 

quality datasets [36]. As an alternative, class 

weighting is used while training the model, giving 

misclassifications of the minority class a larger 

penalty.  To guarantee balanced predictive 

capabilities, the efficacy of various methods is 

assessed in later performance evaluations [37]. 

By meticulously preparing the JM1 dataset through 

these steps, we establish a solid foundation for 

training and evaluating the hybrid LSTM + CNN 

model. The following subsections will elaborate on 

model selection, hyper parameter tuning, and 

assessment strategies, building upon this 

preprocessed data to address the research objectives. 

B. Model Selection & Experimentation 

Accurate software bug prediction relies heavily on 

using the right machine learning model.  In order to 

improve prediction performance, this study suggests 

a hybrid ensemble deep learning architecture that 

combines CNNs with LSTM networks.  This hybrid 

technique takes advantage of the strengths of both 

paradigms to tackle the complex software defect data. 

It combines the spatial feature extraction capabilities 

of CNNs with the temporal dependency modelling of 

LSTMs.  A framework for systematic and iterative 

experimentation guides the model selection process, 

guaranteeing architectural optimization for the JM1 

dataset.  The suggested model's building blocks, its 

hierarchical structure, and the methodology used for 

training and compilation are detailed in this section. 

1. Convolutional Neural Network (CNN) 

Component 

‘Convolutional Neural Networks’ are primarily 

designed to process structured grid-like data, such as 

images or time-series sequences, making them adept 

at identifying local patterns within ordered inputs. In 

the context of software bug prediction, CNNs are 

employed to extract meaningful features from the 

structured representation of software metrics in the 

JM1 dataset. Specifically, a one-dimensional 

convolutional layer (Conv1D) is utilized to process 

the sequential input, capturing localized patterns—

such as recurring code complexity or size-based 

anomalies—that may indicate defect proneness. The 

ability of CNNs to reduce feature dimensionality 

through convolution and pooling operations enhances 

computational efficiency and mitigates overfitting, 

making them a foundational component of the hybrid 

model. 

2. Long Short-Term Memory (LSTM) Component 

An optimized kind of RNNs, ‘Long Short-Term 

Memory networks’ are trained to represent and 

remember sequential data's long-term dependencies.  

This feature is especially helpful for software 

problem prediction because of the potential impact of 

temporal linkages on defect likelihood, such as trends 
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in code evolution or sequential changes in 

measurements. The LSTM component in our model 

captures these dependencies, complementing the 

spatial feature extraction performed by the CNN. By 

maintaining a memory of past inputs through its cell 

state and gating mechanisms (input, forget, and 

output gates), the LSTM layer ensures that the model 

learns from the sequential context of the data, 

enhancing its predictive power for time-dependent 

software characteristics. 

3. Hybrid CNN + LSTM Architecture 

The proposed model is a hybrid deep learning 

architecture that synergistically combines Conv1D 

and LSTM layers, followed by dense layers for 

binary classification. The design process begins with 

reshaping the JM1 dataset’s input from a 2D structure 

(10,885 instances × 21 features) into a 3D format 

(10,885 instances × 21 time steps × 1 channel) to 

accommodate the Conv1D layer’s requirement for a 

channel dimension. This additional dimension, set to 

a size of 1, aligns with the single-channel nature of 

the software metrics data. The architecture is 

structured as follows: 

Conv1D Layer: The initial layer applies a 1D 

convolution over the input sequence, utilizing 16 

filters, each with a kernel size of 2. These filters slide 

across the data, performing element-wise 

multiplications to extract local patterns, such as 

correlations between adjacent metrics (e.g., Halstead 

volume and LOC). This step generates a feature map 

that highlights defect-relevant characteristics. 

MaxPooling1D Layer:A MaxPooling1D layer 

selects the maximum value inside each pooling 

window to down sample the feature map after 

convolution.  This lessens the output's spatial 

dimensions, which in turn decreases computing 

complexity and helps prevent overfitting by keeping 

just the most important characteristics. 

LSTM Layer: The pooled output is fed into an 

LSTM layer with 8 units, configured with 

return_sequences=False to produce a single vector 

output rather than a sequence. This layer models 

temporal dependencies across the sequence, learning 

how patterns evolve across the 21 metrics and their 

implications for defect prediction. 

Dense Layer with Tanh Activation:After the 

LSTM, there is an 8-unit dense layer that is fully 

linked and uses a hyperbolic tangent (tanh) activation 

function.  In order to facilitate gradient flow during 

training, the tanh function is used because of its 

capability to normalize learnt features. It maps inputs 

to a range of [-1, 1]. 

Dropout Layer:The introduction of a 0.2-rate 

dropout layer, which randomly deactivates 20% of 

the neurons during each training iteration, helps to 

avoid overfitting.  This regularization strategy 

promotes model generalization across datasets, which 

increases model resilience.. 

Output Layer with Sigmoid Activation:Finally, for 

binary classification, a dense layer with one unit and 

a sigmoid activation function is used, yielding a 

probability score ranging from 0 to 1 (0 for non-

faulty, 1 for defective).  The sigmoid function 

produces decision-ready results because its 

monotonic and probabilistic properties match those 

of the defect label, which is binary.  The CNN's 

spatial feature extraction capabilities and the LSTM's 

sequential dependency modelling capabilities are 

used in this layered architecture to create a powerful 

ensemble for bug prediction.  The design process was 

iterative, meaning that many configurations were 

tested to see which one performed better. The final 

structure was chosen according on the experimental 

results. 

4. Compilation and Training 

To construct the hybrid model, the Adam 

optimizer—an adaptive learning rate technique that 

minimizes the binary cross-entropy loss function 

efficiently—is used.  Since binary classification tasks 

are best measured by the divergence between 

predicted probabilities and true labels, binary cross-

entropy is used as the loss metric.  In order to avoid 

overfitting and keep convergence under check, the 

preprocessed JM1 dataset is divided into training and 

validation subsets, and training is carried out 

repeatedly.  By conducting experiments, we may 

fine-tune the hybrid ensemble to get the best possible 

predicting accuracy while keeping it generalizable. 

C. Model Assessment 
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The evaluation of the proposed hybrid CNN + LSTM 

model is a critical step in validating its effectiveness 

for software bug prediction. To ensure both accuracy 

and reliability in classifying software modules as 

defective or non-defective, a comprehensive 

assessment framework is employed. This subsection 

outlines the evaluation metrics selected—accuracy, 

recall, precision, and F1-score—and their 

significance in gauging the model’s classification 

capabilities. These metrics provide a robust basis for 

analyzing the model’s performance, facilitating 

comparisons with alternative approaches, and 

confirming the suitability of the hybrid ensemble for 

bug prediction on the JM1 dataset. By leveraging 

these criteria, we aim to quantify the model’s 

predictive power and establish its practical utility in 

software quality assurance. 

1. Evaluation Metrics 

Four standard metrics are used to evaluate the hybrid 

model, and they all provide different information 

about how well it performs on the binary 

classification job (defective: 1, non-defective: 0).  

The confusion matrix is the basis for these metrics; it 

sorts predictions into four groups: true positives (TP), 

true negatives (TN), false positives (FP), and false 

negatives (FN). TP stands for correctly predicted 

defective modules, TN for correctly predicted non-

defective modules, and FN for defective modules 

incorrectly classified as non-defective.  Below are the 

definitions of the metrics that were chosen: 

Accuracy:The accuracy measure is the percentage of 

properly identified cases relative to the total number 

of modules. It is computed as follows: Accuracy= 

TP+TN+FP+FN/TP+TN. The accuracy of a model is 

a key performance measure since it shows how well 

the model can distinguish between non-faulty and 

defective modules. While accuracy is important, it 

may not be enough to accurately represent 

performance in the JM1 dataset due to the possibility 

of a class imbalance (e.g., a greater number of non-

defective modules). This might happen if the model 

is biased towards the majority class. 

Precision:Precision is the percentage of projected 

defective modules that are really defective; it is 

defined as Precision= TP+FP/TP. A low rate of false 

positives is indicated by high precision, which is 

critical in software engineering contexts since 

developer resources might be wasted on needless 

reviews if non-defective code is mistakenly flagged. 

Recall:The recall, which is sometimes called 

sensitivity, measures how well the model can detect 

all faulty modules in the dataset. It is calculated as 

Recall =TP+FN/TP. Missing faulty modules (false 

negatives) might cause serious flaws to remain, 

lowering program dependability, hence a high recall 

is crucial for bug prediction. 

F1-Score:Harmonic mean of recall and accuracy is 

the F1-score. When class imbalance or dataset 

features cause a trade-off between accuracy and 

recall, this statistic gives a fair evaluation of the 

model's performance. To make sure the model does 

well on both measures of classification efficacy, the 

F1-score is quite useful in this study. 

2. Evaluation Outcomes 

The efficiency of the trained hybrid model is 

ultimately judged by its performance across these 

metrics, with results reported in the subsequent 

"Results and Analysis" section. By focusing on 

accuracy as a primary metric—while supplementing 

it with precision, recall, and F1-score—we ensure a 

holistic assessment that aligns with the research 

objective of accurate and reliable bug identification. 

This multi-faceted approach not only validates the 

model’s predictive power but also provides a 

platform for understanding its classification behavior, 

particularly in the context of the JM1 dataset’s real-

world software characteristics. The outcomes of this 

assessment will inform discussions on the model’s 

practical applicability and potential areas for 

refinement. 

V. RESULTS AND ANALYSIS 

The evaluation of the hybrid CNN + LSTM model on 

the JM1 dataset yields critical insights into its 

performance for software bug prediction. This section 

presents the quantitative results, including key 

classification metrics and the confusion matrix, 

followed by an in-depth analysis of their significance. 

By synthesizing these findings, we assess the model’s 

effectiveness in identifying defective software 

modules, explore its strengths and limitations, and 

discuss its implications for software quality 

assurance. The results are contextualized within the 

broader objectives of this research, providing a 

http://www.ijcstjournal.org/


International Journal of Computer Science Trends and Technology (IJCST) – Volume 13 Issue 3, May-Jun 2025 

ISSN: 2347-8578                          www.ijcstjournal.org                                                  Page 143 

 

foundation for understanding the practical utility of 

the proposed hybrid ensemble approach. 

1. Quantitative Results 

The trained hybrid model was assessed on a held-out 

test subset of the JM1 dataset, with performance 

quantified using four metrics: accuracy, precision, 

recall, and F1-score. The results are summarized as 

follows: 

 Accuracy: 96% 

 Precision: 94% 

 Recall: 84% 

 F1-Score: 89% 

Table 0-1 Result Comparison  

Metric Value 

Precision 94% 

Recall 84% 

F1 Score 89% 

Accuracy 96% 

Here are visual results of proposed mode – 

 

Figure 2 Visual Result of Proposed Model 

These metrics were derived from the model’s predictions compared against the true defect labels, with the confusion 

matrix providing a detailed breakdown of classification outcomes. The confusion matrix is presented below, where 

rows represent actual classes (0: non-defective, 1: defective) and columns represent predicted classes: 

75% 80% 85% 90% 95% 100%

Value
94%

84%

89%

96%

Evaluation on Test Data

Accuracy F1 Score Recall Precision
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Figure 3 Confusion Matrix of Proposed Model on Test Data 

Table 0-2 Confusion Matrix 

 Predicted 0 Predicted 1 

Actual 0 2600 23 

Actual 1 96 536 

 

From the confusion matrix: 

True Negatives (TN): 2600 (non-defective modules 

correctly classified as non-defective) 

False Positives (FP): 23 (non-defective modules 

incorrectly classified as defective) 

False Negatives (FN): 96 (defective modules 

incorrectly classified as non-defective) 

True Positives (TP): 536 (defective modules correctly 

classified as defective) 

The total number of test instances is 3255 (2600 + 23 + 

96 + 536), reflecting a subset of the JM1 dataset’s 

10,885 modules, likely due to a train-validation-test 

split (e.g., 20-30% reserved for testing). 

2. Analysis of Results 

The hybrid CNN + LSTM model demonstrates strong 

performance across all metrics, with an accuracy of 

96% indicating that it correctly classifies the vast 

majority of software modules. This high accuracy 

suggests that the model effectively leverages the spatial 

feature extraction of the CNN and the temporal 

dependency modeling of the LSTM to distinguish 

between defective and non-defective modules in the 

JM1 dataset. Precision (94%) reflects a low false 

positive rate (approximately 4.1%), while recall (84%) 

indicates that 15.2% of defective modules are missed. 

The F1-score (89%) balances these trade-offs, 

outperforming typical benchmarks for the JM1 dataset. 

The confusion matrix highlights exceptional specificity 

(99.1% for non-defective modules) and a conservative 

defect prediction approach, prioritizing precision over 

exhaustive recall. 

3. Discussion of Implications 
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The 96% accuracy and 89% F1-score affirm the hybrid 

model’s efficacy, with high precision (94%) ensuring 

reliable defect flagging and solid recall (84%) 

capturing most defects. The synergy of CNN and 

LSTM components, supported by preprocessing steps 

like SMOTE, drives these outcomes. However, the 96 

false negatives suggest potential limitations in 

modeling temporal dependencies with static metrics, 

warranting further exploration. Practically, this model 

optimizes code review efforts; academically, it 

advances hybrid deep learning applications in software 

engineering. 

4. Comparison with Prior Research 

To situate our findings within the existing literature, 

we compare the proposed hybrid ensemble model with 

prior work on software bug prediction, particularly 

studies utilizing the JM1 dataset or similar 

benchmarks. Prior research has employed various 

machine learning models, including traditional 

algorithms and convolutional neural networks (CNNs), 

to classify software defects. A notable example is the 

work by Giger et al., which applied a Random Forest 

classifier to predict defects, achieving an accuracy of 

82% on a comparable dataset [9]. In contrast, our 

hybrid CNN + LSTM model attains an accuracy of 

96%, as shown in the table below: 

Table 0-3 Result Comparison with Prior Study 

Model Accuracy 

Random forest (Exiting work) [38] 82% 

Hybrid Ensemble Model (Proposed 

Work) 
96% 

 

This 14% improvement in accuracy underscores the 

superiority of the hybrid ensemble approach over the 

Random Forest model. Several factors contribute to 

this enhanced performance. First, while Random 

Forests rely on manually engineered features (e.g., 

code metrics like LOC or cyclomatic complexity), our 

model leverages the CNN’s ability to automatically 

extract spatial patterns from raw or minimally 

processed inputs, reducing dependency on feature 

selection expertise. Second, the LSTM component 

introduces temporal modeling, capturing dependencies 

across the sequence of 21 metrics in the JM1 dataset—

an aspect unaddressed by the tree-based Random 

Forest, which treats features independently. Third, the 

hybrid architecture’s deep learning framework benefits 

from end-to-end training, optimizing both feature 

extraction and classification in a unified process, unlike 

the two-stage approach of traditional ML models. 

Table 4 Result Comarision 

 

 

Prior studies using standalone CNNs for bug 

prediction, while innovative, typically report 

accuracies below 90%, as they lack the sequential 

modeling capability that our LSTM integration 

provides. The Random Forest’s 82% accuracy, while 

respectable, reflects limitations in handling complex, 

high-dimensional data without overfitting or under 

fitting, especially in imbalanced datasets like JM1. Our 

model’s preprocessing (e.g., SMOTE for class 

imbalance) and architectural design mitigate these 

issues, achieving a higher F1-score (89%) compared to 

typical Random Forest results (often 70-80% on JM1), 

further highlighting its balanced precision and recall. 

This comparison validates the hypothesis that 

combining CNN and LSTM architectures enhances 

predictive power beyond traditional and single-

paradigm deep learning approaches. However, the 

computational complexity of our hybrid model—

requiring more training time and resources than 

70% 80% 90% 100%

Accuracy
82%

96%

Accuracy

Hybrid Ensemble Model
(Proposed Work)

96%

Random forest (Exiting
work)

82%
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Random Forests—represents a trade-off that must be 

considered in practical applications. Nonetheless, the 

significant accuracy gain positions our work as a 

substantial advancement in the field, particularly for 

datasets with intricate structural and dependency 

patterns. 

5. Broader Implications 

The hybrid model’s performance suggests it is well-

suited for real-world software quality assurance, 

offering a reliable tool for prioritizing defect mitigation 

efforts. Its superiority over prior methods like Random 

Forests reinforces the value of hybrid deep learning in 

software engineering research, paving the way for 

further exploration of ensemble architectures. The 

moderate false negative rate (96 FN) remains a 

challenge, but the overall results demonstrate a robust 

and effective solution for bug prediction. 

VI. CONCLUSION AND FUTURE 

WORK 

This research has investigated the potential of a deep 

learning model that combines CNNs and LSTM 

networks for software bug prediction. The model was 

tested using the JM1 dataset from the NASA Metrics 

Data Program.  This research set out to improve defect 

classification accuracy and reliability by combining the 

capabilities of ‘long short-term memories (LSTMs)’ 

for temporal dependency modelling and ‘convolutional 

neural networks (CNNs)’ for spatial feature extraction.  

We have proven that our hybrid ensemble technique is 

effective in solving software quality assurance 

problems by following a systematic methodology that 

includes dataset pretreatment, model creation, hyper 

parameter tweaking, and rigorous assessment.  On the 

JM1 dataset, the model achieved an impressive 96% 

accuracy, 94% precision, 84% recall, and 89% F1-

score, highlighting its exceptional performance. These 

metrics reflect a robust ability to correctly classify 

software modules, with a low false positive rate (23 

instances) and a moderate false negative count (96 

instances), as detailed in the confusion matrix. 

Comparative analysis with prior work, such as the 

Random Forest model by Giger et al. which achieved 

82% accuracy, highlights a significant 14% 

improvement, attributing this gain to the hybrid 

model’s capacity to automatically extract and model 

complex patterns without extensive manual feature 

engineering. The preprocessing steps, including 

SMOTE for class imbalance and feature scaling, 

further bolstered these outcomes, ensuring balanced 

and optimized inputs for training. 

The implications of this work are twofold. Practically, 

the hybrid model offers a reliable tool for software 

developers, enabling precise identification of defect-

prone modules to optimize testing and maintenance 

efforts. Academically, it contributes to the evolving 

field of machine learning in software engineering, 

validating the potential of hybrid deep learning 

architectures to outperform traditional and single-

paradigm approaches. The high precision ensures 

minimal wasted effort on false positives, while the 

solid recall captures most defects, though the 15.2% 

missed defective modules suggest areas for refinement. 

Despite its strengths, the study reveals limitations that 

pave the way for future research. The moderate recall 

(84%) and 96 false negatives indicate that the model 

may struggle to detect all defects, potentially due to the 

static nature of the JM1 dataset, which lacks temporal 

data like commit histories that could enhance LSTM 

performance. Additionally, the computational 

complexity of the hybrid CNN + LSTM model, 

compared to simpler classifiers like Random Forests, 

poses a trade-off that warrants consideration in 

resource-constrained environments. Future work could 

address these limitations through several avenues. 

First, incorporating dynamic datasets with sequential 

code change data (e.g., GitHub commit logs) could 

better leverage the LSTM’s temporal modeling 

capabilities, potentially improving recall. Second, 

experimenting with advanced architectures, such as 

attention mechanisms or Graph Neural Networks 

(GNNs), might enhance feature extraction and 

dependency modeling, further boosting performance. 

Third, optimizing the model’s computational 

efficiency—through techniques like model pruning or 

quantization—could make it more practical for real-

time deployment. Finally, extending the evaluation to 

additional datasets beyond JM1 would test the model’s 

generalizability across diverse software projects, 

strengthening its applicability. 

In conclusion, this research establishes the hybrid CNN 

+ LSTM model as a powerful and effective solution for 

software bug prediction, surpassing prior benchmarks 

and offering actionable insights for software quality 

improvement. By addressing the identified challenges 

and exploring the proposed future directions, 
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subsequent studies can build on this foundation to 

further advance the reliability and efficiency of 

software systems, ultimately reducing the risks and 

costs associated with software defects. 
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